Advertisement

Star-Planet Interactions in the Radio Domain: Prospect for Their Detection

  • Philippe Zarka
Living reference work entry

Abstract

All possible types of interaction of a magnetized plasma flow with an obstacle (magnetized or not) are considered, and those susceptible to produce a radio signature are identified. The role of the sub-Alfvénic or super-Alfvénic character of the flow is discussed. Known examples in the solar system are given, as well as extrapolations to star-planet plasma interactions. The dissipated power and the fraction that goes into radio waves are evaluated in the frame of the radio-magnetic scaling law, the theoretical bases and validity of which are discussed in the light of recent works. Then it is shown how radio signatures can be interpreted, in the frame of the cyclotron-maser theory (developed for explaining the generation of solar system planetary auroral and satellite-induced radio emissions), for deducing many physical parameters of the system studied, including the planetary or stellar magnetic field. Prospects for the detection of such radio signatures with new generation low-frequency radiotelescopes are then outlined.

Notes

Acknowledgments

PZ acknowledges funding from the programs PNP, PNST, PNPS, and AS SKA-LOFAR of CNRS/INSU.

References

  1. Bagenal F (2001) Planetary magnetospheres. In: Murdin P (ed) Encyclopedia of astronomy and astrophysics. IOP Publishing, Bristol. article 2329Google Scholar
  2. Bigg EK (1964) Influence of the satellite Io on Jupiter’s decametric emission. Nature 203:1008–1010ADSCrossRefGoogle Scholar
  3. Budding E, Slee OB, Jones K (1998) Further discussion of binary star radio survey data. PASA 15:183–188ADSCrossRefGoogle Scholar
  4. Chané E, Saur J, Neubauer FM et al (2012) Observational evidence of Alfvén wings at the Earth. J Geophys Res 117:A09217ADSCrossRefGoogle Scholar
  5. Chané E, Raeder J, Saur J et al (2015) Simulations of the Earth’s magnetosphere embedded in sub-Alfvénic solar wind on 24 and 25 May 2002. J Geophys Res 120:8517–8528CrossRefGoogle Scholar
  6. Cuntz M, Saar SH, Muzeliak ZE (2000) On stellar activity enhancement due to interactions with extrasolar giant planets. Astrophys J 533:L151–L154ADSCrossRefGoogle Scholar
  7. Donati JF, Howarth ID, Bouret JC (2006) Discovery of a strong magnetic field on the O star HD 191612: new clues to the future of θ1 Orionis C*. MNRAS Lett 365(1):L6–L10ADSCrossRefGoogle Scholar
  8. Drell SD, Foley HM, Ruderman MA (1965) Drag and propulsion of large satellites in the ionosphere: an Alfvén propulsion engine in space. J Geophys Res 70(13):3131–3145ADSMathSciNetCrossRefGoogle Scholar
  9. Encrenaz T, Bibring JP, Blanc M et al (2004) The solar system, 3rd edn. A&A Library, Springer, Berlin. http://www.springer.com/in/book/9783540002413
  10. Fares R, Donati JF, Moutou C et al (2012) Magnetic field, differential rotation and activity of the hot-jupiter-hosting star HD 179949. MNRAS 423:1006–1017ADSCrossRefGoogle Scholar
  11. Grieβmeier JM, Stadelmann A, Penz T et al (2004) The effect of tidal locking on the magnetospheric and atmospheric evolution of “hot jupiters”. Astron Astrophys 425:753–762ADSCrossRefGoogle Scholar
  12. Grieβmeier JM, Motschmann U, Mann G, Rucker HO (2005) The influence of stellar wind conditions on the detectability of planetary radio emissions. Astron Astrophys 437:717–726ADSCrossRefGoogle Scholar
  13. Hallinan G, Littlefair SP, Cotter G et al (2015) Magnetospherically driven optical and radio aurorae at the end of the stellar main sequence. Nature 523(7562):568–571ADSCrossRefGoogle Scholar
  14. Hess SLG, Zarka P (2011) Modeling the radio signature of the orbital parameters, rotation, and magnetic field of exoplanets. Astron Astrophys 531:A29ADSCrossRefGoogle Scholar
  15. Hess S, Cecconi B, Zarka P (2008) Modeling of Io-Jupiter decameter arcs, emission beaming and energy source. Geophys Res Lett 35:L13107ADSCrossRefGoogle Scholar
  16. Ip WH, Kopp A, Hu JH (2004) On the star–magnetosphere interaction of close-in exoplanets. Astrophys J 602:L53–L56ADSCrossRefGoogle Scholar
  17. Jardine M, Cameron AC (2008) Radio emission from exoplanets: the role of the stellar coronal density and magnetic field strength. Astron Astrophys 490:843–851ADSCrossRefGoogle Scholar
  18. Kivelson MG, Bagenal F, Kurth WS et al (2004) Magnetospheric interactions with satellites. In: Bagenal F, McKinnon W, Dowling T (eds) Jupiter: the planet, satellites, and magnetosphere. Cambridge University Press, Cambridge, pp 513–536Google Scholar
  19. Lepping RP (1986) Magnetic configuration of planetary obstacles. In: Comparative study of magnetospheric systems. Cepadues/CNES ed, Toulouse, pp 45–75Google Scholar
  20. Louis CK, Lamy L, Zarka P, Cecconi B, Hess SLG (2017) Detection of Jupiter decametric emissions controlled by Europa and Ganymede with Voyager/PRA and Cassini/RPWS. J Geophys Res (in press)Google Scholar
  21. Morosan DE, Gallagher PT, Zucca P et al (2016) LOFAR tied-array imaging and spectroscopy of solar S bursts. Astron Astrophys 580:A65CrossRefGoogle Scholar
  22. Mottez F, Heyvaerts J (2011) Magnetic coupling of planets and small bodies with a pulsar wind. Astron Astrophys 532:A21ADSCrossRefzbMATHGoogle Scholar
  23. Mottez F, Zarka P (2014) Radio emissions from pulsar companions: a refutable explanation for galactic transients and fast radio bursts. Astron Astrophys 569:A86ADSCrossRefGoogle Scholar
  24. Neubauer FM (1980) Nonlinear standing Alfvén wave current system at Io: theory. J Geophys Res 85(A3):1171–1178ADSCrossRefGoogle Scholar
  25. Nichols JD (2011) Magnetosphere–ionosphere coupling at Jupiter-like exoplanets with internal plasma sources: implications for detectability of auroral radio emissions. MNRAS 414:2125–2138ADSCrossRefGoogle Scholar
  26. Nichols JD, Milan SE (2016) Stellar wind–magnetosphere interaction at exoplanets: computations of auroral radio powers. MNRAS 461:2353–2366ADSCrossRefGoogle Scholar
  27. Preusse S, Kopp A, Büchner J, Motschmann U (2006) A magnetic communication scenario for hot jupiters. Astron Astrophys 460:317–322ADSCrossRefGoogle Scholar
  28. Reiners A, Christensen UR (2010) A magnetic field evolution scenario for brown dwarfs and giant planets. Astron Astrophys 522:A13ADSCrossRefGoogle Scholar
  29. Richards MT, Waltman EB, Ghigo FD, Richards DSP (2003) Statistical analysis of 5 year continuous radio flare data from β Persei, V711 Tauri, δ Librae, and Ux Arietis. Astrophys J Suppl Ser 147:337–361ADSCrossRefGoogle Scholar
  30. Sanchez-Lavega A (2004) The magnetic field in giant extrasolar planets. Astrophys J 609:L87–L90ADSCrossRefGoogle Scholar
  31. Saur J, Grambusch T, Duling S, Neubauer FM, Simon S (2013) Magnetic energy fluxes in sub-Alfvénic planet star and moon planet interactions. Astron Astrophys 552:A119ADSCrossRefGoogle Scholar
  32. Shkolnik E, Walker GAH, Bohlender DA (2003) Evidence for planet-induced chromospheric activity on HD 179949. Astrophys J 597:1092–1096ADSCrossRefGoogle Scholar
  33. Shkolnik E, Walker GAH, Bohlender DA (2004) Erratum: evidence for planet-induced chromospheric activity on HD 179949. Astrophys J 609:1197ADSCrossRefGoogle Scholar
  34. Strugarek A, Brun AS, Matt SP, Reville V (2014) On the diversity of magnetic interactions in close-in star-planet systems. Astrophys J 795(1):86ADSCrossRefGoogle Scholar
  35. Strugarek A, Brun AS, Matt SP, Reville V (2015) Magnetic games between a planet and its host star: the key role of topology. Astrophys J 815(2):111ADSCrossRefGoogle Scholar
  36. Varela J, Reville V, Brun AS, Pantellini F, Zarka P (2016) Radio emission in Mercury magnetosphere. Astron Astrophys 595:A69ADSCrossRefGoogle Scholar
  37. Willes AJ, Wu K (2004) Electron-cyclotron maser emission from white dwarf pairs and white dwarf planetary systems. MNRAS 348:285–296ADSCrossRefGoogle Scholar
  38. Willes AJ, Wu K (2005) Radio emissions from terrestrial planets around white dwarfs. Astron Astrophys 432:1091–1100ADSCrossRefGoogle Scholar
  39. Wu CS, Lee LC (1979) A theory of the terrestrial kilometric radiation. Astrophys J 230:621–626ADSCrossRefGoogle Scholar
  40. Zarka P (1998) Auroral radio emissions at the outer planets: observations and theories. J Geophys Res 103:20159–20194ADSCrossRefGoogle Scholar
  41. Zarka P (2006) Hot jupiters and magnetized stars: giant analogs of the satellite-jupiter system? In: Rucker HO, Kurth WS, Mann G (eds) Planetary radio emissions VI. Austrian Academy of Science Press, Vienna, pp 543–569Google Scholar
  42. Zarka P (2007) Plasma interactions of exoplanets with their parent star and associated radio emissions. Planet Space Sci 55:598–617ADSCrossRefGoogle Scholar
  43. Zarka P (2010) Radioastronomy and the study of exoplanets. In: Coudé du Foresto V, Gelino DM, Ribas I (eds) Pathways towards habitable planets, ASP conference series, vol 430. Astronomical Society of the Pacific, San Francisco, pp 175–180Google Scholar
  44. Zarka P, Treumann RA, Ryabov BP, Ryabov VB (2001) Magnetically-driven planetary radio emissions and applications to extrasolar planets. Astrophys Space Sci 277:293–300ADSCrossRefGoogle Scholar
  45. Zarka P, Lazio TJW, Hallinan G (2015) Magnetospheric radio emissions from exoplanets with the SKA. In: Advancing astrophysics with the square kilometre array, Giardini Naxos. SKA Organisation (Dolman Scott Ltd), Jodrell Bank Observatory, MacclesfieldGoogle Scholar
  46. Zarka P, Marques M, Louis C et al (2017) Radio emission from the Ganymede-Jupiter interaction and consequence for radio emission from exoplanets. SubmittedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.LESIAObservatoire de Paris, CNRS, PSL, UPMC/SU, UPDMeudonFrance
  2. 2.Station de Radioastronomie de NançayObservatoire de Paris, CNRS, PSL, Univ. OrléansNançayFrance

Personalised recommendations