Skip to main content

Accretion of Planetary Material onto Host Stars

  • Living reference work entry
  • First Online:

Abstract

Accretion of planetary material onto host stars may occur throughout a star’s life. Especially prone to accretion, extrasolar planets in short-period orbits, while relatively rare, constitute a significant fraction of the known population, and these planets are subject to dynamical and atmospheric influences that can drive significant mass loss. Theoretical models frame expectations regarding the rates and extent of this planetary accretion. For instance, tidal interactions between planets and stars may drive complete orbital decay during the main sequence. Many planets that survive their stars’ main sequence lifetime will still be engulfed when the host stars become red giant stars. There is some observational evidence supporting these predictions, such as a dearth of close-in planets around fast stellar rotators, which is consistent with tidal spin-up and planet accretion. There remains no clear chemical evidence for pollution of the atmospheres of main sequence or red giant stars by planetary materials, but a wealth of evidence points to active accretion by white dwarfs. In this article, we review the current understanding of accretion of planetary material, from the pre- to the post-main sequence and beyond. The review begins with the astrophysical framework for that process and then considers accretion during various phases of a host star’s life, during which the details of accretion vary, and the observational evidence for accretion during these phases.

This is a preview of subscription content, log in via an institution.

References

  • Adams FC, Bloch AM (2015) On the stability of extrasolar planetary systems and other closely orbiting pairs. Mon Not R Astron Soc 446:3676–3686. doi:10.1093/mnras/stu2397, http://dx.doi.org/10.1093/mnras/stu2397

  • Adams ER, Jackson B, Endl M (2016) Ultra-short-period Planets in K2 SuPerPiG results for campaigns 0-5. AJ 152:47. doi:10.3847/0004-6256/152/2/47, 1603.06488

  • Aguilera-Gómez C, Chanamé J, Pinsonneault MH, Carlberg JK (2016) On lithium-rich red giants. I. Engulfment of substellar companions. Astrophys J 829(2):127

    Google Scholar 

  • Albrecht S, Winn JN, Johnson JA et al (2012) Obliquities of hot Jupiter host stars: evidence for tidal interactions and primordial misalignments. ApJ 757:18. doi:10.1088/0004-637X/757/1/18, 1206.6105

  • Alexander JB (1967) A possible source of lithium in the atmospheres of some red giants. Observatory 87:238–240

    ADS  Google Scholar 

  • Barnes S, Sofia S (1996) On the origin of the ultrafast rotators in young star clusters. ApJ 462:746. doi:10.1086/177188

    Article  ADS  Google Scholar 

  • Batygin K (2012) A primordial origin for misalignments between stellar spin axes and planetary orbits. Nature 491:418–420. doi:10.1038/nature11560

    Article  ADS  Google Scholar 

  • Bell CPM, Naylor T, Mayne NJ, Jeffries RD, Littlefair SP (2013) Pre-main-sequence isochrones – II. Revising star and planet formation time-scales. Mon Not R Astron Soc 434:806–831. doi:10.1093/mnras/stt1075, http://dx.doi.org/10.1093/mnras/stt1075, 1306.3237

  • Bloecker T (1995) Stellar evolution of low and intermediate-mass stars. I. Mass loss on the AGB and its consequences for stellar evolution. A&A 297:727

    Google Scholar 

  • Bonsor A, Mustill AJ, Wyatt MC (2011) Dynamical effects of stellar mass-loss on a Kuiper-like belt. MNRAS 414:930–939. doi:10.1111/j.1365-2966.2011.18524.x, 1102.3185

  • Brown DJA, Collier Cameron A, Hall C, Hebb L, Smalley B (2011) Are falling planets spinning up their host stars? MNRAS 415:605–618. doi:10.1111/j.1365-2966.2011.18729.x, 1103.3599

  • Carlberg JK, Majewski SR, Arras P (2009) The role of planet accretion in creating the next generation of red giant rapid rotators. Astrophys J 700(1):832–843

