Advertisement

Earth: Atmospheric Evolution of a Habitable Planet

  • Stephanie L. Olson
  • Edward W. Schwieterman
  • Christopher T. Reinhard
  • Timothy W. Lyons
Living reference work entry

Abstract

Our present-day atmosphere is often used as analog for potentially habitable exoplanets, but Earth’s atmosphere has changed dramatically throughout its 4.5-billion-year history. For example, molecular oxygen is abundant in the atmosphere today but was absent on the early Earth. Meanwhile, the physical and chemical evolution of Earth’s atmosphere has also resulted in major swings in surface temperature, at times resulting in extreme glaciation or warm greenhouse climates. Despite this dynamic and occasionally dramatic history, the Earth has been persistently habitable – and, in fact, inhabited – for roughly four billion years. Understanding Earth’s momentous changes and its enduring habitability is essential as a guide to the diversity of habitable planetary environments that may exist beyond our solar system and for ultimately recognizing spectroscopic fingerprints of life elsewhere in the universe.

Here, we review long-term trends in the composition of Earth’s atmosphere as it relates to both planetary habitability and inhabitation. We focus on gases that may serve as habitability markers (CO2, N2) or biosignatures (CH4, O2), especially as related to the redox evolution of the atmosphere and the coupled evolution of Earth’s climate system. We emphasize that in the search for Earth-like planets, we must be mindful that the example provided by the modern atmosphere merely represents a single snapshot of Earth’s long-term evolution. In exploring the many former states of our own planet, we emphasize Earth’s atmospheric evolution during the Archean, Proterozoic, and Phanerozoic eons, but we conclude with a brief discussion of potential atmospheric trajectories into the distant future, many millions to billions of years from now. All of these “alternative Earth” scenarios provide insight to the potential diversity of Earth-like, habitable, and inhabited worlds.

Keywords

Earth Habitability Biosignatures Astrobiology Oxygen 

Notes

Acknowledgments

The authors gratefully acknowledge the support from the NASA Astrobiology Institute, including support from the Alternative Earths team under Cooperative Agreement Number NNA15BB03A and the Virtual Planetary Laboratory under Cooperative Agreement Number NNA13AA93A. EWS also acknowledges support from the NASA Postdoctoral Program, administered by the Universities Space Research Association.

