Advertisement

Temperature, Clouds, and Aerosols in the Terrestrial Bodies of the Solar System

  • F. Montmessin
  • A. Määttänen
Living reference work entry

Abstract

This chapter is intended to provide a concise overview of the state of knowledge regarding the temperature, clouds, and aerosols of the terrestrial bodies of our Solar System, namely Mars, Venus, and Titan. These bodies are the planetary objects that most resemble the Earth. The atmosphere of each body is described in terms of composition and vertical structure. We distinguish and compare the extent of the various atmospheric compartments that form the atmospheric column, from the troposphere up to the thermosphere. The temperature structure is then presented, and the main causes known for explaining its variations on each body are listed. The specific roles of waves, radiation, as well as convection in shaping temperature profiles are then discussed. In a second part, the particulate components of these atmospheres, clouds and aerosols, are described in terms of their physical properties (composition, optical properties) and of their variability in both space and time. Mars , Venus, and Titan exhibit a remarkable variety of clouds and aerosols. Our knowledge about them has made considerable progress thanks to the success of space missions during the last two decades, while in parallel theoretical models have improved to the point that three-dimensional Global Climate Models now include the detailed physics of clouds and aerosols. As a result, it is now widely recognized that particulates play a key role in forcing the climate and the evolution of these bodies.

Keywords

Mars Venus Tittan Atmospheres Solar System Composition Radiative transfer Troposphere Stratosphere Mesosphere Thermosphere Radiation Boundary layer Scale height Greenhouse Infrared Surface temperature Cloud layer Clouds Thermodynamic equilibrium Thermal behavior Tropopause Stratopause Mesopause Isothermal Gravity wave Radiative-convective equilibrium Radiative equilibrium Atmospheric waves Diurnal solar forcing Tides Breaking wave Composition Photodissociation Dust Dust storms Diabatic Mesoscale models Cloud Storms Mars Odyssey Mars Express Mars Reconnaissance Orbiter Venus Express Cassini 

References

  1. Anderson CM, Samuelson RE, Bjoraker GL, Achterberg RK (2010) Particle size and abundance of HC3N ice in Titan’s lower stratosphere at high northern latitudes. Icarus 207:914–922.  https://doi.org/10.1016/j.icarus.2009.12.024 ADSCrossRefGoogle Scholar
  2. Barstow JK, Tsang CCC, Wilson CF, Irwin PGJ, Taylor FW, McGouldrick K, Drossart P, Piccioni G, Tellmann S (2012) Models of the global cloud structure on Venus derived from Venus express observations. Icarus 217:542–560.  https://doi.org/10.1016/j.icarus.2011.05.018 ADSCrossRefGoogle Scholar
  3. Barth EL, Rafkin SCR (2007) TRAMS: a new dynamic cloud model for Titan’s methane clouds. Geophys Res Lett 34:L03203.  https://doi.org/10.1029/2006GL028652 ADSCrossRefGoogle Scholar
  4. Basu S, Richardson MI, Wilson RJ (2004) Simulation of the Martian dust cycle with the GFDL Mars GCM. J Geophys Res 109:E11006.  https://doi.org/10.1029/2004JE002243 ADSCrossRefGoogle Scholar
  5. Benson J, Kass DM, Kleinböhl A, McCleese DJ, Schofield JT, Taylor FW (2010) Mars’ south polar hood as observed by the Mars climate sounder. J Geophys Res 115:E12015.  https://doi.org/10.1029/ 2009JE003554 ADSCrossRefGoogle Scholar
  6. Benson J, Kass DM, Kleinböhl A (2011) Mars’ north polar hood as observed by the Mars climate sounder. J Geophys Res 116(E3).  https://doi.org/10.1029/2010JE003693
  7. Brown ME, Roberts JE, Schaller EL (2010) Clouds on titan during the Cassini prime mission: a complete analysis of the VIMS data. Icarus 205:571.  https://doi.org/10.1016/j.icarus.2009.08.024 ADSCrossRefGoogle Scholar