    Article  ADS  Google Scholar 

  • Carlberg JK, Cunha K, Smith VV, Majewski SR (2012) Observable signatures of planet accretion in red giant stars. I. Rapid rotation and light element replenishment. Astrophys J 757(2):109

    Google Scholar 

  • Chambers JE (2009) Planetary migration: what does it mean for planet formation? Ann Rev Earth Planet Sci 37:321–344. doi:10.1146/annurev.earth.031208.100122

    Article  ADS  Google Scholar 

  • Chatterjee S, Ford EB, Matsumura S, Rasio FA (2008) Dynamical outcomes of planet-planet scattering. ApJ 686:580–602. doi:10.1086/590227, astro-ph/0703166

  • Chayer P, Fontaine G, Wesemael F (1995) Radiative levitation in hot white dwarfs: equilibrium theory. ApJS 99:189. doi:10.1086/192184

    Article  ADS  Google Scholar 

  • Cochran WD, Hatzes AP, Butler RP, Marcy GW (1997) The discovery of a planetary companion to 16 Cygni B. ApJ 483:457–463. astro-ph/9611230

    Google Scholar 

  • Counselman CC III (1973) Outcomes of tidal evolution. ApJ 180:307–316. doi:10.1086/151964

    Article  ADS  Google Scholar 

  • Davidsson BJR (1999) Tidal splitting and rotational breakup of solid spheres. Icarus 142:525–535. doi:10.1006/icar.1999.6214

    Article  ADS  Google Scholar 

  • Deal M, Richard O, Vauclair S (2015) Accretion of planetary matter and the lithium problem in the 16 Cygni stellar system. A&A 584:A105

    Article  ADS  Google Scholar 

  • Debes JH, Walsh KJ, Stark C (2012) The link between planetary systems, dusty white dwarfs, and metal-polluted white dwarfs. ApJ 747:148. doi:10.1088/0004-637X/747/2/148, 1201.0756

  • Drake NA, de la Reza R, da Silva L, Lambert DL (2002) Rapidly rotating lithium-rich K giants: the new case of the giant PDS 365. Astron J 123(5):2703–2714

    Article  ADS  Google Scholar 

  • Eggleton PP (1983) Approximations to the radii of Roche lobes. ApJ 268:368. doi:10.1086/160960

    Article  ADS  Google Scholar 

  • Fabrycky DC, Winn JN (2009) Exoplanetary spin-orbit alignment: results from the ensemble of Rossiter-McLaughlin observations. ApJ 696:1230–1240. doi:10.1088/0004-637X/696/2/1230, 0902.0737

  • Farihi J, Gänsicke BT, Koester D (2013) Evidence for water in the rocky debris of a disrupted extrasolar minor planet. Science 342:218–220. doi:10.1126/science.1239447, 1310.3269

  • Ferraz-Mello S, Rodríguez A, Hussmann H (2008) Tidal friction in close-in satellites and exoplanets: the Darwin theory re-visited. Celestial Mech Dyn Astron 101:171–201. doi:10.1007/s10569-008-9133-x, 0712.1156

  • Fischer DA, Valenti J (2005) The planet-metallicity correlation. ApJ 622:1102–1117. doi:10.1086/428383

    Article  ADS  Google Scholar 

  • Ford EB, Rasio FA (2006) On the relation between hot Jupiters and the Roche limit. ApJ 638:L45–L48. doi:10.1086/500734, astro-ph/0512632

  • Fortney JJ, Marley MS, Barnes JW (2007) Planetary radii across five orders of magnitude in mass and stellar insolation: application to transits. Astrophys J 659(2):1661–1672. doi:10.1086/512120, http://dx.doi.org/10.1086/512120astro-ph/0612671

  • Goldreich P, Soter S (1966) Q in the solar system. Icarus 5:375–389. doi:10.1016/0019-1035(66)90051-0

    Article  ADS  Google Scholar 

  • Goldreich P, Tremaine S (1979) The excitation of density waves at the Lindblad and corotation resonances by an external potential. ApJ 233:857–871. doi:10.1086/157448

