Radio Emission from Ultracool Dwarfs

Living reference work entry

Abstract

The 2001 discovery of radio emission from ultracool dwarfs (UCDs), the very low-mass stars and brown dwarfs with spectral types of ∼M7 and later, revealed that these objects can generate and dissipate powerful magnetic fields. Radio observations provide unparalleled insight into UCD magnetism: detections extend to brown dwarfs with temperatures \(\lesssim \)1000 K, where no other observational probes are effective. The data reveal that UCDs can generate strong (kG) fields, sometimes with a stable dipolar structure; that they can produce and retain nonthermal plasmas with electron acceleration extending to MeV energies; and that they can drive auroral current systems resulting in significant atmospheric energy deposition and powerful, coherent radio bursts. Still to be understood are the underlying dynamo processes, the precise means by which particles are accelerated around these objects, the observed diversity of magnetic phenomenologies, and how all of these factors change as the mass of the central object approaches that of Jupiter. The answers to these questions are doubly important because UCDs are both potential exoplanet hosts, as in the TRAPPIST-1 system, and analogues of extrasolar giant planets themselves.

Keywords

Brown dwarfs Ultracool dwarfs Radio emission Magnetic activity Dynamo 

References

  1. Antonova A, Doyle JG, Hallinan G, Golden A, Koen C (2007) A&A 472(1):257. https://doi.org/10.1051/0004-6361%3A20077231 ADSCrossRefGoogle Scholar
  2. Antonova A, Hallinan G, Doyle JG et al (2013) A&A 549:A131. https://doi.org/10.1051/0004-6361/201118583 ADSCrossRefGoogle Scholar
  3. Axford WI (1969) Rev Geophys Space Phys 7:421. https://doi.org/10.1029/RG007i001p00421 ADSCrossRefGoogle Scholar
  4. Basri G, Marcy GW (1995) AJ 109:762. https://doi.org/10.1086/117319 ADSCrossRefGoogle Scholar
  5. Benz AO, Güdel M (1994) A&A 285:621. http://adsabs.harvard.edu/abs/1994A%26A...285..621B
  6. Berger E, Ball S, Becker KM et al (2001) Natur 410:338. https://doi.org/10.1038/35066514 ADSCrossRefGoogle Scholar
  7. Berger E, Rutledge RE, Reid IN et al (2005) ApJ 627(2):960. https://doi.org/10.1086/430343 ADSCrossRefGoogle Scholar
  8. Berger E, Basri G, Gizis JE et al (2008a) ApJ 676:1307. https://doi.org/10.1086/529131 ADSCrossRefGoogle Scholar
  9. Berger E, Gizis JE, Giampapa MS et al (2008b) ApJ 673:1080. https://doi.org/10.1086/524769 ADSCrossRefGoogle Scholar
  10. Berger E, Rutledge RE, Phan-Bao N et al (2009) ApJ 695:310. https://doi.org/10.1088/0004-637x/695/1/310 ADSCrossRefGoogle Scholar
  11. Berger E, Basri G, Fleming TA et al (2010) ApJ 709:332. https://doi.org/10.1088/0004-637x/709/1/332 ADSCrossRefGoogle Scholar
  12. Bhardwaj A, Gladstone GR (2000) RvGeo 38(3):295. https://doi.org/10.1029/1998RG000046 ADSGoogle Scholar