  8. Chaffin MS, Chaufray JY, Stewart I, Montmessin F, Schneider NM, Bertaux JL (2014) Unexpected variability of Martian hydrogen escape. Geophys Res Lett 41.  https://doi.org/10.1002/2013GL058578
  9. Clancy RT, Sandor BJ (1998) CO2 ice clouds in the upper atmosphere of Mars. Geophys Res Lett 25:489–492ADSCrossRefGoogle Scholar
  10. Clancy RT, Wolff MJ, Christensen PR (2003) Mars aerosol studies with the MGS TES emission phase function observations: optical depths, particle sizes, and ice cloud types versus latitude and solar longitude. JGRP. https://doi.org/10.1029/2003JE002058
  11. Clancy RT, Wolff MJ, Whitney BA et al (2007) Mars equatorial mesospheric clouds: global occurrence and physical properties from Mars global surveyor thermal emission spectrometer and Mars orbiter camera limb observations. J Geophys Res 112:E04004.  https://doi.org/10.1029/2006JE002805 ADSCrossRefGoogle Scholar
  12. Colaprete A, Toon OB (2002) Carbon dioxide snow storms during the polar night on Mars. J Geophys Res 107(E7):5051.  https://doi.org/10.1029/2001JE001758 CrossRefGoogle Scholar
  13. Conrath BJ (1975) Thermal structure of the Martian atmosphere during the dissipation of the dust storm of 1971. Icarus 24:36–46ADSCrossRefGoogle Scholar
  14. Coustenis A, Schmitt B, Khanna RK, Trotta F (1999) Plausible condensates in Titan’s stratosphere from voyager infrared spectra. Planet Space Sci 47:1305–1329.  https://doi.org/10.1016/S0032-0633(99)00053-7 ADSCrossRefGoogle Scholar
  15. Crisp D (1986) Radiative forcing of the Venus mesosphere. Icarus 67:484–514ADSCrossRefGoogle Scholar
  16. Curtis DB, Hatch CD, Hasenkopf CA et al (2008) Laboratory studies of methane and ethane adsorption and nucleation onto organic particles: application to Titan’s clouds. Icarus 195:792–801.  https://doi.org/10.1016/j.icarus.2008.02.003 ADSCrossRefGoogle Scholar
  17. Dolfus A (1957) Etude des planètes par la polarisation de leur lumière. Ann d’Astrophysique Sup 4:3–114Google Scholar
  18. Drossart P et al (2007) A dynamic upper atmosphere of Venus as revealed by VIRTIS on Venus express. Nature 450:641–645.  https://doi.org/10.1038/nature06140 ADSCrossRefGoogle Scholar
  19. Duplissy J et al (2016) Effect of ions on sulfuric acid-water binary particle formation II: experimental data and comparison with QC-normalized classical nucleation theory. J Geophys Res Atmos 121:1752–1775.  https://doi.org/10.1002/2015JD023539 ADSCrossRefGoogle Scholar
  20. Forget F, Pollack JB, Hansen JB (1995) Low brightness temperatures of Martian polar caps: CO2 clouds or low surface emissivity? J Geophys Res 100:21119–21234CrossRefGoogle Scholar
  21. Forget F, Costard F, Lognonné P (2008) Planet Mars: story of another world. Springer-Praxis books in popular astronomy. Springer; In association with Praxis Publication, Berlin/New York/Chichester Google Scholar
  22. Forget F, Montmessin F, Bertaux JL et al (2009) Density and temperatures of the upper Martian atmosphere measured by stellar occultations with Mars express SPICAM. J Geophys Res 114:1004.  https://doi.org/10.1029/2008JE003086 CrossRefGoogle Scholar
  23. Fulchignoni M et al (2005) In situ measurements of the physical characteristics of Titan’s environment. Nature 438:785–791.  https://doi.org/10.1038/nature04314 ADSCrossRefGoogle Scholar
  24. Gao P, Zhang X, Crisp D, Bardeen CG, Yung YL (2014) Bimodal distribution of sulfuric acid aerosols in the upper haze of Venus. Icarus 231:83–98.  https://doi.org/10.1016/j.icarus.2013.10.013 ADSCrossRefGoogle Scholar
  25. Gonzalez-Galindo F, Määttänen A, Forget F, Spiga A (2011) The martian mesosphere as revealed by CO2 cloud observations and general circulation modeling. Icarus 216(1):10–22ADSCrossRefGoogle Scholar
  26. Greeley R (2002) Saltation impact as a means for raising dust on Mars. Plan Space Science 50(2):151–155ADSCrossRefGoogle Scholar
  27. Griffith CA, Owen T, Miller GA, Geballe TR (1998) Transient clouds in Titan’s lower atmosphere. Nature 395:575–578.  https://doi.org/10.1038/26920 ADSCrossRefGoogle Scholar