    Article  ADS  MathSciNet  Google Scholar 

  • Gu PG, Lin DNC, Bodenheimer PH (2003) The effect of tidal inflation instability on the mass and dynamical evolution of extrasolar planets with ultrashort periods. ApJ 588:509–534. doi:10.1086/373920, astro-ph/0303362

  • Guillochon J, Ramirez-Ruiz E, Lin D (2011) Consequences of the ejection and disruption of giant planets. ApJ 732:74. doi:10.1088/0004-637X/732/2/74, 1012.2382

  • Han E, Wang SX, Wright JT et al (2014) Exoplanet orbit database. II. Updates to exoplanets.org. PASP 126:827. doi:10.1086/678447, 1409.7709

  • Hansen BMS Zink J (2015) On the potentially dramatic history of the super-Earth ρ 55 Cancri e. MNRAS 450:4505–4520. doi:10.1093/mnras/stv916

    Article  ADS  Google Scholar 

  • Huber D, Carter JA, Barbieri M et al (2013) Stellar spin-orbit misalignment in a multiplanet system. Science 342:331–334. doi:10.1126/science.1242066, 1310.4503

  • Irwin J, Bouvier J (2009) The rotational evolution of low-mass stars. In: Mamajek EE, Soderblom DR, Wyse RFG (eds) The ages of stars, IAU symposium, vol 258, pp 363–374. doi:10.1017/S1743921309032025

    Google Scholar 

  • Jackson B, Greenberg R, Barnes R (2008) Tidal evolution of close-in extrasolar planets. ApJ 678:1396–1406. doi:10.1086/529187, 0802.1543

  • Jackson B, Stark CC, Adams ER, Chambers J, Deming D (2013) A survey for very short-period planets in the Kepler data. ApJ 779:165. doi:10.1088/0004-637X/779/2/165, 1308.1379

  • Jackson B, Jensen E, Peacock S, Arras P, Penev K (2016) Tidal decay and stable Roche-lobe overflow of short-period gaseous exoplanets. Celestial Mech Dyn Astron 126:227–248. doi:10.1007/s10569-016-9704-1, 1603.00392

  • Jackson B, Arras P, Penev K, Peacock S, Marchant P (2017) A new model of Roche lobe overflow for short-period gaseous planets and binary stars. ApJ 835:145. doi:10.3847/1538-4357/835/2/145, 1612.04332

  • Jia S, Spruit HC (2017) Instability of mass transfer in a planet-star system. MNRAS 465:149–160. doi:10.1093/mnras/stw1693, 1607.03919

  • Jura M (2003) A tidally disrupted asteroid around the white dwarf G29-38. Astrophys J 584(2):L91–L94

    Article  ADS  Google Scholar 

  • Kawaler SD (1988) Angular momentum loss in low-mass stars. ApJ 333:236–247. doi:10.1086/166740

    Article  ADS  Google Scholar 

  • Koenigl A (1991) Disk accretion onto magnetic T Tauri stars. ApJ 370:L39–L43. doi:10.1086/185972

    Article  ADS  Google Scholar 

  • Kopal Z (1959) Close binary systems. Wiley, New York

    MATH  Google Scholar 

  • Kunitomo M, Ikoma M, Sato B, Katsuta Y, Ida S (2011) Planet engulfment by ˜1.5-3 M sun red Giants. ApJ 737:66. doi:10.1088/0004-637X/737/2/66, 1106.2251

  • Lai D, Rasio FA, Shapiro SL (1993) Ellipsoidal figures of equilibrium – compressible models. ApJS 88:205–252. doi:10.1086/191822

    Article  ADS  Google Scholar 

  • Levrard B, Winisdoerffer C, Chabrier G (2009) Falling transiting extrasolar giant planets. ApJ 692:L9–L13. doi:10.1088/0004-637X/692/1/L9, 0901.2048

  • Lillo-Box J, Barrado D, Moya A et al (2014) Kepler-91b: a planet at the end of its life. Planet and giant host star properties via light-curve variations. A&A 562:A109. doi:10.1051/0004-6361/201322001, 1312.3943