  13. Bouvier J, Matt SP, Mohanty S et al (2014) In: Beuther H, Klessen RS, Dullemond CP, Henning T (eds) Protostars and planets VI. University of Arizona Press, Tucson, p 433.  https://doi.org/10.2458/azu_uapress_9780816531240-ch019 Google Scholar
  14. Breuer D, Labrosse S, Spohn T (2010) SSRv 152:449. https://doi.org/10.1007/s11214-009-9587-5 ADSGoogle Scholar
  15. Burgasser AJ, Putman ME (2005) ApJ 626(1):486. https://doi.org/10.1086/429788 ADSCrossRefGoogle Scholar
  16. Burgasser AJ, Melis C, Zauderer BA, Berger E (2013) ApJL 762:L3. https://doi.org/10.1088/2041-8205/762/1/L3 ADSCrossRefGoogle Scholar
  17. Burgasser AJ, Melis C, Todd J et al (2015) AJ 150(6):180. https://doi.org/10.1088/0004-6256/150/6/180 ADSCrossRefGoogle Scholar
  18. Burningham B, Hardcastle M, Nichols JD et al (2016) MNRAS 463(2):2202.  https://doi.org/10.1093/mnras/stw2065 ADSCrossRefGoogle Scholar
  19. Cook BA, Williams PKG, Berger E (2014) ApJ 785(1):10. https://doi.org/10.1088/0004-637X/785/1/10 ADSCrossRefGoogle Scholar
  20. de Pater I, Butler BJ, Green DA et al (2003) Icarus 163:434. https://doi.org/10.1016/S0019-1035%2803%2900067-8 ADSCrossRefGoogle Scholar
  21. Doyle JG, Antonova A, Marsh MS et al (2010) A&A 524:A15. https://doi.org/10.1051/0004-6361/201015274 ADSCrossRefGoogle Scholar
  22. Drake JJ, Stern RA, Stringfellow G et al (1996) ApJ 469:828. https://doi.org/10.1086/177830 ADSCrossRefGoogle Scholar
  23. Dupuy TJ, Forbrich J, Rizzuto A et al (2016) ApJ 827(1):23. https://doi.org/10.3847/0004-637X/827/1/23 ADSCrossRefGoogle Scholar
  24. Ekenbäck A, Holmström M, Wurz P et al (2010) ApJ 709(2):670. https://doi.org/10.1088/0004-637X/709/2/670 ADSCrossRefGoogle Scholar
  25. Fleming TA, Giampapa MS, Schmitt JHMM (2000) ApJ 553:372. https://doi.org/10.1086/308657 ADSCrossRefGoogle Scholar
  26. Forbrich J, Dupuy TJ, Reid MJ et al (2016) ApJ 827(1):22. https://doi.org/10.3847/0004-637X/827/1/22 ADSCrossRefGoogle Scholar
  27. Gagné J, Faherty JK, Burgasser AJ et al (2017) ApJL 841:1. https://doi.org/10.3847/2041-8213/aa70e2 ADSCrossRefGoogle Scholar
  28. Gastine T, Morin J, Duarte L et al (2013) A&A 549:L5. https://doi.org/10.1051/0004-6361/201220317 ADSCrossRefGoogle Scholar
  29. Gillon M, Jehin E, Lederer SM et al (2016) Nature 533:221.  https://doi.org/10.1038/nature17448 ADSCrossRefGoogle Scholar
  30. Gillon M, Triaud AHMJ, Demory BO et al (2017) Nature 542:7642.  https://doi.org/10.1038/nature21360 CrossRefGoogle Scholar
  31. Gizis JE, Burgasser AJ, Berger E et al (2013) ApJ 779(2):172. https://doi.org/10.1088/0004-637x/779/2/172 ADSCrossRefGoogle Scholar
  32. Gizis JE, Williams PKG, Burgasser AJ et al (2016) AJ 152(5):123. https://doi.org/10.3847/0004-6256/152/5/123 ADSCrossRefGoogle Scholar
  33. Güdel M, Benz AO (1993) ApJL 405:L63. https://doi.org/10.1086/186766 ADSCrossRefGoogle Scholar
  34. Hallinan G, Antonova A, Doyle JG et al (2006) ApJ 653:690. https://doi.org/10.1086/508678 ADSCrossRefGoogle Scholar
  35. Hallinan G, Bourke S, Lane C et al (2007) ApJL 663:L25. https://doi.org/10.1086/519790 ADSCrossRefGoogle Scholar