  28. Griffith CA, Hall JL, Geballe TR (2000) Detection of daily clouds on Titan. Science 290:509–513.  https://doi.org/10.1126/science.290.5491.509 ADSCrossRefGoogle Scholar
  29. Griffith CA et al (2005) The evolution of Titan’s mid-latitude clouds. Science 310:474–477.  https://doi.org/10.1126/science.1117702 ADSCrossRefGoogle Scholar
  30. Griffith CA, Penteado P, Rannou P, Brown R, Boudon V, Baines KH, Clark R, Drossart P, Buratti B, Nicholson P, McKay CP, Coustenis A, Negrao A, Jaumann R (2006) Evidence for a Polar Ethane Cloud on Titan. Science 313:1620–1622. https://doi.org/10.1126/science.1128245 ADSCrossRefGoogle Scholar
  31. Griffith AC, Rafkin S, Rannou P, McKay CP (2014) Storms clouds and weather. In: Müller Wodarg et al (ed) Titan, Cambridge. Cambridge University Press.  https://doi.org/10.1017/CBO9780511667398.009
  32. Grinspoon DH, Pollack JB, Sitton BR, Carlson RW, Kamp LW, Baines KH, Encrenaz T, Taylor FW (1993) Probing Venus’s cloud structure with Galileo NIMS. Planet Space Sci 41:515–542.  https://doi.org/10.1016/0032-0633(93)90034-Y ADSCrossRefGoogle Scholar
  33. Hansen JE, Arking A (1971) Clouds of Venus: evidence for their nature. Science 171:669–672.  https://doi.org/10.1126/science.171.3972.669 ADSCrossRefGoogle Scholar
  34. Hansen JE, Hovenier JW (1974) Interpretation of the polarization of Venus. J Atmos Sci 31:1137–1160ADSCrossRefGoogle Scholar
  35. Haus R, Kappel D, Arnold G (2013) Self-consistent retrieval of temperature profiles and cloud structure in the northern hemisphere of Venus using VIRTIS/VEX and PMV/VENERA-15 radiation measurements. Planet Space Sci 89:77–101.  https://doi.org/10.1016/j.pss.2013.09.020 ADSCrossRefGoogle Scholar
  36. Haus R, Kappel D, Arnold G (2014) Atmospheric thermal structure and cloud features in the southern hemisphere of Venus as retrieved from VIRTIS/VEX radiation measurements. Icarus 232:232–248.  https://doi.org/10.1016/j.icarus.2014.01.020. ADSCrossRefGoogle Scholar
  37. Heavens NG et al (2011) The vertical distribution of dust in the Martian atmosphere during northern spring and summer: observations by the Mars climate sounder and analysis of zonal average vertical dust profiles. J Geophys Res 116(E4).  https://doi.org/10.1029/2010JE003691
  38. Heavens NG, Cantor BA, Hayne PO, Kass DM, Kleinböhl A, McCleese DJ, Piqueux S, Schofield JT, Shirley JH (2015) Extreme detached dust layers near Martian volcanoes: evidence for dust transport by mesoscale circulations forced by high topography. Geophys Res Lett 42(10):3730–3738.  https://doi.org/10.1002/2015GL064004 ADSCrossRefGoogle Scholar
  39. Hörst S (2017) Titan’s atmosphere and climate. J Geophys Res 122(3):432–482.  https://doi.org/10.1002/2016JE005240 CrossRefGoogle Scholar
  40. Hueso R, Sanchez-Lavega A (2006) Methane storms on Saturn’s moon Titan. Nature 442:428–431.  https://doi.org/10.1038/nature04933 ADSCrossRefGoogle Scholar
  41. Ignatiev NI, Titov DV, Piccioni G, Drossart P, Markiewicz WJ, Cottini V, Roatsch T, Almeida M, Manoel N (2009) Altimetry of the Venus cloud tops from the Venus express observations. J Geophys Res 114:E00B43.  https://doi.org/10.1029/2008JE003320 CrossRefGoogle Scholar
  42. James EP, Toon OB, Schubert G (1997) A numerical microphysical model of the condensational Venus cloud. Icarus 129:147–171.  https://doi.org/10.1006/icar.1997.5763 ADSCrossRefGoogle Scholar
  43. Kahre M, Murphy JR, Haberle RM, Schaeffer J (2005) Simulating the Martian dust cycle with a finite surface dust reservoir. Geophys Res Lett 32(20).  https://doi.org/10.1029/2005GL023495
  44. Kleinböhl A et al (2009) Mars climate sounder limb profile retrieval of atmospheric temperature, pressure, and dust and water ice opacity. J Geophys Res 114:E10.  https://doi.org/10.1029/2009JE00358 CrossRefGoogle Scholar
