Advertisement

Models of Star-Planet Magnetic Interaction

  • Antoine Strugarek
Living reference work entry

Abstract

Magnetic interactions between a planet and its environment are known to lead to phenomena such as aurorae and shocks in the solar system. The large number of close-in exoplanets that were discovered triggered a renewed interest in magnetic interactions in star-planet systems. Multiple other magnetic effects were then unveiled, such as planet inflation or heating, planet migration, planetary material escape, and even modification of the host star properties. We review here the recent efforts in modeling and understanding magnetic interactions between stars and planets in the context of compact systems. We first provide simple estimates of the effects of magnetic interactions and then detail analytical and numerical models for different representative scenari. We finally lay out a series of future developments that are needed today to better understand and constrain these fascinating interactions.

Notes

Acknowledgements

A. Strugarek acknowledges enlightening discussions about star-planet interactions with A.S. Brun, J. Bouvier, D. Cébron, A. Cumming, S. Matt, V. Réville, and P. Zarka. This review was written while A. Strugarek was partially supported by the Canada’s Natural Sciences and Engineering Research Council, the ANR Blanc 2011 Toupies, and the Centre National d’Etudes Spatiales.

References

  1. Adams FC (2011) Magnetically controlled outflows from hot Jupiters. ApJ 730(1):27. doi:10.1088/0004-637X/730/1/27 ADSCrossRefGoogle Scholar
  2. Alvarado-Gómez JD, Hussain GAJ, Cohen O et al (2016a) Simulating the environment around planet-hosting stars. A&A 588:A28. doi:10.1051/0004-6361/201527832 ADSCrossRefGoogle Scholar
  3. Alvarado-Gómez JD, Hussain GAJ, Cohen O et al (2016b) Simulating the environment around planet-hosting stars. II. Stellar winds and inner astrospheres. A&A 594:A95. doi:10.1051/0004-6361/201628988
  4. Bouvier J, Cébron D (2015) Protostellar spin-down: a planetary lift? MNRAS 453(4):3720–3728. doi:10.1093/mnras/stv1824 ADSCrossRefGoogle Scholar
  5. Brun AS, Browning MK, Dikpati M, Hotta H, Strugarek A (2015a) Recent advances on solar global magnetism and variability. Space Sci Rev 196(1):101–136. doi:10.1007/s11214-013-0028-0 ADSCrossRefGoogle Scholar
  6. Brun AS, Garcia RA, Houdek G, Nandy D, Pinsonneault M (2015b) The solar-stellar connection. Space Sci Rev 196(1):303–356. doi:10.1007/s11214-014-0117-8 ADSCrossRefGoogle Scholar
  7. Cauley PW, Redfield S, Jensen AG et al (2015) Optical Hydrogen Absorption Consistent with a Thin Bow Shock Leading the Hot Jupiter Hd 189733b. ApJ 810(1):13. doi:10.1088/0004-637X/810/1/13 ADSCrossRefGoogle Scholar
  8. Clarke JT, Ajello J, Ballester G et al (2002) Ultraviolet emissions from the magnetic footprints of Io, Ganymede and Europa on Jupiter. Nature 415:997–1000ADSCrossRefGoogle Scholar
  9. Cohen O, Drake JJ, Kashyap VL et al (2009) Interactions of the magnetospheres of stars and close-in giant planets. ApJ 704:L85. doi:10.1088/0004-637X/704/2/L85 ADSCrossRefGoogle Scholar
  10. Cohen O, Drake JJ, Kashyap VL, Sokolov IV, Gombosi TI (2010) The impact of hot Jupiters on the spin-down of their host stars. ApJ 723(1):L64–L67. doi:10.1088/2041-8205/723/1/L64 ADSCrossRefGoogle Scholar
  11. Cohen O, Kashyap VL, Drake JJ et al (2011) The dynamics of stellar coronae harboring hot Jupiters. I. A time-dependent magnetohydrodynamic simulation of the interplanetary environment in the Hd 189733 planetary system. ApJ 733(1):67. doi:10.1088/0004-637X/733/1/67
  12. Cohen O, Drake JJ, Glocer A et al (2014) Magnetospheric structure and atmospheric joule heating of habitable planets orbiting M-dwarf stars. ApJ 790(1):57. doi:10.1088/0004-637X/790/1/57 ADSCrossRefGoogle Scholar
