Advertisement

Exoplanets and SETI

  • Jason T. Wright
Living reference work entry

Abstract

The discovery of exoplanets has both focused and expanded the search for extraterrestrial intelligence. The consideration of Earth as an exoplanet, the knowledge of the orbital parameters of individual exoplanets, and our new understanding of the prevalence of exoplanets throughout the galaxy have all altered the search strategies of communication SETI efforts, by inspiring new “Schelling points” (i.e., optimal search strategies for beacons). Future efforts to characterize individual planets photometrically and spectroscopically, with imaging and via transit, will also allow for searches for a variety of technosignatures on their surfaces, in their atmospheres, and in orbit around them. In the near term, searches for new planetary systems might even turn up free-floating megastructures.

Notes

Acknowledgements

This work was partially funded by the University of California Berkeley via the SETI Research Center; Breakthrough Listen, part of the Breakthrough Initiatives sponsored by the Breakthrough Prize Foundation (http://www.breakthroughinitiatives.org); and the Center for Exoplanets and Habitable Worlds, which is supported by the Pennsylvania State University, the Eberly College of Science, and the Pennsylvania Space Grant Consortium.

References

  1. Arnold LFA (2005) Transit light-curve signatures of artificial objects. ApJ 627:534–539ADSCrossRefGoogle Scholar
  2. Bracewell RN, MacPhie RH (1979) Searching for nonsolar planets. Icarus 38:136–147ADSCrossRefGoogle Scholar
  3. Campbell JB (2006) Archaeology and direct imaging of exoplanets. In: Aime C, Vakili F (eds) IAU Colloq. 200: direct imaging of exoplanets: science and techniques, p 247–250. doi:10.1017/S1743921306009392
  4. Carrigan RA Jr (2009) IRAS-based whole-sky upper limit on Dyson spheres. ApJ 698:2075ADSCrossRefGoogle Scholar
  5. Carrigan RA Jr (2012) Is interstellar archeology possible? Acta Astronaut 78:121–126ADSCrossRefGoogle Scholar
  6. Cocconi G, Morrison P (1959) Searching for interstellar communications. Nature 184:844–846ADSCrossRefGoogle Scholar
  7. Corbet RHD (2003) Synchronized SETI-The Case for “Opposition”. Astrobiology 3:305–315ADSCrossRefGoogle Scholar
  8. Cowan NB, Fujii Y (2017) Mapping exoplanets. ArXiv e-printsGoogle Scholar
  9. Cowley CR, Ryabchikova T, Kupka F et al. (2000) Abundances in Przybylski’s star. MNRAS 317:299–309ADSCrossRefGoogle Scholar
  10. de Wit J, Gillon M, Demory BO, Seager S (2012) Towards consistent mapping of distant worlds: secondary-eclipse scanning of the exoplanet HD 189733b. A&A 548:A128ADSCrossRefGoogle Scholar
  11. Dixon RS (1973) A search strategy for finding extraterrestrial radio beacons. Icarus 20:187–199ADSCrossRefGoogle Scholar
  12. Dressing CD, Charbonneau D (2015) The occurrence of potentially habitable planets orbiting M dwarfs estimated from the full Kepler dataset and an empirical measurement of the detection sensitivity. ApJ 807:45ADSCrossRefGoogle Scholar
  13. Dyson FJ (1960) Search for artificial stellar sources of infrared radiation. Science 131:1667–1668ADSCrossRefGoogle Scholar
  14. Filippova LN, Strelnitskij VS (1988) Ecliptic as an attractor for SETI. Astronomicheskij Tsirkulyar 1531:31ADSGoogle Scholar
  15. Filippova LN, Kardashev NS, Likhachev SF, Strelnitskij VS (1991) On the Strategy of SETI. In: Heidmann J, Klein MJ (eds) Bioastronomy: the search for extraterrestrial life – the exploration broadens. Lecture notes in physics, vol 390. Springer, Berlin, p 254–258. doi:10.1007/3-540-54752-5_225 CrossRefGoogle Scholar