  45. Kliore AJ, Cain DL, Fjeldbo G, Seidel BL, Sykes MJ, Rasool SI (1972) The atmosphere of Mars from mariner 9 radio occultation measurements. Icarus 17:484–516ADSCrossRefGoogle Scholar
  46. Knollenberg RG, Hunten DM (1980) The microphysics of the clouds of Venus: results of the Pioneer Venus particle size spectrometer experiment. J Geophys Res 85:8039–8058.  https://doi.org/10.1029/JA085iA13p08039. ADSCrossRefGoogle Scholar
  47. de Kok R, Irwin PGJ, Tsang CCC, Piccioni G, Drossart P (2011) Scattering particles in nightside limb observations of Venus’ upper atmosphere by Venus express VIRTIS. Icarus 211:51–57.  https://doi.org/10.1016/j.icarus.2010.08.023 ADSCrossRefGoogle Scholar
  48. de Kok RJ, Teanby NA, Maltagliati L et al (2014) HCN ice in Titan’s high-altitude southern polar cloud. Nature 514:65–67.  https://doi.org/10.1038/nature13789 ADSCrossRefGoogle Scholar
  49. Korablev O et al (1993) Vertical structure of Martian dust measured by solar infrared occultations from the PHOBOS spacecraft. Icarus 102:76–87ADSCrossRefGoogle Scholar
  50. Krasnopolsky VA (1989) Vega mission results and chemical composition of Venusian clouds. Icarus 80:202–210.  https://doi.org/10.1016/0019-1035(89)90168-1 ADSCrossRefGoogle Scholar
  51. Krasnopolsky VA (2017) On the iron chloride aerosol in the clouds of Venus. Icarus 286:134–137.  https://doi.org/10.1016/j.icarus.2016.10.003 ADSCrossRefGoogle Scholar
  52. Lavvas P, Griffith CA, Yelle R (2011) Condensation in Titan’s atmosphere at the Huygens landing site. Icarus 215:732–750.  https://doi.org/10.1016/j.icarus.2011.06.040 ADSCrossRefGoogle Scholar
  53. Lemmon MT, Wolff MJ, Bell JF, Smith MD, Cantor BA, Smith PH (2005) Dust aerosol, clouds, and the atmospheric optical depth record over 5 Mars years of the Mars exploration rover mission. Icarus 251:96–111ADSCrossRefGoogle Scholar
  54. Liang M, Yung YL, Shemansky DE (2007) Photolytically generated aerosols in the mesosphere and thermosphere of Titan. ApJ L 661:199–202.  https://doi.org/10.1086/518785 ADSCrossRefGoogle Scholar
  55. Limaye S et al (2017) The thermal structure of the Venus atmosphere: intercomparison of Venus express and ground based observations of vertical temperature and density profiles. Icarus 294:124–155.  https://doi.org/10.1016/j.icarus.2017.04.020 ADSCrossRefGoogle Scholar
  56. Lindal GF, Hotz H, Sweetham DN, Shippony Z, Brenlde JP, Hartsell GV, Spear RT (1979) Viking radio occultation measurements of the atmosphere and topography of Mars: data acquired during 1 Martian year of tracking. J Geophys Res 84:8443–8456ADSCrossRefGoogle Scholar
  57. Lindal GF et al (1983) The atmosphere of titan – an analysis of the voyager 1 radio occultation measurements. Icarus 53:348–363.  https://doi.org/10.1016/0019-1035(83)90155-0 ADSCrossRefGoogle Scholar
  58. Lòpez-Valverde MA, Edwards DP, Lòpez-Puertas M, Roldàn C (1998) Non-local thermodynamic equilibrium in general circulation models of the Martian atmosphere. J Geophys Res 103(E27):16799–11681ADSCrossRefGoogle Scholar
  59. Luginin M, Fedorova A, Belyaev D, Montmessin F, Wilquet V, Korablev O, Bertaux JL, Vandaele AC (2016) Aerosol properties in the upper haze of Venus from SPICAV IR data. Icarus 277:154–170.  https://doi.org/10.1016/j.icarus.2016.05.008 ADSCrossRefGoogle Scholar
  60. Määttänen A et al (2005) Nucleation studies in the Martian atmosphere. J Geophys Res 110:E02002.  https://doi.org/10.1029/2004JE002308 CrossRefGoogle Scholar
  61. Määttänen A et al (2010) Mapping the mesospheric CO2 clouds on Mars: MEx/OMEGA and MEx/HRSC observations and challenges for atmospheric models. Icarus 209:452–469CrossRefGoogle Scholar
  62. Määttänen A et al (2013) A complete climatology of the aerosol vertical distribution on Mars from MEx/SPICAM UV solar occultations. Icarus 223(2):892–941CrossRefGoogle Scholar
  63. Madeleine J-B, Forget F, Millour E, Navarro T, Spiga A (2012) The influence of radiatively active water ice clouds on the Martian climate: radiative effect of Martian clouds. Geophy Res Lett 39. https://doi.org/10.1029/2012GL053564