  13. Cohen O, Ma Y, Drake JJ et al (2015) The interaction of Venus-like, M-dwarf planets with the stellar wind of their host star. ApJ 806(1):41. doi:10.1088/0004-637X/806/1/41 ADSCrossRefGoogle Scholar
  14. Cuntz M, Saar SH, Musielak ZE (2000) On stellar activity enhancement due to interactions with extrasolar giant planets. ApJ 533(2):L151–L154. doi:10.1086/312609 ADSCrossRefGoogle Scholar
  15. Damiani C, Lanza AF (2015) Evolution of angular-momentum-losing exoplanetary systems. Revisiting Darwin stability. A&A 574:A39. doi:10.1051/0004-6361/201424318 Google Scholar
  16. Donati JF, Landstreet JD (2009) Magnetic fields of nondegenerate stars. Annu Rev A&A 47:333. doi:10.1146/annurev-astro-082708-101833 ADSCrossRefGoogle Scholar
  17. Duling S, Saur J, Wicht J (2014) Consistent boundary conditions at nonconducting surfaces of planetary bodies: applications in a new Ganymede MHD model. J Geophys Res 119(6):4412–4440. doi:10.1002/2013JA019554 CrossRefGoogle Scholar
  18. Figueira P, Santerne A, Suárez Mascareño A et al (2016) Is the activity level of HD 80606 influenced by its eccentric planet? A&A 592:A143. doi:10.1051/0004-6361/201628981 ADSCrossRefGoogle Scholar
  19. Fleck RC (2008) A magnetic mechanism for halting inward protoplanet migration: I. Necessary conditions and angular momentum transfer timescales. Ap&SS 313(4):351–356. doi:10.1007/s10509-007-9703-5 ADSCrossRefzbMATHGoogle Scholar
  20. Fossati L, Ayres TR, Haswell CA et al (2013) Absorbing Gas around the WASP-12 Planetary System. ApJ 766(2):L20. doi:10.1088/2041-8205/766/2/L20 ADSCrossRefGoogle Scholar
  21. Goodman ML (1995) A three-dimensional, iterative mapping procedure for the implementation of an ionosphere-magnetosphere anisotropic Ohm’s law boundary condition in global magnetohydrodynamic simulations. Ann Geophys 13(8):843–853. doi:10.1007/s00585-995-0843-z ADSCrossRefGoogle Scholar
  22. Grießmeier JM, Zarka P, Spreeuw H (2007) Predicting low-frequency radio fluxes of known extrasolar planets. A&A 475(1):359–368. doi:10.1051/0004-6361:20077397 ADSCrossRefGoogle Scholar
  23. Ip WH, Kopp A, Hu JH (2004) On the star-magnetosphere interaction of close-in exoplanets. ApJ 602(1):L53–L56. doi:10.1086/382274 ADSCrossRefGoogle Scholar
  24. Jia X, Walker RJ, Kivelson MG, Khurana KK Linker JA (2009) Properties of Ganymede’s magnetosphere inferred from improved three-dimensional MHD simulations. J Geophys Res 114(A9):n/a–n/a. doi:10.1029/2009JA014375
  25. Jones CA (2011) Planetary magnetic fields and fluid dynamos. Annu Rev Fluid Mech 43(1):583–614. doi:10.1146/annurev-fluid-122109-160727 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. Khodachenko ML, Shaikhislamov IF, Lammer H, Prokopov PA (2015) Atmosphere expansion and mass loss of close-orbit giant exoplanets heated by stellar Xuv. Ii. Effects of planetary magnetic field; structuring of inner magnetosphere. ApJ 813(1):50. doi:10.1088/0004-637X/813/1/50
  27. Kopp A, Schilp S, Preusse S (2011) Magnetohydrodynamic simulations of the magnetic interaction of hot Jupiters with their host stars: a numerical experiment. ApJ 729(2):116. doi:10.1088/0004-637X/729/2/116 ADSCrossRefGoogle Scholar
  28. Laine RO, Lin DNC (2012) Interaction of close-in planets with the magnetosphere of their host stars. II. Super-Earths as unipolar inductors and their orbital evolution. ApJ 745(1):2. doi:10.1088/0004-637X/745/1/2
  29. Laine RO, Lin DNC, Dong S (2008) Interaction of close-in planets with the magnetosphere of their host stars. I. Diffusion, ohmic dissipation of time-dependent field, planetary inflation, and mass loss. ApJ 685(1):521–542. doi:10.1086/589177 ADSCrossRefGoogle Scholar
  30. Lanza AF (2008) Hot Jupiters and stellar magnetic activity. A&A 487(3):1163–1170. doi:10.1051/0004-6361:200809753 ADSCrossRefGoogle Scholar
  31. Lanza AF (2009) Stellar coronal magnetic fields and star-planet interaction. A&A 505(1):339–350. doi:10.1051/0004-6361/200912367 ADSCrossRefzbMATHGoogle Scholar