  36. Hallinan G, Antonova A, Doyle JG et al (2008) ApJ 684(1):644. https://doi.org/10.1086/590360 ADSCrossRefGoogle Scholar
  37. Hallinan G, Littlefair S, Cotter G et al (2015) Nature 523:568.  https://doi.org/10.1038/nature14619 ADSCrossRefGoogle Scholar
  38. Harding LK, Hallinan G, Boyle RP et al (2013a) ApJ 779(2):101. https://doi.org/10.1088/0004-637X/779/2/101 ADSCrossRefGoogle Scholar
  39. Harding LK, Hallinan G, Konopacky QM et al (2013b) A&A 554:A113. https://doi.org/10.1051/0004-6361/201220865 ADSCrossRefGoogle Scholar
  40. Jaeger TR, Osten RA, Lazio TJ, Kassim N, Mutel RL (2011) AJ 142:189. https://doi.org/10.1088/0004-6256/142/6/189 ADSCrossRefGoogle Scholar
  41. Jakosky BM, Grebowsky JM, Luhmann JG, Brain DA (2015) GeoRL 42:8791. https://doi.org/10.1002/2015GL065271 ADSGoogle Scholar
  42. Kao MM, Hallinan G, Pineda JS et al (2016) ApJ 818(1):24. https://doi.org/10.3847/0004-637X/818/1/24 ADSCrossRefGoogle Scholar
  43. Kirkpatrick JD, Reid IN, Liebert J et al (1999) ApJ 519(2):802. https://doi.org/10.1086/307414 ADSCrossRefGoogle Scholar
  44. Kirkpatrick JD, Gelino CR, Cushing MC et al (2012) ApJ 753(2):156. https://doi.org/10.1088/0004-637X/753/2/156 ADSCrossRefGoogle Scholar
  45. Kochukhov O, Lavail A (2017) ApJL 835(1):L4. https://doi.org/10.3847/2041-8213/835/1/L4 ADSCrossRefGoogle Scholar
  46. Kochukhov O, Petit P, Strassmeier KG et al (2017) AN 338:428.  https://doi.org/10.1002/asna.201713310 ADSGoogle Scholar
  47. Kuznetsov AA, Doyle JG, Yu S et al (2012) ApJ 746(1):99. https://doi.org/10.1088/0004-637x/746/1/99 ADSCrossRefGoogle Scholar
  48. Leto P, Trigilio C, Oskinova L et al (2017) MNRAS 467:2820.  https://doi.org/10.1093/mnras/stx267 ADSCrossRefGoogle Scholar
  49. Liebert J, Kirkpatrick JD, Reid IN, Fisher MD (1999) ApJ 519:345. https://doi.org/10.1086/307349 ADSCrossRefGoogle Scholar
  50. Linsky JL, Wood BE, Brown A, Giampapa MS, Ambruster C (1995) ApJ 499:670. https://doi.org/10.1086/176614 ADSCrossRefGoogle Scholar
  51. Lynch C, Mutel RL, Güdel M (2015) ApJ 802:106. https://doi.org/10.1088/0004-637X/802/2/106 ADSCrossRefGoogle Scholar
  52. Lynch C, Murphy T, Ravi V et al (2016) MNRAS 457(2):1224.  https://doi.org/10.1093/mnras/stw050 ADSCrossRefGoogle Scholar
  53. Lynch CR, Lenc E, Kaplan DL, Murphy T, Anderson GE (2017) ApJL 835:30. https://doi.org/10.3847/2041-8213/aa5ffd ADSCrossRefGoogle Scholar
  54. Martín EL, Delfosse X, Basri G et al (1999) AJ 118(5):2466. https://doi.org/10.1086/301107 ADSCrossRefGoogle Scholar
  55. McComas DJ, Bagenal F (2007) GeoRL 34(20):L20,106. https://doi.org/10.1029/2007GL031078 Google Scholar
  56. McLean M, Berger E, Irwin J, Forbrich J, Reiners A (2011) ApJ 741(1):27. https://doi.org/10.1088/0004-637x/741/1/27 ADSCrossRefGoogle Scholar
  57. McLean M, Berger E, Reiners A (2012) ApJ 746(1):23. https://doi.org/10.1088/0004-637x/746/1/23 ADSCrossRefGoogle Scholar
  58. Metodieva YT, Kuznetsov AA, Antonova AE et al (2017) MNRAS 465(2):1995.  https://doi.org/10.1093/mnras/stw2597 ADSCrossRefGoogle Scholar
  59. Miles-Páez PA, Zapatero Osorio MR, Pallé E (2015) A&A 580:L12. https://doi.org/10.1051/0004-6361/201424626 ADSCrossRefGoogle Scholar
  60. Miles-Páez PA, Metchev SA, Heinze A, Apai D (2017) ApJ 840:83. https://doi.org/10.3847/1538-4357/aa6f11 ADSCrossRefGoogle Scholar
  61. Mohanty S, Basri G, Shu F, Allard F, Chabrier G (2002) ApJ 571:469. https://doi.org/10.1086/339911 ADSCrossRefGoogle Scholar
  62. Morin J, Donati JF, Petit P et al (2010) MNRAS 407(4):2269. https://doi.org/10.1111/j.1365-2966.2010.17101.x ADSCrossRefGoogle Scholar
  63. Nichols JD, Burleigh MR, Casewell SL et al (2012) ApJ 760(1):59. https://doi.org/10.1088/0004-637x/760/1/59 ADSCrossRefGoogle Scholar
  64. Osten RA, Brown A, Ayres TR et al (2004) ApJS 153(1):317. https://doi.org/10.1086/420770 ADSCrossRefGoogle Scholar
  65. Osten RA, Hawley SL, Bastian TS, Reid IN (2006) ApJ 637(1):518. https://doi.org/10.1086/498345 ADSCrossRefGoogle Scholar
  66. Osten RA, Phan-Bao N, Hawley SL, Reid IN, Ojha R (2009) ApJ 700:1750. https://doi.org/10.1088/0004-637x/700/2/1750 ADSCrossRefGoogle Scholar
  67. Osten RA, Melis C, Stelzer B et al (2015) ApJL 805:L3. https://doi.org/10.1088/2041-8205/805/1/L3 ADSCrossRefGoogle Scholar
  68. Paty C, Paterson W, Winglee R (2008) JGR 113:A06,211. https://doi.org/10.1029/2007JA012848 CrossRefGoogle Scholar
  69. Perley RA, Chandler CJ, Butler BJ, Wrobel JM (2011) ApJL 739(1):L1. https://doi.org/10.1088/2041-8205/739/1/l1 ADSCrossRefGoogle Scholar
  70. Phan-Bao N, Osten RA, Lim L, Martín EL, Ho PTP (2007) ApJ 658:553. https://doi.org/10.1086/511061 ADSCrossRefGoogle Scholar
  71. Pineda JS, Hallinan G, Kirkpatrick JD et al (2016) ApJ 826(1):73. https://doi.org/10.3847/0004-637X/826/1/73 ADSCrossRefGoogle Scholar
  72. Ravi V, Hallinan G, Hobbs G, Champion DJ (2011) ApJL 735(1):L2. https://doi.org/10.1088/2041-8205/735/1/l2 ADSCrossRefGoogle Scholar
  73. Reid IN, Kirkpatrick JD, Gizis JE, Liebert J (1999) ApJL 527(2):L105. https://doi.org/10.1086/312409 ADSCrossRefGoogle Scholar
  74. Reiners A, Schuessler M, Passegger VM (2014) ApJ 794(2):144. https://doi.org/10.1088/0004-637X/794/2/144 ADSCrossRefGoogle Scholar
  75. Robertson P, Mahadevan S, Endl M, Roy A (2014) Sci 345(6915):440.  https://doi.org/10.1126/science.1253253 ADSCrossRefGoogle Scholar
  76. Rodriguez LF, Zapata L, Palau A (2017) Astron J 153:209. https://doi.org/10.3847/1538-3881/aa6681 ADSCrossRefGoogle Scholar
  77. Rodríguez-Barrera MI, Helling C, Stark CR, Rice AM (2015) MNRAS 454:3977.  https://doi.org/10.1093/mnras/stv2090 ADSCrossRefGoogle Scholar
  78. Route M, Wolszczan A (2012) ApJL 747(2):L22. https://doi.org/10.1088/2041-8205/747/2/l22 ADSCrossRefGoogle Scholar
  79. Route M, Wolszczan A (2016) ApJL 821(2):L21. https://doi.org/10.3847/2041-8205/821/2/L21 ADSCrossRefGoogle Scholar
  80. Rutledge RE, Basri G, Martín EL, Bildsten L (2000) ApJL 538:L141. https://doi.org/10.1086/312817 ADSCrossRefGoogle Scholar
  81. Saar SH, Linsky JL (1985) ApJ 299:47. https://doi.org/10.1086/184578 ADSCrossRefGoogle Scholar
  82. Santos-Costa D, Bolton SJ (2008) P&SS 56:326. https://doi.org/10.1016/j.pss.2007.09.008 ADSCrossRefGoogle Scholar
  83. Sault RJ, Oosterloo T, Dulk GA, Leblanc Y (1997) A&A 324:1190. http://adsabs.harvard.edu/abs/1997A%26A...324.1190S
  84. Shields AL, Ballard S, Johnson JA (2016) Phys Rep 663:1. https://doi.org/10.1016/j.physrep.2016.10.003 ADSMathSciNetCrossRefGoogle Scholar
  85. Stelzer B, Micela G, Flaccomio E, Neuhäuser R, Jayawardhana R (2006) A&A 448(1):293. https://doi.org/10.1051/0004-6361%3A20053677 ADSCrossRefGoogle Scholar
  86. Stelzer B, Alcalá J, Biazzo K et al (2012) A&A 537:A94. https://doi.org/10.1051/0004-6361/201118097 ADSCrossRefGoogle Scholar
  87. Tinney CG, Reid IN (1998) Mon Not R Astron Soc 301:1031. https://doi.org/10.1046/j.1365-8711.1998.02079.x ADSCrossRefGoogle Scholar
  88. Trigilio C, Leto P, Umana G, Leone F, Buemi CS (2004) A&A 418:593. https://doi.org/10.1051/0004-6361%3A20040060 ADSCrossRefGoogle Scholar
  89. West AA, Hawley SL, Bochanski JJ et al (2008) AJ 135:785. https://doi.org/10.1088/0004-6256/135/3/785 ADSCrossRefGoogle Scholar
  90. White SM, Kundu MR, Jackson PD (1989) A&A 225(1):112. http://adsabs.harvard.edu/abs/1989A%26A...225..112W
  91. Williams PKG, Berger E (2015) ApJ 808(2):189. https://doi.org/10.1088/0004-637X/808/2/189 ADSCrossRefGoogle Scholar
  92. Williams PKG, Cook BA, Berger E (2014) ApJ 785(1):9. https://doi.org/10.1088/0004-637X/785/1/9 ADSCrossRefGoogle Scholar
  93. Williams PKG, Berger E, Irwin J, Berta-Thompson ZK, Charbonneau D (2015a) ApJ 799(2):192. https://doi.org/10.1088/0004-637X/799/2/192 ADSCrossRefGoogle Scholar
  94. Williams PKG, Casewell SL, Stark CR et al (2015b) ApJ 815:64. https://doi.org/10.1088/0004-637X/815/1/64 ADSCrossRefGoogle Scholar
  95. Williams PKG, Gizis JE, Berger E (2017) ApJ 834(2):117. https://doi.org/10.3847/1538-4357/834/2/117 ADSCrossRefGoogle Scholar
  96. Wolszczan A, Route M, (2014) ApJ 788(1):23. https://doi.org/10.1088/0004-637X/788/1/23 ADSCrossRefGoogle Scholar
  97. Wong AS, Yung YL, Friedson AJ (2003) GeoRL 30(8):1447. https://doi.org/10.1029/2002GL016661 ADSGoogle Scholar
  98. Wright NJ, Drake JJ, Mamajek EE, Henry GW (2011) ApJ 743(1):48. https://doi.org/10.1088/0004-637x/743/1/48 ADSCrossRefGoogle Scholar
  99. Yantis WF, Sullivan WT III, Erickson WC (1977) BAAS 9:453. http://adsabs.harvard.edu/abs/1977BAAS....9..453Y
  100. Yu S, Doyle JG, Kuznetsov A et al (2012) ApJ 752(1):60. https://doi.org/10.1088/0004-637x/752/1/60 ADSCrossRefGoogle Scholar
  101. Zarka P, Treumann RA, Ryabov BP, Ryabov VB (2001) Ap&SS 277:293.  https://doi.org/10.1023/a%3A1012221527425 ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Harvard-Smithsonian Center for AstrophysicsCambridgeUSA

Section editors and affiliations

  • María Rosa Zapatero-Osorio
    • 1
  1. 1.Centro de AstrobiologíaMadridSpain

Personalised recommendations