  16. Forgan DH (2013) On the possibility of detecting class A stellar engines using exoplanet transit curves. J Br Interplanet Soc 66:144–154ADSGoogle Scholar
  17. Freeman J, Lampton M (1975) Interstellar archaeology and the prevalence of intelligence. Icarus 25:368–369ADSCrossRefGoogle Scholar
  18. Guillochon J, Loeb A (2015) SETI via leakage from light sails in exoplanetary systems. ApJ 811:L20ADSCrossRefGoogle Scholar
  19. Harp GR, Richards J, Tarter JC et al (2016) SETI observations of exoplanets with the Allen Telescope Array. AJ 152:181ADSCrossRefGoogle Scholar
  20. Henry T, Soderblom D, Baliunas S et al (1995) The current state of target selection for NASA’s high resolution microwave survey. In: Shostak GS(ed) Progress in the search for extraterrestrial life. Astronomical society of the pacific conference series, vol 74. Astronomical Society of the Pacific, San Francisco, p 207Google Scholar
  21. Imara N, Di Stefano R (2017) Searching for exoplanets around x-ray binaries with accreting white dwarfs, neutron stars, and black holes. arXiv:170305762Google Scholar
  22. Isaacson H, Siemion APV, Marcy GW et al (2017) The breakthrough listen search for intelligent life: target selection of nearby stars and galaxies. ArXiv e-printsGoogle Scholar
  23. Kasting JF, Whitmire DP, Reynolds RT (1993) Habitable zones around main sequence stars. Icarus 101:108–128ADSCrossRefGoogle Scholar
  24. Kawahara H, Fujii Y (2010) Global mapping of Earth-like exoplanets from scattered light curves. ApJ 720:1333–1350ADSCrossRefGoogle Scholar
  25. Kessler DJ, Cour-Palais BG (1978) Collision frequency of artificial satellites: the creation of a debris belt. J Geophys Res 83:2637–2646ADSCrossRefGoogle Scholar
  26. Kipping DM, Teachey A (2016) A cloaking device for transiting planets. MNRAS 459:1233–1241ADSCrossRefGoogle Scholar
  27. Knutson HA, Charbonneau D, Allen LE et al (2007) A map of the day-night contrast of the extrasolar planet HD 189733b. Nature 447:183–186ADSCrossRefGoogle Scholar
  28. Korpela EJ, Sallmen SM, Leystra Greene D (2015) Modeling indications of technology in planetary transit light curves–dark-side illumination. ApJ 809:139ADSCrossRefGoogle Scholar
  29. Kreidberg L, Loeb A (2016) Prospects for characterizing the atmosphere of proxima centauri b. ApJ 832:L12ADSCrossRefGoogle Scholar
  30. Kuhn JR, Berdyugina SV (2015) Global warming as a detectable thermodynamic marker of Earth-like extrasolar civilizations: the case for a telescope like colossus. Int J Astrobiol 14(3):401CrossRefGoogle Scholar
  31. Lin HW, Gonzalez Abad G, Loeb A (2014) Detecting Industrial Pollution in the Atmospheres of Earth-like Exoplanets. ApJ 792:L7ADSCrossRefGoogle Scholar
  32. Lingam M, Loeb A (2017) Natural and artificial spectral edges in exoplanets. MNRAS 470:L82ADSCrossRefGoogle Scholar
  33. Loeb A, Turner EL (2012) Detection technique for artificially illuminated objects in the outer solar system and beyond. Astrobiology 12:290–294ADSCrossRefGoogle Scholar
  34. Maire J, Wright SA, Dorval P et al. (2016) A near-infrared SETI experiment: commissioning, data analysis, and performance results. In: Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol 9908, p 990810. doi:10.1117/12.2232861 Google Scholar
  35. Majeau C, Agol E, Cowan NB (2012) A two-dimensional infrared map of the extrasolar planet HD 189733b. ApJ 747:L20ADSCrossRefGoogle Scholar
  36. Makovetskii PV (1977) Nova Cygni – a synchrosignal for extraterrestrial civilizations. AZh 54:449–451ADSGoogle Scholar
  37. Makovetskii PV (1980) Mutual strategy of search for CETI call signals. Icarus 41:178–192ADSCrossRefGoogle Scholar
  38. Oliver BM (1979) Rationale for the water hole. Acta Astronaut 6:71–79ADSCrossRefGoogle Scholar