  32. Lanza AF (2012) Star-planet magnetic interaction and activity in late-type stars with close-in planets. A&A 544:23. doi:10.1051/0004-6361/201219002 ADSCrossRefGoogle Scholar
  33. Lanza AF (2013) Star-planet magnetic interaction and evaporation of planetary atmospheres. A&A 557:31. doi:10.1051/0004-6361/201321790 ADSCrossRefGoogle Scholar
  34. Lanza AF (2015) Star-planet interactions. 18th Cambridge workshop on cool stars, vol 18, pp 811–830Google Scholar
  35. Lanza AF, Shkolnik EL (2014) Secular orbital evolution of planetary systems and the dearth of close-in planets around fast rotators. MNRAS 443(2):1451–1462. doi:10.1093/mnras/stu1206 ADSCrossRefGoogle Scholar
  36. Llama J, Vidotto AA, Jardine M et al (2013) Exoplanet transit variability: bow shocks and winds around HD 189733b. MNRAS 436(3):2179–2187. doi:10.1093/mnras/stt1725 ADSCrossRefGoogle Scholar
  37. Lovelace RVE, Romanova MM, Barnard AW (2008) Planet migration and disc destruction due to magneto-centrifugal stellar winds. MNRAS 389(3):1233–1239. doi:10.1111/j.1365-2966.2008.13617.x ADSCrossRefGoogle Scholar
  38. Matsakos T, Uribe A, Königl A (2015) Classification of magnetized star-planet interactions: bow shocks, tails, and inspiraling flows. A&A 578:A6. doi:10.1051/0004-6361/201425593 ADSCrossRefGoogle Scholar
  39. McQuillan A, Mazeh T, Aigrain S (2013) Stellar rotation periods of the Kepler objects of interest: a dearth of close-in planets around fast rotators. ApJ 775(1):L11. doi:10.1088/2041-8205/775/1/L11 ADSCrossRefGoogle Scholar
  40. Mengel MW, Marsden SC, Carter BD et al (2016) A BCool survey of the magnetic fields of planet-hosting solar-type stars. MNRAS 465(3):2734–2747. doi:10.1093/mnras/stw2949 ADSCrossRefGoogle Scholar
  41. Merkin VG, Lyon JG (2010) Effects of the low-latitude ionospheric boundary condition on the global magnetosphere. J Geophys Res 115(A):A10,202. doi:10.1029/2010JA015461 Google Scholar
  42. Miller BP, Gallo E, Wright JT, Pearson EG (2015) A comprehensive statistical assessment of star-planet interaction. ApJ 799(2):163. doi:10.1088/0004-637X/799/2/163 ADSCrossRefGoogle Scholar
  43. Neubauer FM (1998) The sub-Alfvénic interaction of the Galilean satellites with the Jovian magnetosphere. J Geophys Res 103(E):19,843–19,866. doi:10.1029/97JE03370 ADSCrossRefGoogle Scholar
  44. Pillitteri I, Wolk SJ, Sciortino S, Antoci V (2014) No X-rays from WASP-18. Implications for its age, activity, and the influence of its massive hot Jupiter. A&A 567:A128. doi:10.1051/0004-6361/201423579
  45. Pont F (2009) Empirical evidence for tidal evolution in transiting planetary systems. MNRAS 396(3):1789–1796. doi:10.1111/j.1365-2966.2009.14868.x ADSCrossRefGoogle Scholar
  46. Poppenhaeger K, Wolk SJ (2014) Indications for an influence of hot Jupiters on the rotation and activity of their host stars. A&A 565:L1. doi:10.1051/0004-6361/201423454 ADSCrossRefGoogle Scholar
  47. Preusse S, Kopp A, Büchner J, Motschmann U (2005) Stellar wind regimes of close-in extrasolar planets. A&A 434(3):1191–1200. doi:10.1051/0004-6361:20041680 ADSCrossRefGoogle Scholar
  48. Preusse S, Kopp A, Büchner J, Motschmann U (2006) A magnetic communication scenario for hot Jupiters. A&A 460(1):317–322. doi:10.1051/0004-6361:20065353 ADSCrossRefGoogle Scholar
  49. Rubenstein EP, Schaefer BE (2000) Are superflares on solar analogues caused by extrasolar planets? ApJ 529(2):1031–1033. doi:10.1086/308326 ADSCrossRefGoogle Scholar
  50. Saur J, Neubauer FM, Strobel DF, Summers ME (1999) Three-dimensional plasma simulation of Io’s interaction with the Io plasma torus: asymmetric plasma flow. J Geophys Res 104(A):25,105–25,126. doi:10.1029/1999JA900304 ADSCrossRefGoogle Scholar