  • Lin DNC, Papaloizou J (1979) Tidal torques on accretion discs in binary systems with extreme mass ratios. MNRAS 186:799–812. doi:10.1093/mnras/186.4.799

    Article  ADS  MATH  Google Scholar 

  • Lin DNC, Bodenheimer P, Richardson DC (1996) Orbital migration of the planetary companion of 51 Pegasi to its present location. Nature 380:606–607. doi:10.1038/380606a0

    Article  ADS  Google Scholar 

  • Liu SF, Guillochon J, Lin DNC, Ramirez-Ruiz E (2013) On the survivability and metamorphism of tidally disrupted giant planets: the role of dense cores. ApJ 762:37. doi:10.1088/0004-637X/762/1/37, 1211.1971

  • Livio M, Soker N (1984) Star-planet systems as possible progenitors of cataclysmic binaries. Mon Not R Astron Soc 208:763–781. ISSN:0035-8711

    Article  ADS  Google Scholar 

  • Mandell AM, Raymond SN, Sigurdsson S (2007) Formation of Earth-like planets during and after giant planet migration. ApJ 660:823–844. doi:10.1086/512759, astro-ph/0701048

  • Mardling RA, Lin DNC (2002) Calculating the tidal, spin, and dynamical evolution of extrasolar planetary systems. ApJ 573:829–844. doi:10.1086/340752

    Article  ADS  Google Scholar 

  • Matsumura S, Takeda G, Rasio FA (2008) On the origins of eccentric close-in planets. ApJ 686:L29. doi:10.1086/592818, 0808.3724

  • McQuillan A, Mazeh T, Aigrain S (2013) Stellar rotation periods of the Kepler objects of interest: a dearth of close-in planets around fast rotators. Astrophys J Lett 775(1):L11

    Article  ADS  Google Scholar 

  • Meléndez J, Asplund M, Gustafsson B, Yong D (2009) The peculiar solar composition and its possible relation to planet formation. Astrophys J 704(1):L66–L70

    Article  ADS  Google Scholar 

  • Metzger BD, Giannios D, Spiegel DS (2012) Optical and X-ray transients from planet-star mergers. MNRAS 425:2778–2798. doi:10.1111/j.1365-2966.2012.21444.x, 1204.0796

  • Murray CD, Dermott SF (1999) Solar system dynamics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Mustill AJ, Davies MB, Johansen A (2015) The destruction of inner planetary systems during high-eccentricity migration of gas giants. ApJ 808:14. doi:10.1088/0004-637X/808/1/14, 1502.06971

  • Nagasawa M, Ida S, Bessho T (2008) Formation of hot planets by a combination of planet scattering, tidal circularization, and the Kozai mechanism. ApJ 678:498–508. doi:10.1086/529369, 0801.1368

  • Naoz S (2016) The eccentric Kozai-Lidov effect and its applications. ARA&A 54:441–489. doi:10.1146/annurev-astro-081915-023315, 1601.07175

  • Nordhaus J, Blackman EG (2006) Low-mass binary-induced outflows from asymptotic giant branch stars. MNRAS 370:2004–2012. doi:10.1111/j.1365-2966.2006.10625.x, astro-ph/0604445

  • Ogilvie GI (2014) Tidal dissipation in stars and giant planets. ARA&A 52:171–210. doi:10.1146/annurev-astro-081913-035941, 1406.2207

  • Paczyński B (1971) Evolutionary processes in close binary systems. ARA&A 9:183. doi:10.1146/annurev.aa.09.090171.001151

    Article  ADS  Google Scholar 

  • Paxton B, Bildsten L, Dotter A et al (2011) Modules for experiments in stellar astrophysics (MESA). ApJS 192:3. doi:10.1088/0067-0049/192/1/3, http://dx.doi.org/10.1088/0067-0049/192/1/3, 1009.1622

  • Paxton B, Cantiello M, Arras P et al (2013) Modules for experiments in stellar astrophysics (MESA): planets, oscillations, rotation, and massive stars. ApJS 208:4. doi:10.1088/0067-0049/208/1/4, http://dx.doi.org/10.1088/0067-0049/208/1/4, 1301.0319