  64. Määttänen A, Merikanto J, Henschel H, Duplissy J, Makkonen R, Ortega IK, Vehkamäki H (2017) New parameterizations for neutral and ion-induced sulfuric acid-water particle formation in nucleation and kinetic regimes. J Geophys Res 122. https://doi.org/10.1002/2017JD027429
  65. Maltagliati L, Montmessin F, Fedorova A, Korablev O, Forget F, Bertaux JL (2011) Evidence of water vapor in excess of saturation in the atmosphere of Mars. Science 333:1868. https://doi.org/10.1126/science.1207957 ADSCrossRefGoogle Scholar
  66. Maltagliati L et al (2013) Annual survey of water vapor vertical distribution and water-aerosol coupling in the Martian atmosphere observed by SPICAM/MEX solar occultations. Icarus 223(2):942–962ADSCrossRefGoogle Scholar
  67. Markiewicz WJ, Titov DV, Limaye SS, Keller HU, Ignatiev N, Jaumann R, Thomas N, Michalik H, Moissl R, Russo P (2007) Morphology and dynamics of the upper cloud layer of Venus. Nature 450:633–636.  https://doi.org/10.1038/nature06320 ADSCrossRefGoogle Scholar
  68. Marov MI et al (1983) Investigation of the structure of the Venus clouds using the nephelometers on the Venera-13 and Venera-14 probes. Kosmicheskie Issledovaniia 21:269–278ADSGoogle Scholar
  69. McConnochie TH, Bell III JF, Savransky D, Wolff MJ, Toigo AD, Wang H, Richardson MI Christensen PR (2010) THEMIS-VIS observations of clouds in the Martian mesosphere: Altitudes, wind speeds, and decameter-scale morphology. Icarus 210:545–565.https://doi.org/10.1016/j.icarus.2010.07.021 ADSCrossRefGoogle Scholar
  70. McGouldrick K, Tsang CCC (2017) Discovery of a 150 day period in the Venus condensational clouds. Icarus 286:118–133.  https://doi.org/10.1016/j.icarus.2016.10.005 ADSCrossRefGoogle Scholar
  71. McGouldrick K, Momary TW, Baines KH, Grinspoon DH (2012) Quantification of middle and lower cloud variability and mesoscale dynamics from Venus express/VIRTIS observations at 1.74μm. Icarus 217:615–628.  https://doi.org/10.1016/j.icarus.2011.07.009. ADSCrossRefGoogle Scholar
  72. McKay CP, Pollack JB, Courtin R (1989) The thermal structure of Titan’s atmosphere. Icarus 80:23–53.  https://doi.org/10.1016/0019-1035(89)90160-7 ADSCrossRefGoogle Scholar
  73. McKay CP, Pollack JB, Courtin R (1991) The greenhouse and antigreenhouse effects on Titan. Science 253:1118–1121.  https://doi.org/10.1126/science.253.5024.1118 ADSCrossRefGoogle Scholar
  74. Medvedev AS, Yigit E, Hartogh P, Becker E (2011) Influence of gravity waves on the Martian atmosphere: general circulation modeling. J Geophys Res 116:E10.  https://doi.org/10.1029/2011JE003848 CrossRefGoogle Scholar
  75. Merikanto J, Duplissy J, Määttänen A, Henschel H, Donahue NM, Brus D, Schobesberger S, Kulmala M, Vehkamäki H (2016) Effect of ions on sulfuric acid-water binary particle formation I: theory for kinetic and nucleation-type particle formation and atmospheric implications. J Geophys Res Atmos 121:1736–1751.  https://doi.org/10.1002/2015JD023538. ADSCrossRefGoogle Scholar
  76. Michael M, Tripathi SN, Borucki WJ, Whitten RC (2009) Highly charged cloud particles in the atmosphere of Venus. J Geophys Res 114:E04008.  https://doi.org/10.1029/2008JE003258 ADSCrossRefGoogle Scholar
  77. Michelangeli DV, Toon OB, Haberle RM, Pollack JB (1993) Numerical simulations of the formation and evolution of water ice clouds in the Martian atmosphere. Icarus 100:261–285ADSCrossRefGoogle Scholar
  78. Moissl R et al (2009) Venus cloud top winds from tracking UV features in Venus monitoring camera images. J Geophys Res 114:E00B31.  https://doi.org/10.1029/2008JE003117 CrossRefGoogle Scholar
  79. Montmessin F, Forget F, Rannou P, Cabane M, Haberle RM (2004) Origin and role of water ice clouds in the martian water cycle as inferred from a general circulation model. J Geophys Res 109:E10004ADSCrossRefGoogle Scholar