  51. Saur J, Grambusch T, Duling S, Neubauer FM, Simon S (2013) Magnetic energy fluxes in sub-Alfvénic planet star and moon planet interactions. A&A 552:119. doi:10.1051/0004-6361/201118179 ADSCrossRefGoogle Scholar
  52. Shkolnik EL, Bohlender DA, Walker GAH, Cameron AC (2008) The On/Off nature of star-planet interactions. ApJ 676(1):628–638. doi:10.1086/527351 ADSCrossRefGoogle Scholar
  53. Staab D, Haswell CA, Smith GD et al (2017) SALT observations of the chromospheric activity of transiting planet hosts: mass-loss and star–planet interactions. MNRAS 466(1):738–748. doi:10.1093/mnras/stw3172 ADSCrossRefGoogle Scholar
  54. Stanley S, Glatzmaier GA (2010) Dynamo models for planets other than earth. Space Sci Rev 152:617. doi:10.1007/s11214-009-9573-y ADSCrossRefGoogle Scholar
  55. Strugarek A (2016) Assessing magnetic torques and energy fluxes in close-in star–planet systems. ApJ 833(2):140. doi:10.3847/1538-4357/833/2/140 ADSCrossRefGoogle Scholar
  56. Strugarek A, Brun AS, Matt S (2012) On close-in magnetized star-planet interactions. In: Boissier S (eds) SF2A-2012: Proceedings of the annual meeting of the French society of astronomy and astrophysics, Montpelier, pp 419–423. https://ui.adsabs.harvard.edu/#abs/2012sf2a.conf..419S/abstract
  57. Strugarek A, Brun AS, Matt SP, Réville V (2014a) Modeling magnetized star-planet interactions: boundary conditions effects. Nat Promin Role Space Weather 300:330–334. doi:10.1017/S1743921313011162 ADSGoogle Scholar
  58. Strugarek A, Brun AS, Matt SP, Réville V (2014b) Numerical aspects of 3D stellar winds. In: 18th Cambridge workshop on cool stars, stellar systems, and the sun, proccedings of Lowell Observatory, Flagstaff, vol 1410, p 3537Google Scholar
  59. Strugarek A, Brun AS, Matt SP, Réville V (2014c) On the diversity of magnetic interactions in close-in star-planet systems. ApJ 795(1):86. doi:10.1088/0004-637X/795/1/86 ADSCrossRefGoogle Scholar
  60. Strugarek A, Brun AS, Matt SP et al (2014d) Modelling the corona of HD 189733 in 3D. Proceeding of the SFA conference, Cancun, vol 1411, p 2494Google Scholar
  61. Strugarek A, Brun AS, Matt SP, Réville V (2015) Magnetic games between a planet and its host star: the key role of topology. ApJ 815(2):111. doi:10.1088/0004-637X/815/2/111 ADSCrossRefGoogle Scholar
  62. Tremblin P, Chiang E (2013) Colliding planetary and stellar winds: charge exchange and transit spectroscopy in neutral hydrogen. MNRAS 428(3):2565–2576. doi:10.1093/mnras/sts212 ADSCrossRefGoogle Scholar
  63. Turner JD, Christie D, Arras P, Johnson RE, Schmidt C (2016a) Investigation of the environment around close-in transiting exoplanets using CLOUDY. MNRAS 458(4):3880–3891. doi:10.1093/mnras/stw556 ADSCrossRefGoogle Scholar
  64. Turner JD, Pearson KA, Biddle LI et al (2016b) Ground-based near-UV observations of 15 transiting exoplanets: constraints on their atmospheres and no evidence for asymmetrical transits. MNRAS 459(1):789–819. doi:10.1093/mnras/stw574 ADSCrossRefGoogle Scholar
  65. Vidotto AA, Jardine M, Morin J et al (2014) M-dwarf stellar winds: the effects of realistic magnetic geometry on rotational evolution and planets. MNRAS 438(2):1162–1175. doi:10.1093/mnras/stt2265 ADSCrossRefGoogle Scholar
  66. Weber EJ, Davis LJ (1967) The angular momentum of the solar wind. ApJS 148:217. doi:10.1086/149138 ADSCrossRefGoogle Scholar
  67. Zanni C, Ferreira J (2009) MHD simulations of accretion onto a dipolar magnetosphere. I. Accretion curtains and the disk-locking paradigm. A&A 508:1117. doi:10.1051/0004-6361/200912879
  68. Zarka P (2007) Plasma interactions of exoplanets with their parent star and associated radio emissions. Planet Space Sci 55(5):598–617. doi:10.1016/j.pss.2006.05.045 ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Laboratoire AIMDRF/IRFU/DAp, CEA SaclayGif-sur-Yvette CedexFrance
  2. 2.Département de PhysiqueUniversité de MontréalMontréalCanada

Personalised recommendations