  • Paxton B, Marchant P, Schwab J et al (2015) Modules for experiments in stellar astrophysics (MESA): binaries, pulsations, and explosions. ApJS 220:15. doi:10.1088/0067-0049/220/1/15, 1506.03146

  • Penev K, Jackson B, Spada F, Thom N (2012) Constraining tidal dissipation in stars from the destruction rates of exoplanets. ApJ 751:96. doi:10.1088/0004-637X/751/2/96, 1205.1803

  • Priedhorsky WC, Verbunt F (1988) Tidal forces and mass transfer instabilities in low-mass x-ray binaries. Astrophys J 333:895–905. doi:10.1086/166798, http://dx.doi.org/10.1086/166798

  • Ramírez I, Meléndez J, Asplund M (2009) Accurate abundance patterns of solar twins and analogs. Does the anomalous solar chemical composition come from planet formation? A&A 508(1):L17–L20

    Article  ADS  Google Scholar 

  • Rappaport S, Sanchis-Ojeda R, Rogers LA, Levine A, Winn JN (2013) The Roche limit for close-orbiting planets: minimum density, composition constraints, and application to the 4.2 h planet KOI 1843.03. ApJ 773:L15. doi:10.1088/2041-8205/773/1/L15, 1307.4080

  • Rasio FA, Ford EB (1996) Dynamical instabilities and the formation of extrasolar planetary systems. Science 274:954–956. doi:10.1126/science.274.5289.954

    Article  ADS  Google Scholar 

  • Richardson DC, Bottke WF, Love SG (1998) Tidal distortion and disruption of Earth-crossing asteroids. Icarus 134:47–76. doi:10.1006/icar.1998.5954

    Article  ADS  Google Scholar 

  • Ritter H (1988) Turning on and off mass transfer in cataclysmic binaries. Astron Astrophys 202:93–100

    ADS  Google Scholar 

  • Sackmann IJ, Boothroyd AI (1999) Creation of7Li and destruction of3He,9Be,10B, and11B in low-mass red giants, due to deep circulation. Astrophys J 510(1):217–231

    Article  ADS  Google Scholar 

  • Sanchis-Ojeda R, Rappaport S, Winn JN et al (2013) Transits and occultations of an Earth-sized planet in an 8.5 h orbit. ApJ 774:54. doi:10.1088/0004-637X/774/1/54, 1305.4180

  • Sanchis-Ojeda R, Rappaport S, Winn JN et al (2014) A study of the shortest-period planets found with Kepler. ApJ 787:47. doi:10.1088/0004-637X/787/1/47, 1403.2379

  • Schlaufman KC, Winn JN (2016) The occurrence of additional giant planets inside the water-ice line in systems with hot Jupiters: evidence against high-eccentricity migration. ApJ 825:62. doi:10.3847/0004-637X/825/1/62, 1604.03107

  • Setiawan J, Klement RJ, Henning T et al (2010) A giant planet around a metal-poor star of extragalactic origin. Science 330:1642. doi:10.1126/science.1193342, 1011.6376

  • Showman AP, Guillot T (2002) Atmospheric circulation and tides of “51 Pegasus b-like” planets. A&A 385:166–180. doi:10.1051/0004-6361:20020101, astro-ph/0202236

  • Siess L, Livio M (1999a) The accretion of brown dwarfs and planets by giant stars – I. Asymptotic giant branch stars. MNRAS 304(4):925–937

    Article  ADS  Google Scholar 

  • Siess L, Livio M (1999b) The accretion of brown dwarfs and planets by giant stars – II. Solar-mass stars on the red giant branch. MNRAS 308(4):1133–1149

    Article  ADS  Google Scholar 

  • Skumanich A (1972) Time scales for CA II emission decay, rotational braking, and lithium depletion. ApJ 171:565. doi:10.1086/151310