  80. Montmessin F et al (2006a) Subvisible CO2 clouds detected in the mesosphere of Mars. Icarus 183:403–410ADSCrossRefGoogle Scholar
  81. Montmessin F, Quémerais E, Bertaux JL, Korablev O, Rannou P, Lebonnois S (2006b) Stellar occultations at UV wavelengths by the SPICAM instrument: retrieval and analysis of martian haze profiles. J Geophys Res 111:E09S09.  https://doi.org/10.1029/2005JE002662 CrossRefGoogle Scholar
  82. Montmessin F, Gondet B, Bibring JP, Langevin Y, Drossart P, Forget F, Fouchet T (2007) Hyper-spectral imaging of convective CO2 ice clouds in the equatorial mesosphere of Mars. J Geophys Res 112.  https://doi.org/10.1029/ 2007JE002944
  83. Montmessin F, Bertaux JL, Marcq E (2010) Temporal and satial behavior of the thermal structure of the Upper Venusian atmosphere as observed by SPICAV. International Venus conference, Aussois, 20–26 June 2010. Invited presentationGoogle Scholar
  84. Montmessin F et al (2017) SPICAM on Mars express: a 10 year in-depth survey of the Martian atmosphere. Icarus 297:195–216.  https://doi.org/10.1016/j.icarus.2017.06.022 ADSCrossRefGoogle Scholar
  85. Navarro T, Madeleine JB, Forget F, Spiga A, Millou E, Montmessin F, Määttänen A (2014) Global climate modeling of the Martian water cycle with improved microphysics and radiatively active water ice clouds. J Geophys Res 119:1479–1495.  https://doi.org/10.1002/2013JE004550 CrossRefGoogle Scholar
  86. Newman C, Lewis SR, Read PL, Forget F (2002) Modeling the Martian dust cycle, 1. Representations of dust transport processes. J Geophys Res 107(E12):6–1.  https://doi.org/10.1029/2002JE001910 Google Scholar
  87. O’Leary B (1970) Venus halo: photometric evidence for ice in the Venus clouds. Icarus 13:292–298.  https://doi.org/10.1016/0019-1035(70)90058-8 ADSCrossRefGoogle Scholar
  88. Perrier S, Bertaux JL, Lefèvre F, Lebonnois S, Korablev O, Fedorova A, Montmessin F (2006) Global distribution of total ozone on Mars from SPICAM/MEX UV measurements. J Geophys Res (Planets) 111:9. https://doi.org/10.1029/2006JE002681 CrossRefGoogle Scholar
  89. Plainaki C, Paschalis P, Grassi D, Mavromichalaki H, Andriopoulou M (2016) Solar energetic particle interactions with the Venusian atmosphere. Ann Geophys 34:595–608.  https://doi.org/10.5194/angeo-34-595-2016. ADSCrossRefGoogle Scholar
  90. Pollack JB (1982) Properties of dust in the Martian atmosphere and its effect on temperature structure. Adv Space Res 2(2):45–56ADSCrossRefGoogle Scholar
  91. Pollack JB, Erickson EF, Witteborn FC, Chackerian C, Summers AL, Van Camp W, Baldwin BJ, Augason GC, Caroff LJ (1974) Aircraft observations of Venus’ near-infrared reflection spectrum: implications for cloud composition. Icarus 23:8–26.  https://doi.org/10.1016/0019-1035(74)90100-6 ADSCrossRefGoogle Scholar
  92. Pollack JB, Toon OB, Boese R (1980) Greenhouse models of Venus’ high surface temperature, as constrained by Pioneer Venus measurements. J Geophys Res 85:8223–8231.  https://doi.org/10.1029/JA085iA13p08223 ADSCrossRefGoogle Scholar
  93. Rafkin SC, Haberle RM, Michaels TI (2001) The Mars regional atmospheric modeling system: model description and selected simulations. Icarus 151(2):228–256ADSCrossRefGoogle Scholar
  94. Rannou P, Cabane M, Chassefiere E, Botet R, McKay CP, Courtin R (1995) Titan’s geometric albedo: role of the fractal structure of the aerosols. Icarus 118(2):355–372.  https://doi.org/10.1006/icar.1995.1196 ADSCrossRefGoogle Scholar
  95. Rannou P, Hourdin F, McKay CP (2002) A wind origin for Titan’s haze structure. Nature 418:853–856ADSCrossRefGoogle Scholar
  96. Rannou P, McKay CP, Lorenz RD (2003) A model of Titan’s haze of fractal aerosols constrained by multiple observations. Planet Space Sci 51:963–976.  https://doi.org/10.1016/j.pss.2003.05.008 ADSCrossRefGoogle Scholar
  97. Rannou P, Montmessin F, Hourdin F, Lebonnois S (2006) The latitudinal distribution of clouds on Titan. Science 311:201–205.  https://doi.org/10.1126/science.1118424. ADSCrossRefGoogle Scholar
  98. Rossi L, Marcq E, Montmessin F, Fedorova A, Stam D, Bertaux JL, Korablev O (2015) Preliminary study of Venus cloud layers with polarimetric data from SPICAV/VEx. Planet Space Sci 113:159–168.  https://doi.org/10.1016/j.pss.2014.11.011 ADSCrossRefGoogle Scholar
  99. Samuelson RE, Smith MD, Achterberg RK, Pearl JC (2007) Cassini CIRS update on stratospheric ices at Titan’s winter pole. Icarus 189:63–71.  https://doi.org/10.1016/j.icarus.2007.02.005 ADSCrossRefGoogle Scholar
  100. Satoh T, Imamura T, Hashimoto GL, Iwagami N, Mitsuyama K, Sorahana S, Drossart P, Piccioni G (2009) Cloud structure in Venus middle-to-lower atmosphere as inferred from VEX/VIRTIS 1.74 μm data. J Geophys Res 114:E00B37.  https://doi.org/10.1029/2008JE003184 CrossRefGoogle Scholar
  101. Schinder PJ et al (2011) The structure of Titan’s atmosphere from Cassini radio occultations. Icarus 215:460–474.  https://doi.org/10.1016/j.icarus.2011.07.030 ADSCrossRefGoogle Scholar
  102. Schofield JT et al (1997) The Mars pathfinder atmospheric structure investigation/meteorology. Science 278:1752ADSCrossRefGoogle Scholar
  103. Scholten F, Hoffmann H, Määttänen A, Montmessin F, Gondet B, Hauber E (2010) Concatenation of HRSC colour and OMEGA data for the determination and 3D-parameterization of high-altitude CO2 clouds in the Martian atmosphere. Planet Space Sci 58: 1207–1214. https://doi.org/10.1016/j.pss.2010.04.015 ADSCrossRefGoogle Scholar
  104. Sefton-Nash E, Teanby NA, Irwin PGJ, Hurley J, Calcutt SB (2013) Climatology and first-order composition estimates of mesospheric clouds from Mars climate sounder limb spectra. Icarus 222(1):342–356.  https://doi.org/10.1016/j.icarus.2012.11.012 ADSCrossRefGoogle Scholar
  105. Seiff A, Kirk DB (1977) Structure of the atmosphere of Mars in summer mid-latitudes. J Geophys Res 82:4364–4378ADSCrossRefGoogle Scholar
  106. Seiff A, Kirk DB, Young RE, Blanchard RC, Findlay JT, Kelly GM, Sommer SC (1980) Measurements of thermal structure and thermal contrasts in the atmosphere of Venus and related dynamical observations – results from the four Pioneer Venus probes. J Geophys Res 85:7903–7933ADSCrossRefGoogle Scholar
  107. Seiff A, Schofield JT, Kliore AJ, Taylor FW, Limaye SS (1985) Models of the structure of the atmosphere of Venus from the surface to 100 kilometers altitude. Adv Space Res 5(11):3–58ADSCrossRefGoogle Scholar
  108. Slipher EC (1962) The photographic story of Mars. Sky Publishing, Cambridge, MAGoogle Scholar
  109. Smith MD (2003) Thermal Emission Imaging System (THEMIS) infrared observations of atmospheric dust and water ice cloud optical depth. J Geophys Res 108. https://doi.org/10.1029/2003JE002115
  110. Smith MD (2004) Interannual variability in TES atmospheric observations of Mars during 1999–2003. Icarus 167:148–165ADSCrossRefGoogle Scholar
  111. Smith MD, Pearl JC, Conrath BJ, Christensen PR (2001) Thermal emission spectrometer results: Mars atmospheric thermal structure and aerosol distribution. JGRP 106:23929–23945.  https://doi.org/10.1029/2000JE001321 ADSCrossRefGoogle Scholar
  112. Spiga A, González-Galindo F, López-Valverde MÁ, Forget F (2012) Gravity waves, cold pockets and CO2 clouds in the Martian mesosphere. Geophys Res Lett 39:2.  https://doi.org/10.1029/2011GL050343 CrossRefGoogle Scholar
  113. Spiga A, Faure J, Madeleine JB, Määttänen A, Forget F (2013) Rocket dust storms and detached dust layers in the Martian atmosphere. J Geophys Res 118(4):746–767.  https://doi.org/10.1002/jgre20046 CrossRefGoogle Scholar
  114. Strobel DF (2009) Titan’s hydrodynamically escaping atmosphere: escape rates and the structure of the exobase region. Icarus 202(2):632–641.  https://doi.org/10.1016/j.icarus.2009.03.007 ADSCrossRefGoogle Scholar
  115. Terada N et al (2017) Global distribution and parameter dependences of gravity wave activity in the Martian upper thermosphere derived from MAVEN/NGIMS observations. J Geophys Res 122(2):2374–2397.  https://doi.org/10.1002/2016JA023476 Google Scholar
  116. Titov DV et al (2006) Venus express science planning. Planet Space Sci 54(13–14):1279–1297.  https://doi.org/10.1016/j.pss.2006.04.017 ADSCrossRefGoogle Scholar
  117. Titov DV, Taylor FW, Svedhem H, Ignatiev NI, Markiewicz WJ, Piccioni G, Drossart P (2008) Atmospheric structure and dynamics as the cause of ultraviolet markings in the clouds of Venus. Nature 456:620–623.  https://doi.org/10.1038/nature07466 ADSCrossRefGoogle Scholar
  118. Tomasko MG (1980) Preliminary results of polarimetry and photometry of Titan at large phase angles from Pioneer 11. J Geophys Res 85:5937–5942.  https://doi.org/10.1029/JA085iA11p05937 ADSCrossRefGoogle Scholar
  119. Tomasko MG, Doose LR, Smith PH, Odell AP (1980) Measurements of the flux of sunlight in the atmosphere of Venus. J Geophys Res 85:8167–8186.  https://doi.org/10.1029/JA085iA13p08167 ADSCrossRefGoogle Scholar
  120. Toon OB, Ragent B, Colburn D, Blamont J, Cot C (1984) Large, solid particles in the clouds of Venus: do they exist? Icarus 57:143–160.  https://doi.org/10.1016/0019-1035(84)90063-0 ADSCrossRefGoogle Scholar
  121. Tsai IC, Liang MC, Chen JP (2012) Methane-nitrogen binary nucleation: a new microphysical mechanism for cloud formation in Titan’s atmosphere. ApJ 747:36.  https://doi.org/10.1088/0004-637X/747/1/36 ADSCrossRefGoogle Scholar
  122. Vincendon M, Pilorget C, Gondet B, Murchie S, Bibring JP (2011) New near-IR observations of mesospheric CO2 and H2O clouds on Mars. J Geophys Res 102:E00J02.  https://doi.org/10.1029/2011JE003827 Google Scholar
  123. Waite JH, Young DT, Cravens TE, Coates AJ, Crary FJ, Magee B, Westlake J (2007) The process of Tholin formation in Titan’s upper atmosphere. Science 316:870.  https://doi.org/10.1126/science.1139727 ADSCrossRefGoogle Scholar
  124. West RA, Smith PH (1991) Evidence for aggregate particles in the atmospheres of Titan and Jupiter. Icarus 90:330–333.  https://doi.org/10.1016/0019-1035(91)90113-8 ADSCrossRefGoogle Scholar
  125. Willame Y, Vandaele AC, Despiesse C, Lefèvre F, Letocart V, Gillotay D, Montmessin F (2017) Retrieving cloud, dust and ozone abundances in the Martian atmosphere using SPICAM/UV nadir spectra. Plan Space Sci 142:9–25.  https://doi.org/10.1016/j.pss.2017.04.011 ADSCrossRefGoogle Scholar
  126. Wilquet V, Fedorova A, Montmessin F, Drummond R, Mahieux A, Vandaele AC, Villard E, Korablev O, Bertaux JL (2009) Preliminary characterization of the upper haze by SPICAV/SOIR solar occultation in UV to mid-IR onboard Venus express. J Geophys Res 114:E00B42.  https://doi.org/10.1029/2008JE003186 CrossRefGoogle Scholar
  127. Wilson CF, Guerlet S, Irwin PGJ, Tsang CCC, Taylor FW, Carlson RW, Drossart P, Piccioni G (2008) Evidence for anomalous cloud particles at the poles of Venus. J Geophys Res 113:E00B13CrossRefGoogle Scholar
  128. Wolff MJ, Clancy RT (2003) Constraints on the size of Martian aerosols from thermal emission spectrometer observations. J Geophys Res 108(E9):5097.  https://doi.org/10.1029/2003JE002057 CrossRefGoogle Scholar
  129. Yelle RV (1991) Non-LTE models of Titan’s upper atmosphere. ApJ 383:380–400.  https://doi.org/10.1086/170796 ADSCrossRefGoogle Scholar
  130. Young AT (1983) Venus cloud microphysics. Icarus 56:568–577.  https://doi.org/10.1016/0019-1035(83)90174-4 ADSCrossRefGoogle Scholar
  131. Zasova LV et al (2006) Structure of the Venusian atmosphere from surface up to 100 km. Cosm Res 44(3):364–383.  https://doi.org/10.1134/S0010952506040095 ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.LATMOS/IPSLUVSQ Université Paris-SaclayCNRS, GuyancourtFrance

Section editors and affiliations

  • Agustín Sanchez Lavega
    • 1
  1. 1.Universidad del País VascoBilbaoSpain

Personalised recommendations