  39. Osmanov Z (2016) On the search for artificial Dyson-like structures around pulsars. Int J Astrobiol 15:127–132CrossRefGoogle Scholar
  40. Pace GW, Walker JCG (1975) Time markers in interstellar communication. Nature 254:400ADSCrossRefGoogle Scholar
  41. Panov A, Filippova L, Rudnitskii G (2014) Limited list for the objects – candidates for SETI-monitoring with large telescopes. In: 40th COSPAR Scientific Assembly, COSPAR Meeting, vol 40Google Scholar
  42. Petigura EA, Howard AW, Marcy GW (2013) Prevalence of Earth-size planets orbiting sun-like stars. Proc Natl Acad Sci 110:19273–19278ADSCrossRefGoogle Scholar
  43. Przybylski A (1961) HD 101065-a G0 star with high metal content. Nature 189:739ADSCrossRefGoogle Scholar
  44. Schelling T (1960) The strategy of conflict. Galaxy book. Harvard University Press. https://books.google.com/books?id=Ctl-AAAAMAAJ zbMATHGoogle Scholar
  45. Schneider J, Léger A, Fridlund M et al (2010) The far future of exoplanet direct characterization. Astrobiology 10:121–126ADSCrossRefGoogle Scholar
  46. Shklovskiĭ I, Sagan C (1966) Intelligent life in the universe: Vselennaja zizn’razum. Delta-books. Holden-Day, San Francisco/London/Amsterdam. https://books.google.com/books?id=o4cRAQAAIAAJ Google Scholar
  47. Shostak S (2004) A scheme for targeting optical SETI observations. In: Norris R, Stootman F (eds) Bioastronomy 2002: life among the stars. IAU symposium, vol 213. Astronomical Society of the Pacific, San Francisco, p 409Google Scholar
  48. Siemion APV, Demorest P, Korpela E et al (2013) A 1.1–1.9 GHz SETI survey of the Kepler field. I. A search for narrow-band emission from select targets. ApJ 767:94Google Scholar
  49. Singer CE (1982) When to look where. Cosmic Search 4:22ADSGoogle Scholar
  50. Stevens A, Forgan D, James JO (2016) Observational signatures of self-destructive civilizations. Int J Astrobiol 15:333–344CrossRefGoogle Scholar
  51. Tarter J (2001) The search for extraterrestrial intelligence (SETI). ARA&A 39:511–548ADSCrossRefGoogle Scholar
  52. Traub WA (2012) Terrestrial, habitable-zone exoplanet frequency from Kepler. ApJ 745:20ADSCrossRefGoogle Scholar
  53. Turnbull MC, Tarter JC (2003a) Target selection for SETI. I. A catalog of nearby habitable stellar systems. ApJS 145:181–198Google Scholar
  54. Turnbull MC, Tarter JC (2003b) Target selection for SETI. II. Tycho-2 dwarfs, old open clusters, and the nearest 100 stars. ApJS 149:423–436ADSCrossRefGoogle Scholar
  55. Whitmire DP, Wright DP (1980) Nuclear waste spectrum as evidence of technological extraterrestrial civilizations. Icarus 42:149–156ADSCrossRefGoogle Scholar
  56. Wolszczan A, Frail DA (1992) A planetary system around the millisecond pulsar PSR1257 + 12. Nature 355:145–147ADSCrossRefGoogle Scholar
  57. Wright JT, Griffith RL, Sigurdsson S, Povich MS, Mullan B (2014a) The Ĝ infrared search for extraterrestrial civilizations with large energy supplies. II. Framework, strategy, and first result. ApJ 792:27Google Scholar
  58. Wright JT, Mullan B, Sigurdsson S, Povich MS (2014b) The Ĝ infrared search for extraterrestrial civilizations with large energy supplies. I. Background and justification. ApJ 792:26Google Scholar
  59. Wright JT, Cartier KMS, Zhao M, Jontof-Hutter D, Ford EB (2016) The search for extraterrestrial civilizations with large energy supplies. IV. The signatures and information content of transiting megastructures. ApJ 816:17Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Astronomy & Astrophysics, Center for Exoplanets and Habitable WorldsThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Breakthrough Listen Laboratory, Department of AstronomyUniversity of CaliforniaBerkeleyUSA

Personalised recommendations