References

  1. Abramov O, Mojzsis SJ (2009) Microbial habitability of the Hadean Earth during the late heavy bombardment. Nature 459:419–422.  https://doi.org/10.1038/nature08015 ADSCrossRefGoogle Scholar
  2. Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208:1095–1108.  https://doi.org/10.1126/science.208.4448.1095 ADSCrossRefGoogle Scholar
  3. Anbar AD, Knoll AH (2002) Proterozoic ocean chemistry and evolution: a bioinorganic bridge? Science 297:1137.  https://doi.org/10.1126/science.1069651 ADSCrossRefGoogle Scholar
  4. Anbar AD, Duan Y, Lyons TW et al (2007) A whiff of oxygen before the great oxidation event? Science 317:1903–1906.  https://doi.org/10.1126/science.1140325 ADSCrossRefGoogle Scholar
  5. Arney G, Domagal-Goldman SD, Meadows VS et al (2016) The pale orange dot: the spectrum and habitability of hazy Archean Earth. Astrobiology 16:873–899.  https://doi.org/10.1089/ast.2015.1422 ADSCrossRefGoogle Scholar
  6. Arney G, Domagal-Goldman SD, Meadows VS (in press) Organic haze as a biosignature in anoxic earth-like atmospheres. Astrobiology.  https://doi.org/10.1089/ast.2017.1666
  7. Bartdorff O, Wallmann K, Latif M, Semenov V (2008) Phanerozoic evolution of atmospheric methane. Glob Biogeochem Cycles.  https://doi.org/10.1029/2007GB002985
  8. Beal EJ, House CH, Orphan VJ (2009) Manganese-and iron-dependent marine methane oxidation. Science 325:184–187ADSCrossRefGoogle Scholar
  9. Beal EJ, Claire MW, House CH (2011) High rates of anaerobic methanotrophy at low sulfate concentrations with implications for past and present methane levels. Geobiology 9:131–139.  https://doi.org/10.1111/j.1472-4669.2010.00267.x Google Scholar
  10. Beerling D, Berner RA, Mackenzie FT et al (2009) Methane and the CH4 related greenhouse effect over the past 400 million years. Am J Sci 309:97–113.  https://doi.org/10.2475/02.2009.01 ADSCrossRefGoogle Scholar
  11. Bekker A, Holland HD (2012) Oxygen overshoot and recovery during the early Paleoproterozoic. Earth Planet Sci Lett 317–318:295–304.  https://doi.org/10.1016/j.epsl.2011.12.012 CrossRefGoogle Scholar
  12. Bell EA, Boehnke P, Harrison TM, Mao WL (2015) Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon. Proc Natl Acad Sci 112:14518–14521.  https://doi.org/10.1073/pnas.1517557112 ADSCrossRefGoogle Scholar
  13. Belousova EA, Kostitsyn YA, Griffin WL et al (2010) The growth of the continental crust: constraints from zircon Hf-isotope data. Lithos 119:457–466.  https://doi.org/10.1016/j.lithos.2010.07.024 ADSCrossRefGoogle Scholar
  14. Bergman NM, Lenton TM, Watson AJ (2004) COPSE: a new model of biogeochemical cycling over Phanerozoic time. Am J Sci 304:397–437.  https://doi.org/10.2475/ajs.304.5.397 ADSCrossRefGoogle Scholar
  15. Berner RA (1999) Atmospheric oxygen over Phanerozoic time. Proc Natl Acad Sci 96:10955–10957.  https://doi.org/10.1073/pnas.96.20.10955 ADSCrossRefGoogle Scholar
  16. Berner RA, Kothavala Z (2001) Geocarb III: a revised model of atmospheric CO2 over Phanerozoic time. Am J Sci 301:182–204.  https://doi.org/10.2475/ajs.301.2.182 ADSCrossRefGoogle Scholar
  17. Bjerrum CJ, Canfield DE (2011) Towards a quantitative understanding of the late Neoproterozoic carbon cycle. Proc Natl Acad Sci 108:5542–5547.  https://doi.org/10.1073/pnas.1101755108 ADSCrossRefGoogle Scholar
  18. Blake RE, Chang SJ, Lepland A (2010) Phosphate oxygen isotopic evidence for a temperate and biologically active Archaean ocean. Nature 464:1029–1032.  https://doi.org/10.1038/nature08952 ADSCrossRefGoogle Scholar
  19. Brady PV, Gislason SR (1997) Seafloor weathering controls on atmospheric CO2 and global climate. Geochim Cosmochim Acta 61:965–973ADSCrossRefGoogle Scholar
  20. Buick R (2007) Did the Proterozoic “Canfield Ocean” cause a laughing gas greenhouse? Geobiology 5:97–100.  https://doi.org/10.1111/j.1472-4669.2007.00110.x ADSCrossRefGoogle Scholar
  21. Buick R (2008) When did oxygenic photosynthesis evolve? Philos Trans R Soc Lond B Biol Sci 363:2731.  https://doi.org/10.1098/rstb.2008.0041 CrossRefGoogle Scholar
  22. Butterfield NJ (2009) Oxygen, animals and oceanic ventilation: an alternative view. Geobiology 7:1–7.  https://doi.org/10.1111/j.1472-4669.2009.00188.x CrossRefGoogle Scholar
  23. Byrne B, Goldblatt C (2015) Diminished greenhouse warming from Archean methane due to solar absorption lines. Clim Past 11:559–570.  https://doi.org/10.5194/cp-11-559-2015 CrossRefGoogle Scholar
  24. Caldeira K, Kasting JF (1992) The life-span of the biosphere revisited. Nature 360:721–723.  https://doi.org/10.1038/360721a0 ADSCrossRefGoogle Scholar
  25. Campbell IH, Squire RJ (2010) The mountains that triggered the Late Neoproterozoic increase in oxygen: the Second Great Oxidation Event. Geochim Cosmochim Acta 74:4187–4206.  https://doi.org/10.1016/j.gca.2010.04.064 ADSCrossRefGoogle Scholar
  26. Canfield DE (1998) A new model for Proterozoic ocean chemistry. Nature 396:450–453.  https://doi.org/10.1038/24839 ADSCrossRefGoogle Scholar
  27. Canfield DE, Poulton SW, Narbonne GM (2007) Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science 315:92–95ADSCrossRefGoogle Scholar
  28. Canfield DE, Poulton SW, Knoll AH et al (2008) Ferruginous conditions dominated later neoproterozoic deep-water chemistry. Science 321:949.  https://doi.org/10.1126/science.1154499 ADSCrossRefGoogle Scholar
  29. Catling DC, Zahnle KJ, McKay CP (2001) Biogenic methane, hydrogen escape, and the irreversible oxidation of early Earth. Science 293:839–843.  https://doi.org/10.1126/science.1061976 ADSCrossRefGoogle Scholar
  30. Catling DC, Zahnle KJ, McKay CP (2002) What caused the second rise of O2 in the late proterozoic? Methane, sulfate, and irreversible oxidation. Astrobiology 4:569Google Scholar
  31. Catling DC, Glein CR, Zahnle KJ, McKay CP (2005) Why O2 is required by complex life on habitable planets and the concept of planetary “Oxygenation Time”. Astrobiology 5:415–438.  https://doi.org/10.1089/ast.2005.5.415 ADSCrossRefGoogle Scholar
  32. Cawood PA, Hawkesworth CJ, Dhuime B (2013) The continental record and the generation of continental crust. Geol Soc Am Bull 125:14–32.  https://doi.org/10.1130/B30722.1 CrossRefGoogle Scholar
  33. Cerling TE (1991) Carbon dioxide in the atmosphere; evidence from Cenozoic and Mesozoic Paleosols. Am J Sci 291:377–400.  https://doi.org/10.2475/ajs.291.4.377 ADSCrossRefGoogle Scholar
  34. Charnay B, Forget F, Wordsworth R et al (2013) Exploring the faint young Sun problem and the possible climates of the Archean Earth with a 3-D GCM. J Geophys Res Atmos 118:10,414–10,431.  https://doi.org/10.1002/jgrd.50808 CrossRefGoogle Scholar
  35. Claire MW, Catling DC, Zahnle KJ (2006) Biogeochemical modelling of the rise in atmospheric oxygen. Geobiology 4:239–269.  https://doi.org/10.1111/j.1472-4669.2006.00084.x CrossRefGoogle Scholar
  36. Cole DB, Reinhard CT, Wang X et al (2016) A shale-hosted Cr isotope record of low atmospheric oxygen during the Proterozoic. Geology 44:555–558.  https://doi.org/10.1130/G37787.1 ADSCrossRefGoogle Scholar
  37. Condie KC, Aster RC (2010) Episodic zircon age spectra of orogenic granitoids: the supercontinent connection and continental growth. Precambrian Res 180:227–236.  https://doi.org/10.1016/j.precamres.2010.03.008 ADSCrossRefGoogle Scholar
  38. Crowe SA, Katsev S, Leslie K et al (2011) The methane cycle in ferruginous Lake Matano. Geobiology 9:61–78.  https://doi.org/10.1111/j.1472-4669.2010.00257.x CrossRefGoogle Scholar
  39. Czaja AD, Johnson CM, Roden EE et al (2012) Evidence for free oxygen in the Neoarchean ocean based on coupled iron–molybdenum isotope fractionation. Geochim Cosmochim Acta 86:118–137ADSCrossRefGoogle Scholar
  40. Dahl TW, Hammarlund EU, Anbar AD et al (2010) Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish. Proc Natl Acad Sci 107:17911–17915ADSCrossRefGoogle Scholar
  41. Dahl TW, Canfield DE, Rosing MT et al (2011) Molybdenum evidence for expansive sulfidic water masses in∼ 750Ma oceans. Earth Planet Sci Lett 311:264–274ADSCrossRefGoogle Scholar
  42. Daines SJ, Lenton TM (2016) The effect of widespread early aerobic marine ecosystems on methane cycling and the Great Oxidation. Earth Planet Sci Lett 434:42–51.  https://doi.org/10.1016/j.epsl.2015.11.021 ADSCrossRefGoogle Scholar
  43. Dhuime B, Hawkesworth CJ, Cawood PA, Storey CD (2012) A change in the geodynamics of continental growth 3 billion years ago. Science 335:1334–1336.  https://doi.org/10.1126/science.1216066 ADSCrossRefGoogle Scholar
  44. Di Giulio M (2007) The universal ancestor and the ancestors of Archaea and Bacteria were anaerobes whereas the ancestor of the Eukarya domain was an aerobe. J Evol Biol 20:543–548.  https://doi.org/10.1111/j.1420-9101.2006.01259.x CrossRefGoogle Scholar
  45. Dlugokencky E, Masaire K, Lang P et al (1994) A dramatic decrease in the growth rate of atmospheric methane in the northern hemisphere during 1992. Geophys Res Lett 21:45–48ADSCrossRefGoogle Scholar
  46. Domagal-Goldman SD, Kasting JF, Johnston DT, Farquhar J (2008) Organic haze, glaciations and multiple sulfur isotopes in the Mid-Archean Era. Earth Planet Sci Lett 269:29–40.  https://doi.org/10.1016/j.epsl.2008.01.040 ADSCrossRefGoogle Scholar
  47. Driese SG, Jirsa MA, Ren M et al (2011) Neoarchean paleoweathering of tonalite and metabasalt: implications for reconstructions of 2.69Ga early terrestrial ecosystems and paleoatmospheric chemistry. Precambrian Res 189:1–17.  https://doi.org/10.1016/j.precamres.2011.04.003 ADSCrossRefGoogle Scholar
  48. Droser ML, Gehling JG (2015) The advent of animals: the view from the Ediacaran. Proc Natl Acad Sci 112:4865–4870.  https://doi.org/10.1073/pnas.1403669112 ADSCrossRefGoogle Scholar
  49. Duan Y, Anbar AD, Arnold GL et al (2010) Molybdenum isotope evidence for mild environmental oxygenation before the Great Oxidation Event. Geochim Cosmochim Acta 74:6655–6668.  https://doi.org/10.1016/j.gca.2010.08.035 ADSCrossRefGoogle Scholar
  50. Eigenbrode JL, Freeman KH (2006) Late Archean rise of aerobic microbial ecosystems. Proc Natl Acad Sci 103:15759–15764.  https://doi.org/10.1073/pnas.0607540103 ADSCrossRefGoogle Scholar
  51. Emmanuel S, Ague JJ (2007) Implications of present-day abiogenic methane fluxes for the early Archean atmosphere. Geophys Res Lett.  https://doi.org/10.1029/2007GL030532
  52. Evans DA, Beukes NJ, Kirschvink JL (1997) Low-latitude glaciation in the Palaeoproterozoic era. Nature 386:262–266.  https://doi.org/10.1038/386262a0 ADSCrossRefGoogle Scholar
  53. Farquhar J, Bao H, Thiemens M (2000) Atmospheric influence of Earth’s earliest sulfur cycle. Science 289:756.  https://doi.org/10.1126/science.289.5480.756 ADSCrossRefGoogle Scholar
  54. Farquhar J, Zerkle AL, Bekker A (2011) Geological constraints on the origin of oxygenic photosynthesis. Photosynthesis Res 107:11–36.  https://doi.org/10.1007/s11120-010-9594-0 CrossRefGoogle Scholar
  55. Fennel K, Follows M, Falkowski PG (2005) The co-evolution of the nitrogen, carbon and oxygen cycles in the Proterozoic ocean. Am J Sci 305:526–545.  https://doi.org/10.2475/ajs.305.6-8.526 ADSCrossRefGoogle Scholar
  56. Fike DA, Grotzinger JP, Pratt LM, Summons RE (2006) Oxidation of the Ediacaran ocean. Nature 444:744–747.  https://doi.org/10.1038/nature05345 ADSCrossRefGoogle Scholar
  57. Fiorella RP, Sheldon ND (2017) Equable end Mesoproterozoic climate in the absence of high CO2. Geology 45:231–234.  https://doi.org/10.1130/G38682.1 ADSCrossRefGoogle Scholar
  58. Fischer WW, Hemp J, Johnson JE (2016) Evolution of oxygenic photosynthesis. Annu Rev Earth Planet Sci 44:647–683.  https://doi.org/10.1146/annurev-earth-060313-054810 ADSCrossRefGoogle Scholar
  59. Freeman KH, Hayes JM (1992) Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels. Glob Biogeochem Cycles 6:185–198.  https://doi.org/10.1029/92GB00190 ADSCrossRefGoogle Scholar
  60. Frei R, Gaucher C, Poulton SW, Canfield DE (2009) Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes. Nature 461:250–253.  https://doi.org/10.1038/nature08266 ADSCrossRefGoogle Scholar
  61. Gaillard F, Scaillet B, Arndt NT (2011) Atmospheric oxygenation caused by a change in volcanic degassing pressure. Nature 478:229–U112.  https://doi.org/10.1038/nature10460 ADSCrossRefGoogle Scholar
  62. Garcia AK, Schopf JW, Yokobori S et al (2017) Reconstructed ancestral enzymes suggest long-term cooling of Earth’s photic zone since the Archean. Proc Natl Acad Sci 114:4619–4624.  https://doi.org/10.1073/pnas.1702729114 ADSCrossRefGoogle Scholar
  63. Garvin J, Buick R, Anbar AD et al (2009) Isotopic evidence for an aerobic nitrogen cycle in the latest Archean. Science 323:1045–1048.  https://doi.org/10.1126/science.1165675 ADSCrossRefGoogle Scholar
  64. Gebauer S, Grenfell JL, Stock JW et al (2017) Evolution of Earth-like extrasolar planetary atmospheres: assessing the atmospheres and biospheres of early Earth analog planets with a coupled atmosphere biogeochemical model. Astrobiology 17:27–54.  https://doi.org/10.1089/ast.2015.1384 ADSCrossRefGoogle Scholar
  65. Gilleaudeau GJ, Kah LC (2015) Heterogeneous redox conditions and a shallow chemocline in the Mesoproterozoic ocean: evidence from carbon-sulfur-iron relationships. Precambrian Res 257:94–108.  https://doi.org/10.1016/j.precamres.2014.11.030 ADSCrossRefGoogle Scholar
  66. Godfrey LV, Falkowski PG (2009) The cycling and redox state of nitrogen in the Archaean ocean. Nature Geosci 2:725–729.  https://doi.org/10.1038/ngeo633 ADSCrossRefGoogle Scholar
  67. Goldblatt C, Zahnle KJ (2011a) Clouds and the faint toung Sun paradox. Clim Past 7:203–220.  https://doi.org/10.5194/cp-7-203-2011 CrossRefGoogle Scholar
  68. Goldblatt C, Zahnle KJ (2011b) Faint young Sun paradox remains. Nature 474:E1–E1.  https://doi.org/10.1038/nature09961 ADSCrossRefGoogle Scholar
  69. Goldblatt C, Lenton TM, Watson AJ (2006) Bistability of atmospheric oxygen and the Great Oxidation. Nature 443:683–686.  https://doi.org/10.1038/nature05169 ADSCrossRefGoogle Scholar
  70. Goldblatt C, Claire MW, Lenton TM et al (2009) Nitrogen-enhanced greenhouse warming on early Earth. Nat Geosci 2:891–896.  https://doi.org/10.1038/NGEO692 ADSCrossRefGoogle Scholar
  71. Gough DO (1981) Solar interior structure and luminosity variations. Sol Phys 74:21–34.  https://doi.org/10.1007/BF00151270 ADSCrossRefGoogle Scholar
  72. Graham JB, Aguilar NM, Dudley R, Gans C (1995) Implications of the late Palaeozoic oxygen pulse for physiology and evolution. Nature 375:117–120.  https://doi.org/10.1038/375117a0 ADSCrossRefGoogle Scholar
  73. Haqq-Misra JD, Domagal-Goldman SD, Kasting PJ, Kasting JF (2008) A revised, hazy methane greenhouse for the archean earth. Astrobiology 8:1127–1137.  https://doi.org/10.1089/ast.2007.0197 ADSCrossRefGoogle Scholar
  74. Hardisty DS, Lu Z, Planavsky NJ et al (2014) An iodine record of Paleoproterozoic surface ocean oxygenation. Geology 42:619–622.  https://doi.org/10.1130/G35439.1 ADSCrossRefGoogle Scholar
  75. Hardisty DS, Lu Z, Bekker A et al (2017) Perspectives on Proterozoic surface ocean redox from iodine contents in ancient and recent carbonate. Earth Planet Sci Lett 463:159–170.  https://doi.org/10.1016/j.epsl.2017.01.032 ADSCrossRefGoogle Scholar
  76. Hawkesworth CJ, Cawood PA, Dhuime B (2016) Tectonics and crustal evolution. GSA Today 26:4–11.  https://doi.org/10.1130/GSATG272A.1 CrossRefGoogle Scholar
  77. Herman EK, Kump LR (2005) Biogeochemistry of microbial mats under Precambrian environmental conditions: a modelling study. Geobiology 3:77–92.  https://doi.org/10.1111/j.1472-4669.2005.00048.x CrossRefGoogle Scholar
  78. Hessler AM, Lowe DR, Jones RL, Bird DK (2004) A lower limit for atmospheric carbon dioxide levels 3.2 billion years ago. Nature 428:736–738.  https://doi.org/10.1038/nature02471 ADSCrossRefGoogle Scholar
  79. Hoffman PF, Kaufman AJ, Halverson GP, Schrag DP (1998) A Neoproterozoic snowball Earth. Science 281:1342.  https://doi.org/10.1126/science.281.5381.1342 ADSCrossRefGoogle Scholar
  80. Hohmann-Marriott MF, Blankenship RE (2012) The photosynthetic world. In: Eaton-Rye JJ, Tripathy BC, Sharkey TD (eds) Photosynthesis. Springer, Dordrecht, pp 3–32CrossRefGoogle Scholar
  81. Hren MT, Tice MM, Chamberlain CP (2009) Oxygen and hydrogen isotope evidence for a temperate climate 3.42 billion years ago. Nature 462:205–208.  https://doi.org/10.1038/nature08518 ADSCrossRefGoogle Scholar
  82. Izon G, Zerkle AL, Zhelezinskaia I et al (2015) Multiple oscillations in Neoarchaean atmospheric chemistry. Earth Planet Sci Lett 431:264–273.  https://doi.org/10.1016/j.epsl.2015.09.018 ADSCrossRefGoogle Scholar
  83. Izon G, Zerkle AL, Williford KH et al (2017) Biological regulation of atmospheric chemistry en route to planetary oxygenation. Proc Natl Acad Sci 114:E2571–E2579.  https://doi.org/10.1073/pnas.1618798114 CrossRefGoogle Scholar
  84. Johnson B, Goldblatt C (2015) The nitrogen budget of Earth. Earth Sci Rev 148:150–173CrossRefGoogle Scholar
  85. Johnson JE, Webb SM, Thomas K et al (2013) Manganese-oxidizing photosynthesis before the rise of cyanobacteria. Proc Natl Acad Sci 110:11238–11243.  https://doi.org/10.1073/pnas.1305530110 ADSCrossRefGoogle Scholar
  86. Johnson JE, Gerpheide A, Lamb MP, Fischer WW (2014) O2 constraints from Paleoproterozoic detrital pyrite and uraninite. Geol Soc Am Bull.  https://doi.org/10.1130/B30949.1
  87. Johnston DT, Poulton SW, Tosca NJ et al (2013) Searching for an oxygenation event in the fossiliferous Ediacaran of northwestern Canada. Chem Geol 362:273–286.  https://doi.org/10.1016/j.chemgeo.2013.08.046 ADSCrossRefGoogle Scholar
  88. Kah LC, Riding R (2007) Mesoproterozoic carbon dioxide levels inferred from calcified cyanobacteria. Geology 35:799–802.  https://doi.org/10.1130/G23690A.1 ADSCrossRefGoogle Scholar
  89. Kah LC, Lyons TW, Frank TD (2004) Low marine sulphate and protracted oxygenation of the Proterozoic biosphere. Nature 431:834–838.  https://doi.org/10.1038/nature02974 ADSCrossRefGoogle Scholar
  90. Kanzaki Y, Murakami T (2015) Estimates of atmospheric CO2 in the Neoarchean? Paleoproterozoic from paleosols. Geochim Cosmochim Acta 159:190–219.  https://doi.org/10.1016/j.gca.2015.03.011 ADSCrossRefGoogle Scholar
  91. Karhu JA, Holland HD (1996) Carbon isotopes and the rise of atmospheric oxygen. Geology 24:867.  https://doi.org/10.1130/0091-7613(1996)024<0867:CIATRO>2.3.CO;2 ADSCrossRefGoogle Scholar
  92. Kasting JF (1993) Earth’s early atmosphere. Science 259:920–926.  https://doi.org/10.1126/science.11536547 ADSCrossRefGoogle Scholar
  93. Kasting JF (2005) Methane and climate during the Precambrian era. Precambrian Res 137:119–129.  https://doi.org/10.1016/j.precamres.2005.03.002 ADSCrossRefGoogle Scholar
  94. Kasting JF (2006) Paleoclimates, ocean depth, and the oxygen isotopic composition of seawater. Earth Planet Sci Lett 252:82–93.  https://doi.org/10.1016/j.epsl.2006.09.029 ADSCrossRefGoogle Scholar
  95. Kasting JF, Donahue TM (1980) The evolution of atmospheric ozone. J Geophys Res 85:3255–3263.  https://doi.org/10.1029/JC085iC06p03255 ADSCrossRefGoogle Scholar
  96. Kasting JF, Liu SC, Donahue TM (1979) Oxygen levels in the prebiological atmosphere. J Geophys Res 84:3097–3107.  https://doi.org/10.1029/JC084iC06p03097 ADSCrossRefGoogle Scholar
  97. Kasting JF, Whitmire DP, Reynolds RT (1993) Habitable zones around main sequence stars. Icarus 101:108–128.  https://doi.org/10.1006/icar.1993.1010 ADSCrossRefGoogle Scholar
  98. Kaufman AJ, Xiao SH (2003) High CO2 levels in the Proterozoic atmosphere estimated from analyses of individual microfossils. Nature 425:279–282.  https://doi.org/10.1038/nature01902 ADSCrossRefGoogle Scholar
  99. Kavanagh L, Goldblatt C (2015) Using raindrops to constrain past atmospheric density. Earth Planet Sci Lett 413:51–58.  https://doi.org/10.1016/j.epsl.2014.12.032 ADSCrossRefGoogle Scholar
  100. Keeling RF, Shertz SR (1992) atmospheric oxygen and implications for the global carbon cycle. Nature 358:27CrossRefGoogle Scholar
  101. Keeling CD, Bacastow RB, Bainbridge AE et al (1976) Atmospheric carbon dioxide variations at Mauna Loa Observatory, Hawaii. Tellus 28:538–551.  https://doi.org/10.1111/j.2153-3490.1976.tb00701.x ADSGoogle Scholar
  102. Kendall B, Reinhard CT, Lyons TW et al (2010) Pervasive oxygenation along late Archaean ocean margins. Nature Geosci 3:647–652.  https://doi.org/10.1038/ngeo942 ADSCrossRefGoogle Scholar
  103. Kendall B, Creaser RA, Reinhard CT et al (2015) Transient episodes of mild environmental oxygenation and oxidative continental weathering during the late Archean. Sci Adv.  https://doi.org/10.1126/sciadv.1500777
  104. Kenrick P, Crane PR (1997) The origin and early evolution of plants on land. Nature 389:33–39.  https://doi.org/10.1038/37918 ADSCrossRefGoogle Scholar
  105. Kharecha P, Kasting J, Siefert J (2005) A coupled atmosphere–ecosystem model of the early Archean Earth. Geobiology 3:53–76.  https://doi.org/10.1111/j.1472-4669.2005.00049.x CrossRefGoogle Scholar
  106. Knauth LP, Lowe DR (2003) High Archean climatic temperature inferred from oxygen isotope geochemistry of cherts in the 3.5 Ga Swaziland Supergroup, South Africa. Geol Soc Am Bull 115:566–580.  https://doi.org/10.1130/0016-7606(2003)115<0566:HACTIF>2.0.CO;2 CrossRefGoogle Scholar
  107. Knoll AH (2014) Paleobiological perspectives on early eukaryotic evolution. Cold Spring Harb Perspect Biol.  https://doi.org/10.1101/cshperspect.a016121
  108. Knoll AH, Nowak MA (2017) The timetable of evolution. Sci Adv.  https://doi.org/10.1126/sciadv.1603076
  109. Knoll AH, Bambach RK, Payne JL et al (2007) Paleophysiology and end-Permian mass extinction. Earth Planet Sci Lett 256:295–313.  https://doi.org/10.1016/j.epsl.2007.02.018 ADSCrossRefGoogle Scholar
  110. Koehler MC, Stüeken EE, Kipp MA et al (2017) Spatial and temporal trends in Precambrian nitrogen cycling: a Mesoproterozoic offshore nitrate minimum. Geochim Cosmochim Acta 198:315–337.  https://doi.org/10.1016/j.gca.2016.10.050 ADSCrossRefGoogle Scholar
  111. Konhauser KO, Hamade T, Raiswell R et al (2002) Could bacteria have formed the Precambrian banded iron formations? Geology 30:1079–1082.  https://doi.org/10.1130/0091-7613(2002)030<1079:CBHFTP>2.0.CO;2 ADSCrossRefGoogle Scholar
  112. Konhauser KO, Pecoits E, Lalonde SV et al (2009) Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event. Nature 458:750–753.  https://doi.org/10.1038/nature07858 ADSCrossRefGoogle Scholar
  113. Konhauser KO, Lalonde SV, Planavsky NJ et al (2011) Aerobic bacterial pyrite oxidation and acid rock drainage during the Great Oxidation Event. Nature 478:369.  https://doi.org/10.1038/nature10511 ADSCrossRefGoogle Scholar
  114. Kopp RE, Kirschvink JL, Hilburn IA, Nash CZ (2005) The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis. Proc Natl Acad Sci 102:11131–11136.  https://doi.org/10.1073/pnas.0504878102 ADSCrossRefGoogle Scholar
  115. Kopparapu RK, Ramirez R, Kasting JF et al (2013) Habitable zones around main-sequence stars: new estimates. Astrophys J 765:131.  https://doi.org/10.1088/0004-637X/765/2/131 ADSCrossRefGoogle Scholar
  116. Krissansen-Totton J, Catling DC (2017) Constraining climate sensitivity and continental versus seafloor weathering using an inverse geological carbon cycle model. Nat Commun 8:15423ADSCrossRefGoogle Scholar
  117. Krissansen-Totton J, Buick R, Catling DC (2015) A statistical analysis of the carbon isotope record from the Archean to Phanerozoic and implications for the rise of oxygen. Am J Sci 315:275–316.  https://doi.org/10.2475/04.2015.01 ADSCrossRefGoogle Scholar
  118. Kump LR (2008) The rise of atmospheric oxygen. Nature 451:277–278.  https://doi.org/10.1038/nature06587 ADSCrossRefGoogle Scholar
  119. Kump LR, Arthur MA (1999) Interpreting carbon-isotope excursions: carbonates and organic matter. Chem Geol 161:181–198ADSCrossRefGoogle Scholar
  120. Kump LR, Barley ME (2007) Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago. Nature 448:1033–1036.  https://doi.org/10.1038/nature06058 ADSCrossRefGoogle Scholar
  121. Kump LR, Kasting JF, Crane RG (2010) The earth system, 3rd edn. Prentice Hall, San FranciscoGoogle Scholar
  122. Kump LR, Junium C, Arthur MA et al (2011) Isotopic evidence for massive oxidation of organic matter following the Great Oxidation Event. Science 334:1694.  https://doi.org/10.1126/science.1213999 ADSCrossRefGoogle Scholar
  123. Kurzweil F, Claire M, Thomazo C et al (2013) Atmospheric sulfur rearrangement 2.7 billion years ago: evidence for oxygenic photosynthesis. Earth Planet Sci Lett 366:17–26.  https://doi.org/10.1016/j.epsl.2013.01.028 ADSCrossRefGoogle Scholar
  124. Kurzweil F, Wille M, Gantert N et al (2016) Manganese oxide shuttling in pre-GOE oceans – evidence from molybdenum and iron isotopes. Earth Planet Sci Lett 452:69–78.  https://doi.org/10.1016/j.epsl.2016.07.013 ADSCrossRefGoogle Scholar
  125. Laakso TA, Schrag DP (2014) Regulation of atmospheric oxygen during the Proterozoic. Earth Planet Sci Lett 388:81–91.  https://doi.org/10.1016/j.epsl.2013.11.049 ADSCrossRefGoogle Scholar
  126. Laakso TA, Schrag DP (2017) A theory of atmospheric oxygen. Geobiology 15:366–384.  https://doi.org/10.1111/gbi.12230 CrossRefGoogle Scholar
  127. Lalonde SV, Konhauser KO (2015) Benthic perspective on Earth’s oldest evidence for oxygenic photosynthesis. Proc Natl Acad Sci 112:995–1000.  https://doi.org/10.1073/pnas.1415718112 ADSCrossRefGoogle Scholar
  128. Lau KV, Maher K, Altiner D et al (2016) Marine anoxia and delayed Earth system recovery after the end-Permian extinction. Proc Natl Acad Sci 113:2360–2365.  https://doi.org/10.1073/pnas.1515080113 ADSCrossRefGoogle Scholar
  129. Le Hir G, Ramstein G, Donnadieu Y, Goddéris Y (2008) Scenario for the evolution of atmospheric pCO2 during a snowball Earth. Geology 36:47–50.  https://doi.org/10.1130/G24124A.1 ADSCrossRefGoogle Scholar
  130. Lee C-TA, Yeung LY, McKenzie NR et al (2016) Two-step rise of atmospheric oxygen linked to the growth of continents. Nature Geosci 9:417–424ADSCrossRefGoogle Scholar
  131. Lenton TM, von Bloh W (2001) Biotic feedback extends the life span of the biosphere. Geophys Res Lett 28:1715–1718ADSCrossRefGoogle Scholar
  132. Lenton TM, Watson AJ (2004) Biotic enhancement of weathering, atmospheric oxygen and carbon dioxide in the Neoproterozoic. Geophys Res Lett 31:L05202.  https://doi.org/10.1029/2003GL018802 ADSCrossRefGoogle Scholar
  133. Lenton TM, Dahl TW, Daines SJ et al (2016) Earliest land plants created modern levels of atmospheric oxygen. Proc Natl Acad Sci 113:9704–9709. 201604787ADSCrossRefGoogle Scholar
  134. Li C, Love GD, Lyons TW et al (2010) A stratified redox model for the Ediacaran ocean. Science 328:80–83ADSCrossRefGoogle Scholar
  135. Li C, Planavsky NJ, Shi W et al (2015) Ediacaran marine redox heterogeneity and early animal ecosystems. Sci Rep 5:17097.  https://doi.org/10.1038/srep17097 ADSCrossRefGoogle Scholar
  136. Li C, Hardisty DS, Luo G et al (2017) Uncovering the spatial heterogeneity of Ediacaran carbon cycling. Geobiology 15:211–224.  https://doi.org/10.1111/gbi.12222 CrossRefGoogle Scholar
  137. Loulergue L, Schilt A, Spahni R et al (2008) Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years. Nature 453:383–386.  https://doi.org/10.1038/nature06950 ADSCrossRefGoogle Scholar
  138. Love GD, Grosjean E, Stalvies C et al (2009) Fossil steroids record the appearance of Demospongiae during the Cryogenian period. Nature 457:718–721.  https://doi.org/10.1038/nature07673 ADSCrossRefGoogle Scholar
  139. Lovelock JE, Whitfield M (1982) Life span of the biosphere. Nature 296:561–563ADSCrossRefGoogle Scholar
  140. Luthi D, Le Floch M, Bereiter B et al (2008) High-resolution carbon dioxide concentration record 650,000-800,000 years before present. Nature 453:379–382.  https://doi.org/10.1038/nature06949 ADSCrossRefGoogle Scholar
  141. Lyons TW, Reinhard CT, Planavsky NJ (2014) The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506:307–315.  https://doi.org/10.1038/nature13068 ADSCrossRefGoogle Scholar
  142. Marty B, Zimmermann L, Pujol M et al (2013) Nitrogen isotopic composition and density of the Archean atmosphere. Science 342:101–104.  https://doi.org/10.1126/science.1240971 ADSCrossRefGoogle Scholar
  143. McElwain J, Chaloner C (1995) Stomatal density and index of fossil plants track atmospheric carbon dioxide in the Palaeozoic. Ann Bot 76:389–395.  https://doi.org/10.1006/anbo.1995.1112 CrossRefGoogle Scholar
  144. McFadden KA, Huang J, Chu X et al (2008) Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation. Proc Natl Acad Sci 105:3197–3202.  https://doi.org/10.1073/pnas.0708336105 ADSCrossRefGoogle Scholar
  145. Meadows VS (2017) Reflections on O 2 as a biosignature in exoplanetary atmospheres. Astrobiology 17:1022–1052.  https://doi.org/10.1089/ast.2016.1578 ADSCrossRefGoogle Scholar
  146. Mills B, Lenton TM, Watson AJ (2014a) Proterozoic oxygen rise linked to shifting balance between seafloor and terrestrial weathering. Proc Natl Acad Sci 111:9073–9078.  https://doi.org/10.1073/pnas.1321679111 ADSCrossRefGoogle Scholar
  147. Mills DB, Ward LM, Jones C et al (2014b) Oxygen requirements of the earliest animals. Proc Natl Acad Sci 111:4168–4172.  https://doi.org/10.1073/pnas.1400547111 ADSCrossRefGoogle Scholar
  148. Mitchell RL, Sheldon ND (2010) The similar to 1100 Ma Sturgeon Falls paleosol revisited: implications for Mesoproterozoic weathering environments and atmospheric CO2 levels. Precambrian Res 183:738–748.  https://doi.org/10.1016/j.precamres.2010.09.003 ADSCrossRefGoogle Scholar
  149. Mojzsis SJ, Arrhenius G, McKeegan KD et al (1996) Evidence for life on Earth before 3,800 million years ago. Nature 384:55–59.  https://doi.org/10.1038/384055a0 ADSCrossRefGoogle Scholar
  150. Newman MJ, Rood RT (1977) Implications of solar evolution for the Earth’s early atmosphere. Science 198:1035.  https://doi.org/10.1126/science.198.4321.1035 ADSCrossRefGoogle Scholar
  151. Nisbet EG, Grassineau NV, Howe CJ et al (2007) The age of Rubisco: the evolution of oxygenic photosynthesis. Geobiology 5:311–335.  https://doi.org/10.1111/j.1472-4669.2007.00127.x CrossRefGoogle Scholar
  152. Nutman AP, Bennett VC, Friend CRL et al (2016) Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures. Nature 537:535.  https://doi.org/10.1038/nature19355 ADSCrossRefGoogle Scholar
  153. O’Malley-James JT, Greaves JS, Raven JA, Cockell CS (2013) Swansong biospheres: refuges for life and novel microbial biospheres on terrestrial planets near the end of their habitable lifetimes. Int J Astrobiol 12:99–112.  https://doi.org/10.1017/S147355041200047X CrossRefGoogle Scholar
  154. Och LM, Shields-Zhou GA (2012) The Neoproterozoic oxygenation event: environmental perturbations and biogeochemical cycling. Earth Sci Rev 110:26–57.  https://doi.org/10.1016/j.earscirev.2011.09.004 ADSCrossRefGoogle Scholar
  155. Olson SL, Kump LR, Kasting JF (2013) Quantifying the areal extent and dissolved oxygen concentrations of Archean oxygen oases. Chem Geol 362:35–43.  https://doi.org/10.1016/j.chemgeo.2013.08.012 ADSCrossRefGoogle Scholar
  156. Olson SL, Reinhard CT, Lyons TW (2016a) Cyanobacterial diazotrophy and Earth’s delayed oxygenation. Front Microbiol 7:1526.  https://doi.org/10.3389/fmicb.2016.01526 CrossRefGoogle Scholar
  157. Olson SL, Reinhard CT, Lyons TW (2016b) Limited role for methane in the mid-Proterozoic greenhouse. Proc Natl Acad Sci 113:11447–11452.  https://doi.org/10.1073/pnas.1608549113 ADSCrossRefGoogle Scholar
  158. Owen T, Cess R, Ramanathan V (1979) Enhanced CO2 greenhouse to compensate for reduced solar luminosity on early Earth. Nature 277:640–642.  https://doi.org/10.1038/277640a0 ADSCrossRefGoogle Scholar
  159. Owens JD, Gill BC, Jenkyns HC et al (2013) Sulfur isotopes track the global extent and dynamics of euxinia during Cretaceous Oceanic Anoxic Event 2. Proc Natl Acad Sci 110:18407–18412ADSCrossRefGoogle Scholar
  160. Pancost RD, Steart DS, Handley L et al (2007) Increased terrestrial methane cycling at the Palaeocene-Eocene thermal maximum. Nature 449:332–335.  https://doi.org/10.1038/nature06012 ADSCrossRefGoogle Scholar
  161. Partin CA, Bekker A, Planavsky NJ et al (2013) Large-scale fluctuations in Precambrian atmospheric and oceanic oxygen levels from the record of U in shales. Earth Planet Sci Lett 369:284–293.  https://doi.org/10.1016/j.epsl.2013.03.031 ADSCrossRefGoogle Scholar
  162. Pavlov A, Kasting J (2002) Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. Astrobiology 2:27–41ADSCrossRefGoogle Scholar
  163. Pavlov AA, Kasting JF, Brown LL et al (2000) Greenhouse warming by CH4 in the atmosphere of early Earth. J Geophys Res-Planets 105:11981–11990.  https://doi.org/10.1029/1999JE001134 CrossRefGoogle Scholar
  164. Pavlov AA, Kasting JF, Eigenbrode JL, Freeman KH (2001) Organic haze in Earth’s early atmosphere: source of low-C-13 Late Archean kerogens? Geology 29:1003–1006.  https://doi.org/10.1130/0091-7613(2001)029<1003:OHIESE>2.0.CO;2 ADSCrossRefGoogle Scholar
  165. Pavlov AA, Hurtgen MT, Kasting JF, Arthur MA (2003) Methane-rich Proterozoic atmosphere? Geology 31:87–90.  https://doi.org/10.1130/0091-7613(2003)031<0087:MRPA>2.0.CO;2 ADSCrossRefGoogle Scholar
  166. Pinto JP, Holland HD (1988) Paleosols and the evolution of the atmosphere; Part II. Geol Soc Am Spec Pap 216:21–34.  https://doi.org/10.1130/SPE216-p21 Google Scholar
  167. Planavsky NJ, Bekker A, Hofmann A et al (2012) Sulfur record of rising and falling marine oxygen and sulfate levels during the Lomagundi event. Proc Natl Acad Sci USA 109:18300–18305.  https://doi.org/10.1073/pnas.1120387109 ADSCrossRefGoogle Scholar
  168. Planavsky NJ, Asael D, Hofmann A et al (2014a) Evidence for oxygenic photosynthesis half a billiion years before the Great Oxidation Event. Nat Geosci 7:283–286.  https://doi.org/10.1038/ngeo2122 ADSCrossRefGoogle Scholar
  169. Planavsky NJ, Reinhard CT, Wang X et al (2014b) Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science 346:635–638.  https://doi.org/10.1126/science.1258410 ADSCrossRefGoogle Scholar
  170. Raymo ME, Ruddiman WF (1992) Tectonic forcing of late Cenozoic climate. Nature 359:117–122.  https://doi.org/10.1038/359117a0 ADSCrossRefGoogle Scholar
  171. Reeburgh WS (2007) Oceanic methane biogeochemistry. Chem Rev 107:486–513.  https://doi.org/10.1021/cr050362v CrossRefGoogle Scholar
  172. Reinhard CT, Raiswell R, Scott C et al (2009) A Late Archean sulfidic sea stimulated by early oxidative weathering of the continents. Science 326:713–716.  https://doi.org/10.1126/science.1176711 ADSCrossRefGoogle Scholar
  173. Reinhard CT, Lalonde SV, Lyons TW (2013a) Oxidative sulfide dissolution on the early Earth. Chem Geol 362:44–55.  https://doi.org/10.1016/j.chemgeo.2013.10.006 ADSCrossRefGoogle Scholar
  174. Reinhard CT, Planavsky NJ, Lyons TW (2013b) Long-term sedimentary recycling of rare sulphur isotope anomalies. Nature 497:100.  https://doi.org/10.1038/nature12021 ADSCrossRefGoogle Scholar
  175. Reinhard CT, Planavsky NJ, Robbins LJ et al (2013c) Proterozoic ocean redox and biogeochemical stasis. Proc Natl Acad Sci 110:5357–5362.  https://doi.org/10.1073/pnas.1208622110 ADSCrossRefGoogle Scholar
  176. Reinhard CT, Planavsky NJ, Olson SL et al (2016) Earth’s oxygen cycle and the evolution of animal life. Proc Natl Acad Sci 113:8933–8938.  https://doi.org/10.1073/pnas.1521544113 ADSCrossRefGoogle Scholar
  177. Reinhard CT, Olson SL, Schwieterman EW, Lyons TW (2017a) False negatives for remote life detection on ocean-bearing planets: lessons from the early Earth. Astrobiology 17:287–297.  https://doi.org/10.1089/ast.2016.1598 ADSCrossRefGoogle Scholar
  178. Reinhard CT, Planavsky NJ, Gill BC et al (2017b) Evolution of the global phosphorus cycle. Nature 541:386.  https://doi.org/10.1038/nature20772 ADSCrossRefGoogle Scholar
  179. Riding R, Fralick P, Liang L (2014) Identification of an Archean marine oxygen oasis. Precambrian Res 251:232–237.  https://doi.org/10.1016/j.precamres.2014.06.017 ADSCrossRefGoogle Scholar
  180. Roberson AL, Roadt J, Halevy I, Kasting JF (2011) Greenhouse warming by nitrous oxide and methane in the Proterozoic Eon. Geobiology 9:313–320.  https://doi.org/10.1111/j.1472-4669.2011.00286.x CrossRefGoogle Scholar
  181. Robert F, Chaussidon M (2006) A palaeotemperature curve for the Precambrian oceans based on silicon isotopes in cherts. Nature 443:969–972.  https://doi.org/10.1038/nature05239 ADSCrossRefGoogle Scholar
  182. Rosing MT, Bird DK, Sleep NH, Bjerrum CJ (2010) No climate paradox under the faint early Sun. Nature 464:744–747.  https://doi.org/10.1038/nature08955 ADSCrossRefGoogle Scholar
  183. Royer DL, Berner RA, Montañez IP et al (2004) CO2 as a primary driver of phanerozoic climate. GSA Today 14:4–10CrossRefGoogle Scholar
  184. Rybacki KS, Kump LR, Hanski EJ, Melezhik VA (2016) Weathering during the great oxidation event: fennoscandia, arctic Russia 2.06Ga ago. Precambrian Res 275:513–525.  https://doi.org/10.1016/j.precamres.2016.01.010 ADSCrossRefGoogle Scholar
  185. Rye R, Holland HD (1998) Paleosols and the evolution of atmospheric oxygen: a critical review. Am J Sci 298:621–672ADSCrossRefGoogle Scholar
  186. Rye R, Kuo PH, Holland HD (1995) Atmospheric carbon-dioxide concentrations before 2.2-billion years ago. Nature 378:603–605.  https://doi.org/10.1038/378603a0 ADSCrossRefGoogle Scholar
  187. Sagan C, Mullen G (1972) Earth and Mars – evolution of atmospheres and surface temperatures. Science 177:52–56.  https://doi.org/10.1126/science.177.4043.52 ADSCrossRefGoogle Scholar
  188. Sahagian DL, Maus JE (1994) Basalt vesicularity as a measure of atmospheric pressure and palaeoelevation. Nature 372:449–451.  https://doi.org/10.1038/372449a0 ADSCrossRefGoogle Scholar
  189. Sahoo SK, Planavsky NJ, Kendall B et al (2012) Ocean oxygenation in the wake of the Marinoan glaciation. Nature 489:546–549.  https://doi.org/10.1038/nature11445 ADSCrossRefGoogle Scholar
  190. Sahoo SK, Planavsky NJ, Jiang G et al (2016) Oceanic oxygenation events in the anoxic Ediacaran ocean. Geobiology 14:457–468.  https://doi.org/10.1111/gbi.12182 CrossRefGoogle Scholar
  191. Schrag DP, Berner RA, Hoffman PF, Halverson GP (2002) On the initiation of a snowball Earth: initiation of a snowball Earth. Geochem Geophys Geosyst 3:1–21.  https://doi.org/10.1029/2001GC000219 CrossRefGoogle Scholar
  192. Schwieterman EW, Robinson TD, Meadows VS, Misra A, Domagal-Goldman S (2015) Detecting and constraining N2 abundances in planetary atmospheres using collisional Pairs. Astrophys J 810:57ADSCrossRefGoogle Scholar
  193. Scott C, Lyons T, Bekker A et al (2008) Tracing the stepwise oxygenation of the Proterozoic ocean. Nature 452:456–459ADSCrossRefGoogle Scholar
  194. Sheldon ND (2006) Precambrian paleosols and atmospheric CO2 levels. Precambrian Res 147:148–155.  https://doi.org/10.1016/j.precamres.2006.02.004 ADSCrossRefGoogle Scholar
  195. Sheldon ND (2013) Causes and consequences of low atmospheric pCO(2) in the Late Mesoproterozoic. Chem Geol 362:224–231.  https://doi.org/10.1016/j.chemgeo.2013.09.006 ADSCrossRefGoogle Scholar
  196. Sleep NH (2010) The Hadean-Archaean environment. Cold Spring Harb Perspect Biol.  https://doi.org/10.1101/cshperspect.a002527
  197. Sleep NH, Zahnle K (2001) Carbon dioxide cycling and implications for climate on ancient Earth. J Geophys Res Planets 106:1373–1399.  https://doi.org/10.1029/2000JE001247 CrossRefGoogle Scholar
  198. Som SM, Catling DC, Harnmeijer JP et al (2012) Air density 2.7 billion years ago limited to less than twice modern levels by fossil raindrop imprints. Nature 484:359–362.  https://doi.org/10.1038/nature10890 ADSCrossRefGoogle Scholar
  199. Som SM, Buick R, Hagadorn JW et al (2016) Earth’s air pressure 2.7 billion years ago constrained to less than half of modern levels. Nat Geosci 9:448–451.  https://doi.org/10.1038/NGEO2713 ADSCrossRefGoogle Scholar
  200. Sperling EA, Halverson GP, Knoll AH et al (2013) A basin redox transect at the dawn of animal life. Earth Planet Sci Lett 371:143–155.  https://doi.org/10.1016/j.epsl.2013.04.003 ADSCrossRefGoogle Scholar
  201. Sperling EA, Knoll AH, Girguis PR (2015a) The ecological physiology of Earth’s second oxygen revolution. Annu Rev Ecol Evol Syst 46:215–235.  https://doi.org/10.1146/annurev-ecolsys-110512-135808 CrossRefGoogle Scholar
  202. Sperling EA, Wolock CJ, Morgan AS et al (2015b) Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation. Nature 523:451–454ADSCrossRefGoogle Scholar
  203. Stüeken EE, Buick R, Anbar AD (2015a) Selenium isotopes support free O2 in the latest Archean. Geology 43:259–262.  https://doi.org/10.1130/G36218.1 ADSCrossRefGoogle Scholar
  204. Stüeken EE, Buick R, Guy BM, Koehler MC (2015b) Isotopic evidence for biological nitrogen fixation by molybdenum-nitrogenase from 3.2?Gyr. Nature 520:666–669.  https://doi.org/10.1038/nature14180 ADSCrossRefGoogle Scholar
  205. Stüeken EE, Kipp MA, Koehler MC et al (2016) Modeling pN(2) through geological time: implications for planetary climates and atmospheric biosignatures. Astrobiology 16:949–963.  https://doi.org/10.1089/ast.2016.1537 ADSCrossRefGoogle Scholar
  206. Sumner DY, Hawes I, Mackey TJ et al (2015) Antarctic microbial mats: a modern analog for Archean lacustrine oxygen oases. Geology.  https://doi.org/10.1130/G36966.1
  207. Thomazo C, Ader M, Farquhar J, Philippot P (2009) Methanotrophs regulated atmospheric sulfur isotope anomalies during the Mesoarchean (Tumbiana Formation, Western Australia). Earth Planet Sci Lett 279:65–75.  https://doi.org/10.1016/j.epsl.2008.12.036 ADSCrossRefGoogle Scholar
  208. Thomazo C, Nisbet EG, Grassineau NV et al (2013) Multiple sulfur and carbon isotope composition of sediments from the Belingwe Greenstone Belt (Zimbabwe): a biogenic methane regulation on mass independent fractionation of sulfur during the Neoarchean? Geochim Cosmochim Acta 121:120–138.  https://doi.org/10.1016/j.gca.2013.06.036 ADSCrossRefGoogle Scholar
  209. Trainer MG, Pavlov AA, DeWitt HL et al (2006) Organic haze on Titan and the early Earth. Proc Natl Acad Sci 103:18035–18042.  https://doi.org/10.1073/pnas.0608561103 ADSCrossRefGoogle Scholar
  210. Ueno Y, Yamada K, Yoshida N et al (2006) Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era. Nature 440:516–519.  https://doi.org/10.1038/nature04584 ADSCrossRefGoogle Scholar
  211. Valley JW, Peck WH, King EM, Wilde SA (2002) A cool early Earth. Geology 30:351–354.  https://doi.org/10.1130/0091-7613(2002)030<0351:ACEE>2.0.CO;2 ADSCrossRefGoogle Scholar
  212. Van Der Burgh J, Visscher H, Dilcher DL, Kurschner WM (1993) Paleoatmospheric signatures in Neogene fossil leaves. Science 260:1788–1790.  https://doi.org/10.1126/science.260.5115.1788 ADSCrossRefGoogle Scholar
  213. Volk T (1987) Feedbacks between weathering and atmospheric CO2 over the last 100 million years. Am J Sci 287:763–779.  https://doi.org/10.2475/ajs.287.8.763 ADSCrossRefGoogle Scholar
  214. Walker JCG (1990) Precambrian evolution of the climate system. Glob Planet Chang 2:261–289.  https://doi.org/10.1016/0921-8181(90)90005-W ADSCrossRefGoogle Scholar
  215. Walker J, Hays P, Kasting J (1981) a negative feedback mechanism for the long-term stabilization of Earths surface-temperature. J Geophys Res-Oceans 86:9776–9782.  https://doi.org/10.1029/JC086iC10p09776 CrossRefGoogle Scholar
  216. Wallace MW, Hood AVS, Shuster A et al (2017) Oxygenation history of the Neoproterozoic to early Phanerozoic and the rise of land plants. Earth Planet Sci Lett 466:12–19.  https://doi.org/10.1016/j.epsl.2017.02.046 ADSCrossRefGoogle Scholar
  217. Weiss MC, Sousa FL, Mrnjavac N et al (2016) The physiology and habitat of the last universal common ancestor. Nature Microbiol 1:16116.  https://doi.org/10.1038/nmicrobiol.2016.116 CrossRefGoogle Scholar
  218. Williford KH, Ushikubo T, Lepot K et al (2016) Carbon and sulfur isotopic signatures of ancient life and environment at the microbial scale: Neoarchean shales and carbonates. Geobiology 14:105–128.  https://doi.org/10.1111/gbi.12163 CrossRefGoogle Scholar
  219. Wolf ET, Toon OB (2010) Fractal organic hazes provided an ultraviolet shield for early Earth. Science 328:1266–1268.  https://doi.org/10.1126/science.1183260 ADSCrossRefGoogle Scholar
  220. Wolf ET, Toon OB (2013) Hospitable archean climates simulated by a general circulation model. Astrobiology 13:656–673.  https://doi.org/10.1089/ast.2012.0936 ADSCrossRefGoogle Scholar
  221. Wordsworth RD (2016) Atmospheric nitrogen evolution on Earth and Venus. Earth Planet Sci Lett 447:103–111.  https://doi.org/10.1016/j.epsl.2016.04.002 ADSCrossRefGoogle Scholar
  222. Wordsworth RD, Pierrehumbert R (2013) Hydrogen-nitrogen greenhouse warming in Earth’s early atmosphere. Science 339:64–67.  https://doi.org/10.1126/science.1225759 ADSCrossRefGoogle Scholar
  223. Wordsworth RD, Pierrehumbert R (2014) Abiotic oxygen-dominated atmospheres on terrestrial habitable zone planets. Astrophys J Lett 785:L20ADSCrossRefGoogle Scholar
  224. Zahnle K, Claire M, Catling D (2006) The loss of mass-independent fractionation in sulfur due to a Palaeoproterozoic collapse of atmospheric methane. Geobiology 4:271–283.  https://doi.org/10.1111/j.1472-4669.2006.00085.x CrossRefGoogle Scholar
  225. Zahnle KJ, Catling DC, Claire MW (2013) The rise of oxygen and the hydrogen hourglass. Chem Geol 362:26–34.  https://doi.org/10.1016/j.chemgeo.2013.08.004 ADSCrossRefGoogle Scholar
  226. Zbinden EA, Holland HD, Feakes CR (1988) The Sturgeon Falls paleosol and the composition of the atmosphere 1.1 Ga BP. Precambrian Res 42:141–163ADSCrossRefGoogle Scholar
  227. Zerkle AL, Mikhail S (2017) The geobiological nitrogen cycle: from microbes to the mantle. Geobiology 15:343–352.  https://doi.org/10.1111/gbi.12228 CrossRefGoogle Scholar
  228. Zerkle AL, Claire M, Domagal-Goldman SD et al (2012) A bistable organic-rich atmosphere on the Neoarchaean Earth. Nat Geosci 5:359–363.  https://doi.org/10.1038/NGEO1425 ADSCrossRefGoogle Scholar
  229. Zhao M, Reinhard CT, Planavsky NJ (2017) Terrestrial methane fluxes and Proterozoic climate. Geology.  https://doi.org/10.1130/G39502.1

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Stephanie L. Olson
    • 1
  • Edward W. Schwieterman
    • 1
  • Christopher T. Reinhard
    • 2
  • Timothy W. Lyons
    • 1
  1. 1.NASA Astrobiology Institute and Department of Earth SciencesUniversity of California RiversideRiversideUSA
  2. 2.School of Earth and Atmospheric ScienceGeorgia Institute of TechnologyAtlantaUSA

Section editors and affiliations

  • Victoria Meadows
    • 1
  • Rory Barnes
    • 2
  1. 1.Astronomy DepartmentUniversity of WashingtonSeattleUSA
  2. 2.Astronomy DepartmentUniversity of WashingtonSeattleUSA

Personalised recommendations