    Article  ADS  Google Scholar 

  • Stauffer JR, Hartmann LW (1987) The distribution of rotational velocities for low-mass stars in the Pleiades. ApJ 318:337–355. doi:10.1086/165371

    Article  ADS  Google Scholar 

  • Steffen JH, Ragozzine D, Fabrycky DC et al (2012) Kepler constraints on planets near hot Jupiters. Proc Natl Acad Sci 109:7982–7987. doi:10.1073/pnas.1120970109, 1205.2309

  • Teitler S, Königl A (2014) Why is there a dearth of close-in planets around fast-rotating stars? Astrophys J 786(2):139

    Article  ADS  Google Scholar 

  • Théado S, Vauclair S (2012) Metal-rich accretion and thermohaline instabilities in exoplanet-host stars: consequences on the light elements abundances. ApJ 744:123. doi:10.1088/0004-637X/744/2/123, 1109.4238

  • Trilling DE, Benz W, Guillot T et al (1998) Orbital evolution and migration of giant planets: modeling extrasolar planets. ApJ 500:428–439. doi:10.1086/305711, astro-ph/9801292

  • Tucci Maia M, Meléndez J, Ramírez I (2014) High precision abundances in the 16 Cyg binary system: a signature of the rocky core in the giant planet. ApJ 790:L25. doi:10.1088/2041-8205/790/2/L25, 1407.4132

  • Valsecchi F, Rasio FA (2014) Planets on the edge. ApJ 787:L9. doi:10.1088/2041-8205/787/1/L9, 1403.1870

  • Valsecchi F, Rappaport S, Rasio FA, Marchant P, Rogers LA (2015) Tidally-driven Roche-lobe overflow of hot Jupiters with MESA. ApJ 813:101. doi:10.1088/0004-637X/813/2/101, 1506.05175

  • van Eyken JC, Ciardi DR, von Braun K et al (2012) The PTF orion project: a possible planet transiting a T-Tauri star. ApJ 755:42. doi:10.1088/0004-637X/755/1/42, 1206.1510

  • Van Laerhoven C, Greenberg R (2012) Characterizing multi-planet systems with classical secular theory. Celestial Mech Dyn Astron 113:215–234. doi:10.1007/s10569-012-9410-6, 1108.5149

  • Veras D, Leinhardt ZM, Bonsor A, Gänsicke BT (2014) Formation of planetary debris discs around white dwarfs – I. Tidal disruption of an extremely eccentric asteroid. MNRAS 445:2244–2255. doi:10.1093/mnras/stu1871, 1409.2493

  • Villaver E, Livio M (2007) Can planets survive stellar evolution? ApJ 661:1192–1201. doi:10.1086/516746, astro-ph/0702724

  • Villaver E, Livio M (2009) The orbital evolution of gas giant planets around giant stars. ApJ 705:L81–L85. doi:10.1088/0004-637X/705/1/L81, 0910.2396

  • Wallerstein G, Sneden C (1982) A K giant with an unusually high abundance of lithium – HD 112127. ApJ 255:577–584

    Article  ADS  Google Scholar 

  • Weiss LM, Marcy GW (2014) The mass-radius relation for 65 exoplanets smaller than 4 earth radii. ApJ 783:L6. doi:10.1088/2041-8205/783/1/L6, 1312.0936

  • Winn JN, Fabrycky D, Albrecht S, Johnson JA (2010) Hot stars with hot Jupiters have high obliquities. ApJ 718:L145–L149. doi:10.1088/2041-8205/718/2/L145, 1006.4161

  • Zuckerman B, Koester D, Melis C, Hansen BM, Jura M (2007) The chemical composition of an extrasolar minor planet. Astrophys J 671(1):872–877

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Jackson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Jackson, B., Carlberg, J. (2017). Accretion of Planetary Material onto Host Stars. In: Deeg, H., Belmonte, J. (eds) Handbook of Exoplanets . Springer, Cham. https://doi.org/10.1007/978-3-319-30648-3_28-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30648-3_28-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30648-3

  • Online ISBN: 978-3-319-30648-3

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics