Advertisement

Formation of Terrestrial Planets

Living reference work entry

Abstract

The past decade has seen major progress in our understanding of terrestrial planet formation. Yet key questions remain. In this review we first address the growth of 100 km-scale planetesimals as a consequence of dust coagulation and concentration, with current models favoring the streaming instability. Planetesimals grow into Mars-sized (or larger) planetary embryos by a combination of pebble and planetesimal accretion. Models for the final assembly of the inner Solar System must match constraints related to the terrestrial planets and asteroids including their orbital and compositional distributions and inferred growth timescales. Two current models – the Grand Tack and low-mass (or empty) primordial asteroid belt scenarios – can each match the empirical constraints, but both have key uncertainties that require further study. We present formation models for close-in super-Earths – the closest current analogs to our own terrestrial planets despite their very different formation histories – and for terrestrial exoplanets in gas giant systems. We explain why super-Earth systems cannot form in situ but rather may be the result of inward gas-driven migration followed by the disruption of compact resonant chains. The Solar System is unlikely to have harbored an early system of super-Earths; rather, Jupiter’s early formation may have blocked the ice giants’ inward migration. Finally, we present a chain of events that may explain why our Solar System looks different than more than 99% of exoplanet systems.

Notes

Acknowledgements

We acknowledge a large community of colleagues whose contributions made this review possible. A. I. thanks FAPESP (São Paulo Research Foundation) for support via grants 16/12686-2 and 16/19556-7. S. N. R. thanks the Agence Nationale pour la Recherche via grant ANR-13-BS05-0003-002 (MOJO). We thank Ralph Pudritz for the invitation to write this review. A. I. is also truly grateful to doctor Marcelo M. Sad for his dedication, calmness, and expertise during the treatment of a health problem manifested during the preparation of this project.

References

  1. Aarseth SJ, Lin DNC, Palmer PL (1993) Evolution of planetesimals. II. Numerical simulations. ApJ 403:351ADSGoogle Scholar
  2. Adachi I, Hayashi C, Nakazawa K (1976) The gas drag effect on the elliptical motion of a solid body in the primordial solar nebula. Prog Theor Phys 56:1756–1771ADSGoogle Scholar
  3. Adams FC, Laughlin G (2003) Migration and dynamical relaxation in crowded systems of giant planets. Icarus 163:290–306ADSGoogle Scholar
  4. Adams ER, Seager S, Elkins-Tanton L (2008) Ocean planet or thick atmosphere: on the mass-radius relationship for solid exoplanets with massive atmospheres. ApJ 673:1160–1164ADSGoogle Scholar
  5. Agnor CB, Canup RM, Levison HF (1999) On the character and consequences of large impacts in the late stage of terrestrial planet formation. Icarus 142:219–237ADSGoogle Scholar
  6. Alessi M, Pudritz RE, Cridland AJ (2017) On the formation and chemical composition of super Earths. MNRAS 464:428–452ADSGoogle Scholar
  7. Alexander CMO, Bowden R, Fogel ML et al (2012) The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets. Science 337:721ADSGoogle Scholar
  8. Alexander R, Pascucci I, Andrews S, Armitage P, Cieza L (2014) The dispersal of protoplanetary disks. In: Beuther H (ed) Protostars and planets VI. University of Arizona Press, Tucson, pp 475–496Google Scholar
  9. Alibert Y (2017) Maximum mass of planetary embryos that formed in core-accretion models. A&A 606:A69ADSGoogle Scholar
  10. Alibert Y, Mordasini C, Benz W, Winisdoerffer C (2005) Models of giant planet formation with migration and disc evolution. A&A 434:343–353ADSGoogle Scholar
  11. Allègre CJ, Manhès G, Göpel C (2008) The major differentiation of the Earth at ∼ 4.45 Ga. Earth Planet Sci Lett 267:386–398ADSGoogle Scholar
  12. ALMA Partnership, Brogan CL, Pérez LM et al (2015) The 2014 ALMA long baseline campaign: first results from high angular resolution observations toward the HL Tau region. ApJ 808:L3Google Scholar
  13. André P, Di Francesco J, Ward-Thompson D et al (2014) From filamentary networks to dense cores in molecular clouds: toward a new paradigm for star formation. In: Beuther H (ed) Protostars and planets VI. University of Arizona Press, Tucson, pp 27–51Google Scholar
  14. Andrews SM, Wilner DJ, Hughes AM, Qi C, Dullemond CP (2010) Protoplanetary disk structures in Ophiuchus. II. Extension to fainter sources. ApJ 723:1241–1254ADSGoogle Scholar
  15. Ansdell M, Williams JP, Manara CF et al (2017) An ALMA survey of protoplanetary disks in the σ orionis cluster. AJ 153:240ADSGoogle Scholar
  16. Armitage PJ (2011) Dynamics of protoplanetary disks. ARA&A 49:195–236ADSGoogle Scholar
  17. Armitage PJ, Eisner JA, Simon JB (2016) Prompt planetesimal formation beyond the snow line. ApJ 828:L2ADSGoogle Scholar
  18. Asphaug E, Jutzi M, Movshovitz N (2011) Chondrule formation during planetesimal accretion. Earth Planet Sci Lett 308:369–379ADSGoogle Scholar
  19. Avice G, Marty B, Burgess R (2017) The origin and degassing history of the Earth’s atmosphere revealed by Archean Xenon. Nat Commun 8:15455ADSGoogle Scholar
  20. Badro J, Côté AS, Brodholt JP (2014) A seismologically consistent compositional model of Earth’s core. Proc Natl Acad Sci 111:7542–7545ADSGoogle Scholar
  21. Bai XN, Stone JM (2010) Dynamics of solids in the midplane of protoplanetary disks: implications for planetesimal formation. ApJ 722:1437–1459ADSGoogle Scholar
  22. Baker VR, Strom RG, Gulick VC, Kargel JS, Komatsu G (1991) Ancient oceans, ice sheets and the hydrological cycle on Mars. Nature 352:589–594ADSGoogle Scholar
  23. Balbus SA (2003) Enhanced angular momentum transport in accretion disks. ARA&A 41:555–597ADSGoogle Scholar
  24. Balbus SA, Hawley JF (1991) A powerful local shear instability in weakly magnetized disks. I – linear analysis. II – nonlinear evolution. ApJ 376:214–233ADSGoogle Scholar
  25. Barge P, Richard S, Le Dizès S (2016) Vortices in stratified protoplanetary disks. From baroclinic instability to vortex layers. A&A 592:A136ADSGoogle Scholar
  26. Barker AJ, Latter HN (2015) On the vertical-shear instability in astrophysical discs. MNRAS 450:21–37ADSGoogle Scholar
  27. Barnes R, Quinn TR, Lissauer JJ, Richardson DC (2009) N-body simulations of growth from 1 km planetesimals at 0.4 AU. Icarus 203:626–643ADSGoogle Scholar
  28. Baruteau C, Masset F (2008) On the corotation torque in a radiatively inefficient disk. ApJ 672:1054–1067ADSGoogle Scholar
  29. Bate MR (2018) On the diversity and statistical properties of protostellar discs. MNRAS 475: 5618–5658ADSGoogle Scholar
  30. Batygin K, Laughlin G (2015) Jupiter’s decisive role in the inner Solar System’s early evolution. Proc Natl Acad Sci 112:4214–4217ADSGoogle Scholar
  31. Beauge C, Aarseth SJ (1990) N-body simulations of planetary formation. MNRAS 245:30–39Google Scholar
  32. Beaugé C, Nesvorný D (2012) Multiple-planet scattering and the origin of hot Jupiters. ApJ 751:119ADSGoogle Scholar
  33. Beckwith SVW, Sargent AI, Chini RS, Guesten R (1990) A survey for circumstellar disks around young stellar objects. AJ 99:924–945ADSGoogle Scholar
  34. Binney J, Tremaine S (2008) Galactic dynamics, 2nd edn. Princeton University Press, PrincetonGoogle Scholar
  35. Birnstiel T, Ormel CW, Dullemond CP (2011) Dust size distributions in coagulation/fragmentation equilibrium: numerical solutions and analytical fits. A&A 525:A11Google Scholar
  36. Birnstiel T, Klahr H, Ercolano B (2012) A simple model for the evolution of the dust population in protoplanetary disks. A&A 539:A148ADSMATHGoogle Scholar
  37. Bitsch B, Kley W (2010) Orbital evolution of eccentric planets in radiative discs. A&A 523:A30ADSGoogle Scholar
  38. Bitsch B, Morbidelli A, Lega E, Crida A (2014) Stellar irradiated discs and implications on migration of embedded planets. II. Accreting-discs. A&A 564:A135ADSGoogle Scholar
  39. Bitsch B, Lambrechts M, Johansen A (2015) The growth of planets by pebble accretion in evolving protoplanetary discs. A&A 582:A112ADSGoogle Scholar
  40. Blum J, Wurm G (2000) Experiments on sticking, restructuring, and fragmentation of preplanetary dust aggregates. Icarus 143:138–146ADSGoogle Scholar
  41. Blum J, Wurm G (2008) The growth mechanisms of macroscopic bodies in protoplanetary disks. ARA&A 46:21–56ADSGoogle Scholar
  42. Blum J, Wurm G, Kempf S et al (2000) Growth and form of planetary seedlings: results from a microgravity aggregation experiment. Phys Rev Lett 85:2426–2429Google Scholar
  43. Bodenheimer P, Pollack JB (1986) Calculations of the accretion and evolution of giant planets The effects of solid cores. Icarus 67:391–408ADSGoogle Scholar
  44. Boley AC, Morris MA, Ford EB (2014) Overcoming the meter barrier and the formation of systems with tightly Packed inner planets (STIPs). ApJ 792:L27ADSGoogle Scholar
  45. Bonfils X, Delfosse X, Udry S et al (2013) The HARPS search for southern extra-Solar planets. XXXI. The M-dwarf sample. A&A 549:A109ADSGoogle Scholar
  46. Borucki WJ, Koch D, Basri G et al (2010) Kepler planet-detection mission: introduction and first results. Science 327:977Google Scholar
  47. Bouvier A, Wadhwa M (2010) The age of the Solar System redefined by the oldest Pb-Pb age of a meteoritic inclusion. Nat Geosci 3:637–641ADSGoogle Scholar
  48. Brasser R, Morbidelli A, Gomes R, Tsiganis K, Levison HF (2009) Constructing the secular architecture of the Solar system II: the terrestrial planets. A&A 507:1053–1065ADSGoogle Scholar
  49. Brasser R, Matsumura S, Ida S, Mojzsis SJ, Werner SC (2016) Analysis of terrestrial planet formation by the grand tack model: system architecture and tack location. ApJ 821:75ADSGoogle Scholar
  50. Brauer F, Dullemond CP, Johansen A et al (2007) Survival of the mm-cm size grain population observed in protoplanetary disks. A&A 469:1169–1182ADSGoogle Scholar
  51. Brauer F, Henning T, Dullemond CP (2008) Planetesimal formation near the snow line in MRI-driven turbulent protoplanetary disks. A&A 487:L1–L4ADSGoogle Scholar
  52. Briceño C, Vivas AK, Calvet N et al (2001) The CIDA-QUEST large-scale survey of orion OB1: evidence for rapid disk dissipation in a dispersed stellar population. Science 291:93–97ADSGoogle Scholar
  53. Bromley BC, Kenyon SJ (2011) A new hybrid N-body-coagulation code for the formation of gas giant planets. ApJ 731:101ADSGoogle Scholar
  54. Bromley BC, Kenyon SJ (2017) Terrestrial planet formation: dynamical shake-up and the low mass of mars. AJ 153:216ADSGoogle Scholar
  55. Brouwers MG, Vazan A, Ormel CW (2017) How cores grow by pebble accretion I. Direct core growth. ArXiv e-printsGoogle Scholar
  56. Butler RP, Wright JT, Marcy GW et al (2006) Catalog of nearby exoplanets. ApJ 646:505–522ADSGoogle Scholar
  57. Carrera D, Davies MB, Johansen A (2016) Survival of habitable planets in unstable planetary systems. MNRAS 463:3226–3238ADSGoogle Scholar
  58. Carrera D, Gorti U, Johansen A, Davies MB (2017) Planetesimal formation by the streaming instability in a photoevaporating disk. ApJ 839:16ADSGoogle Scholar
  59. Chambers J (2006) A semi-analytic model for oligarchic growth. Icarus 180:496–513ADSMathSciNetGoogle Scholar
  60. Chambers JE (1999) A hybrid symplectic integrator that permits close encounters between massive bodies. MNRAS 304:793–799ADSGoogle Scholar
  61. Chambers JE (2001) Making more terrestrial planets. Icarus 152:205–224ADSGoogle Scholar
  62. Chambers JE (2010) Planetesimal formation by turbulent concentration. Icarus 208:505–517ADSGoogle Scholar
  63. Chambers JE (2016) Pebble accretion and the diversity of planetary systems. ApJ 825:63ADSGoogle Scholar
  64. Chambers JE, Wetherill GW (1998) Making the terrestrial planets: N-body integrations of planetary embryos in three dimensions. Icarus 136:304–327ADSGoogle Scholar
  65. Chatterjee S, Tan JC (2014) Inside-out planet formation. ApJ 780:53ADSGoogle Scholar
  66. Chatterjee S, Tan JC (2015) Vulcan planets: inside-out formation of the innermost super-Earths. ApJ 798:L32ADSGoogle Scholar
  67. Chatterjee S, Ford EB, Matsumura S, Rasio FA (2008) Dynamical outcomes of planet-planet scattering. ApJ 686:580–602ADSGoogle Scholar
  68. Chen J, Kipping D (2017) Probabilistic forecasting of the masses and radii of other worlds. ApJ 834:17ADSGoogle Scholar
  69. Chiang E, Laughlin G (2013) The minimum-mass extrasolar nebula: in situ formation of close-in super-Earths. MNRAS 431:3444–3455ADSGoogle Scholar
  70. Chiang E, Youdin AN (2010) Forming planetesimals in Solar and extrasolar nebulae. Ann Rev Earth Planet Sci 38:493–522ADSGoogle Scholar
  71. Chokshi A, Tielens AGGM, Hollenbach D (1993) Dust coagulation. ApJ 407:806–819ADSGoogle Scholar
  72. Ciardi DR, Fabrycky DC, Ford EB et al (2013) On the relative sizes of planets within kepler multiple-candidate systems. ApJ 763:41ADSGoogle Scholar
  73. Connelly JN, Bizzarro M, Krot AN et al (2012) The absolute chronology and thermal processing of solids in the Solar protoplanetary disk. Science 338:651ADSGoogle Scholar
  74. Cossou C, Raymond SN, Hersant F, Pierens A (2014) Hot super-Earths and giant planet cores from different migration histories. A&A 569:A56ADSGoogle Scholar
  75. Cresswell P, Dirksen G, Kley W, Nelson RP (2007) On the evolution of eccentric and inclined protoplanets embedded in protoplanetary disks. A&A 473:329–342ADSGoogle Scholar
  76. Crida A (2009) Minimum mass solar nebulae and planetary migration. ApJ 698:606–614ADSGoogle Scholar
  77. Crida A, Morbidelli A, Masset F (2006) On the width and shape of gaps in protoplanetary disks. Icarus 181:587–604ADSGoogle Scholar
  78. Cumming A, Butler RP, Marcy GW et al (2008) The keck planet search: detectability and the minimum mass and orbital period distribution of extrasolar planets. PASP 120: 531–554ADSGoogle Scholar
  79. Cuzzi JN, Weidenschilling SJ (2006) Particle-gas dynamics and primary accretion. In: Lauretta DS, McSween HY (eds) Meteorites and the early solar system II, pp 353–381. http://adsabs.harvard.edu/abs/2006mess.book..353C
  80. Cuzzi JN, Hogan RC, Shariff K (2008) Toward planetesimals: dense chondrule clumps in the protoplanetary nebula. ApJ 687:1432–1447ADSGoogle Scholar
  81. D’Angelo G, Marzari F (2012) Outward migration of Jupiter and Saturn in evolved gaseous disks. ApJ 757:50ADSGoogle Scholar
  82. Dauphas N (2017) The isotopic nature of the Earth’s accreting material through time. Nature 541:521–524ADSGoogle Scholar
  83. Dauphas N, Chaussidon M (2011) A perspective from extinct radionuclides on a young stellar object: the Sun and its accretion disk. Ann Rev Earth Planet Sci 39:351–386ADSGoogle Scholar
  84. Dauphas N, Pourmand A (2011) Hf-W-Th evidence for rapid growth of Mars and its status as a planetary embryo. Nature 473:489–492ADSGoogle Scholar
  85. Dawson RI, Lee EJ, Chiang E (2016) Correlations between compositions and orbits established by the giant impact era of planet formation. ApJ 822:54ADSGoogle Scholar
  86. Deienno R, Gomes RS, Walsh KJ, Morbidelli A, Nesvorný D (2016) Is the grand tack model compatible with the orbital distribution of main belt asteroids? Icarus 272:114–124ADSGoogle Scholar
  87. Deienno R, Morbidelli A, Gomes RS, Nesvorný D (2017) Constraining the giant planets’ initial configuration from their evolution: implications for the timing of the planetary instability. AJ 153:153ADSGoogle Scholar
  88. DeMeo FE, Carry B (2013) The taxonomic distribution of asteroids from multi-filter all-sky photometric surveys. Icarus 226:723–741ADSGoogle Scholar
  89. DeMeo FE, Carry B (2014) Solar system evolution from compositional mapping of the asteroid belt. Nature 505:629–634ADSGoogle Scholar
  90. DeMeo FE, Alexander CMO, Walsh KJ, Chapman CR, Binzel RP (2015) The Compositional structure of the asteroid belt. pp 13–41.  https://doi.org/10.2458/azu_uapress_9780816532131-ch002
  91. Desch SJ (2007) Mass distribution and planet formation in the solar nebula. ApJ 671:878–893ADSGoogle Scholar
  92. Desch SJ, Connolly HC Jr (2002) A model of the thermal processing of particles in solar nebula shocks: application to the cooling rates of chondrules. Meteorit Planet Sci 37:183–207ADSGoogle Scholar
  93. Dodson-Robinson SE, Willacy K, Bodenheimer P, Turner NJ, Beichman CA (2009) Ice lines, planetesimal composition and solid surface density in the solar nebula. Icarus 200: 672–693ADSGoogle Scholar
  94. Dominik C, Nübold H (2002) Magnetic aggregation: dynamics and numerical modeling. Icarus 157:173–186ADSGoogle Scholar
  95. Dominik C, Tielens AGGM (1997) The physics of dust coagulation and the structure of dust aggregates in space. ApJ 480:647–673ADSGoogle Scholar
  96. Donahue TM, Hoffman JH, Hodges RR, Watson AJ (1982) Venus was wet – a measurement of the ratio of deuterium to hydrogen. Science 216:630–633ADSGoogle Scholar
  97. Dong S, Zhu Z (2013) Fast rise of “Neptune-size” planets (4–8 RŁ) from P ∼10 to ∼250 Days – Statistics of Kepler Planet Candidates up to ∼0.75 AU. ApJ 778:53ADSGoogle Scholar
  98. Dong R, Zhu Z, Whitney B (2015) Observational signatures of planets in protoplanetary disks I. gaps opened by single and multiple young planets in disks. ApJ 809:93Google Scholar
  99. Drake MJ, Campins H (2006) Origin of water on the terrestial planets. In: Daniela L, Sylvio Ferraz M, Angel FJ (eds) Asteroids, comets, meteors, IAU Symposium, vol 229, pp 381–394. https://doi.org/10.1017/S1743921305006861 Google Scholar
  100. Drazkowska J, Alibert Y (2017) Planetesimal formation starts at the snow line. A&A 608:A92ADSGoogle Scholar
  101. Drazkowska J, Dullemond CP (2014) Can dust coagulation trigger streaming instability? A&A 572:A78ADSGoogle Scholar
  102. Drazkowska J, Windmark F, Dullemond CP (2013) Planetesimal formation via sweep-up growth at the inner edge of dead zones. A&A 556:A37ADSGoogle Scholar
  103. Drazkowska J, Alibert Y, Moore B (2016) Close-in planetesimal formation by pile-up of drifting pebbles. A&A 594:A105ADSGoogle Scholar
  104. Dressing CD, Charbonneau D (2015) The occurrence of potentially habitable planets orbiting M dwarfs estimated from the full kepler dataset and an empirical measurement of the detection sensitivity. ApJ 807:45ADSGoogle Scholar
  105. Dullemond CP, Hollenbach D, Kamp I, D’Alessio P (2007) Models of the structure and evolution of protoplanetary disks. In: Reipurth B, Jewitt D, Keil K (eds) Protostars and planets V. University of Arizona Press, Tucson, pp 555–572Google Scholar
  106. Duncan MJ, Levison HF, Lee MH (1998) A multiple time step symplectic algorithm for integrating close encounters. AJ 116:2067–2077ADSGoogle Scholar
  107. Dürmann C, Kley W (2015) Migration of massive planets in accreting disks. A&A 574:A52ADSGoogle Scholar
  108. Dutrey A, Lecavelier Des Etangs A, Augereau J-C (2004) The observation of circumstellar disks: dust and gas components. In: Kronk GW (ed) Comets II, pp 81–95. http://adsabs.harvard.edu/abs/2004come.book...81D
  109. Eke VR, Lawrence DJ, Teodoro LFA (2017) How thick are Mercury’s polar water ice deposits? Icarus 284:407–415ADSGoogle Scholar
  110. Fabrycky DC, Lissauer JJ, Ragozzine D et al (2014) Architecture of Kepler’s multi-transiting Systems. II. New investigations with twice as many candidates. ApJ 790:146ADSGoogle Scholar
  111. Fang J, Margot JL (2012) Architecture of planetary systems based on Kepler data: number of planets and coplanarity. ApJ 761:92ADSGoogle Scholar
  112. Fedele D, Tazzari M, Booth R et al (2017) ALMA continuum observations of the protoplanetary disk AS 209. Evidence of multiple gaps opened by a single planet. ArXiv e-printsGoogle Scholar
  113. Fernandez JA, Ip WH (1984) Some dynamical aspects of the accretion of Uranus and Neptune – The exchange of orbital angular momentum with planetesimals. Icarus 58:109–120ADSGoogle Scholar
  114. Fischer DA, Howard AW, Laughlin GP et al (2014) Exoplanet detection techniques. In: Beuther H (ed) Protostars and planets VI. University of Arizona Press, Tucson, pp 715–737Google Scholar
  115. Fischer RA, Ciesla FJ (2014) Dynamics of the terrestrial planets from a large number of N-body simulations. Earth Planet Sci Lett 392:28–38ADSGoogle Scholar
  116. Flock M, Ruge JP, Dzyurkevich N et al (2015) Gaps, rings, and non-axisymmetric structures in protoplanetary disks. From simulations to ALMA observations. A&A 574:A68ADSGoogle Scholar
  117. Fogg MJ, Nelson RP (2005) Oligarchic and giant impact growth of terrestrial planets in the presence of gas giant planet migration. A&A 441:791–806ADSGoogle Scholar
  118. Fogg MJ, Nelson RP (2007) On the formation of terrestrial planets in hot-Jupiter systems. A&A 461:1195–1208ADSGoogle Scholar
  119. Ford EB, Rasio FA (2008) Origins of eccentric extrasolar planets: testing the planet-planet scattering model. ApJ 686:621–636ADSGoogle Scholar
  120. Ford EB, Rasio FA, Yu K (2003) Dynamical instabilities in extrasolar planetary systems. In: Deming D, Seager S (ed) Scientific frontiers in research on extrasolar planets. Astronomical Society of the Pacific Conference Series, vol 294. Astronomical Society of the Pacific, San Francisco, pp 181–188Google Scholar
  121. Fressin F, Torres G, Charbonneau D et al (2013) The False positive rate of Kepler and the occurrence of planets. ApJ 766:81ADSGoogle Scholar
  122. Genda H, Ikoma M (2008) Origin of the ocean on the Earth: early evolution of water D/H in a hydrogen-rich atmosphere. Icarus 194:42–52ADSGoogle Scholar
  123. Gillon M, Triaud AHMJ, Demory BO et al (2017) Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature 542:456–460ADSGoogle Scholar
  124. Ginzburg S, Schlichting HE, Sari R (2016) Super-earth atmospheres: self-consistent gas accretion and retention. ApJ 825:29ADSGoogle Scholar
  125. Glaschke P, Amaro-Seoane P, Spurzem R (2014) Hybrid methods in planetesimal dynamics: description of a new composite algorithm. MNRAS 445:3620–3649ADSGoogle Scholar
  126. Goldreich P, Tremaine SD (1978) The velocity dispersion in Saturn’s rings. Icarus 34:227–239ADSGoogle Scholar
  127. Goldreich P, Tremaine S (1980) Disk-satellite interactions. ApJ 241:425–441ADSMathSciNetGoogle Scholar
  128. Goldreich P, Ward WR (1973) The formation of planetesimals. ApJ 183:1051–1062ADSGoogle Scholar
  129. Goldreich P, Lithwick Y, Sari R (2004) Planet formation by coagulation: a focus on Uranus and Neptune. ARA&A 42:549–601ADSGoogle Scholar
  130. Gomes R, Levison HF, Tsiganis K, Morbidelli A (2005) Origin of the cataclysmic late heavy bombardment period of the terrestrial planets. Nature 435:466–469ADSGoogle Scholar
  131. Gonzalez G, Brownlee D, Ward P (2001) The galactic habitable zone: galactic chemical evolution. Icarus 152:185–200ADSGoogle Scholar
  132. Gorti U, Hollenbach D (2009) Photoevaporation of circumstellar disks by far-ultraviolet, extreme-ultraviolet and X-ray radiation from the central star. ApJ 690:1539–1552ADSGoogle Scholar
  133. Gorti U, Hollenbach D, Dullemond CP (2015) The impact of dust evolution and photoevaporation on disk dispersal. ApJ 804:29ADSGoogle Scholar
  134. Gradie J, Tedesco E (1982) Compositional structure of the asteroid belt. Science 216:1405–1407ADSGoogle Scholar
  135. Greenberg R, Hartmann WK, Chapman CR, Wacker JF (1978) Planetesimals to planets – numerical simulation of collisional evolution. Icarus 35:1–26ADSGoogle Scholar
  136. Greenberg R, Bottke WF, Carusi A, Valsecchi GB (1991) Planetary accretion rates – analytical derivation. Icarus 94:98–111ADSGoogle Scholar
  137. Greenzweig Y, Lissauer JJ (1990) Accretion rates of protoplanets. Icarus 87:40–77ADSGoogle Scholar
  138. Grimm SL, Stadel JG (2014) The GENGA code: gravitational encounters in N-body simulations with GPU acceleration. ApJ 796:23ADSGoogle Scholar
  139. Grinspoon DH (1993) Implications of the high D/H ratio for the sources of water in Venus’ atmosphere. Nature 363:428–431ADSGoogle Scholar
  140. Grishin E, Perets HB (2015) Application of gas dynamical friction for planetesimals. I. Evolution of single planetesimals. ApJ 811:54ADSGoogle Scholar
  141. Grossman L, Larimer JW (1974) Early chemical history of the Solar System. Rev Geophys Space Phys 12:71–101ADSGoogle Scholar
  142. Guillot T, Stevenson DJ, Hubbard WB, Saumon D (2004) The interior of Jupiter. In: Bagenal F, Dowling TE, McKinnon WB (eds) Jupiter. The planet, satellites and magnetosphere, pp 35–57. http://adsabs.harvard.edu/abs/2004jpsm.book...35G
  143. Gundlach B, Kilias S, Beitz E, Blum J (2011) Micrometer-sized ice particles for planetary-science experiments – I. Preparation, critical rolling friction force, and specific surface energy. Icarus 214:717–723ADSGoogle Scholar
  144. Güttler C, Blum J, Zsom A, Ormel CW, Dullemond CP (2010) The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals?. I. Mapping the zoo of laboratory collision experiments. A&A 513:A56ADSGoogle Scholar
  145. Haghighipour N, Boss AP (2003) On gas drag-induced rapid migration of solids in a nonuniform solar nebula. ApJ 598:1301–1311ADSGoogle Scholar
  146. Haghighipour N, Winter OC (2016) Formation of terrestrial planets in disks with different surface density profiles. Celest Mech Dyn Astron 124:235–268ADSGoogle Scholar
  147. Hahn JM, Malhotra R (1999) Orbital evolution of planets embedded in a planetesimal disk. AJ 117:3041–3053ADSGoogle Scholar
  148. Haisch KE Jr, Lada EA, Lada CJ (2001) Disk frequencies and lifetimes in young clusters. ApJ 553:L153–L156Google Scholar
  149. Halliday AN (2008) A young Moon-forming giant impact at 70–110 million years accompanied by late-stage mixing, core formation and degassing of the Earth. Philos Trans R Soc Lond Ser A 366:4163–4181ADSGoogle Scholar
  150. Halliday AN (2013) The origins of volatiles in the terrestrial planets. Geochim Cosmochim Acta 105:146–171ADSGoogle Scholar
  151. Hallis LJ, Huss GR, Nagashima K et al (2015) Evidence for primordial water in Earth’s deep mantle. Science 350:795–797ADSGoogle Scholar
  152. Hansen BMS (2009) Formation of the terrestrial planets from a narrow annulus. ApJ 703: 1131–1140ADSGoogle Scholar
  153. Hansen BMS, Murray N (2012) Migration then assembly: formation of Neptune-mass planets inside 1 AU. ApJ 751:158ADSGoogle Scholar
  154. Hansen BMS, Murray N (2013) Testing in situ assembly with the Kepler planet candidate sample. ApJ 775:53ADSGoogle Scholar
  155. Hasegawa Y, Pudritz RE (2011) The origin of planetary system architectures – I. Multiple planet traps in gaseous discs. MNRAS 417:1236–1259ADSGoogle Scholar
  156. Hasegawa Y, Pudritz RE (2012) Evolutionary tracks of trapped, accreting protoplanets: the origin of the observed mass-period relation. ApJ 760:117ADSGoogle Scholar
  157. Hayashi C (1981) Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula. Prog Theor Phys Suppl 70:35–53ADSGoogle Scholar
  158. Heim LO, Blum J, Preuss M, Butt HJ (1999) Adhesion and friction forces between spherical micrometer-sized particles. Phys Rev Lett 83:3328–3331ADSGoogle Scholar
  159. Hillenbrand LA (2008) Disk-dispersal and planet-formation timescales. Physica Scripta Volume T 130(1):014024Google Scholar
  160. Holland WS, Greaves JS, Zuckerman B et al (1998) Submillimetre images of dusty debris around nearby stars. Nature 392:788–791ADSGoogle Scholar
  161. Horn B, Lyra W, Mac Low MM, Sándor Z (2012) Orbital migration of interacting low-mass planets in evolutionary radiative turbulent models. ApJ 750:34ADSGoogle Scholar
  162. Howard AW, Marcy GW, Johnson JA et al (2010) The occurrence and mass distribution of close-in super-Earths, Neptunes, and Jupiters. Science 330:653ADSGoogle Scholar
  163. Howard AW, Marcy GW, Bryson ST et al (2012) Planet Occurrence within 0.25 AU of Solar-type Stars from Kepler. ApJS 201:15Google Scholar
  164. Hu X, Zhu Z, Tan JC, Chatterjee S (2016) Inside-out planet formation. III. Planet-disk interaction at the dead zone inner boundary. ApJ 816:19Google Scholar
  165. Hu X, Tan JC, Zhu Z et al (2017) Inside-out planet formation. IV. Pebble evolution and planet formation timescales. ArXiv e-printsGoogle Scholar
  166. Hubickyj O, Bodenheimer P, Lissauer JJ (2005) Accretion of the gaseous envelope of Jupiter around a 5–10 Earth-mass core. Icarus 179:415–431ADSGoogle Scholar
  167. Ida S, Guillot T (2016) Formation of dust-rich planetesimals from sublimated pebbles inside of the snow line. A&A 596:L3ADSGoogle Scholar
  168. Ida S, Lin DNC (2004) Toward a deterministic model of planetary formation. I. A desert in the mass and semimajor axis distributions of extrasolar planets. ApJ 604:388–413ADSGoogle Scholar
  169. Ida S, Makino J (1993) Scattering of planetesimals by a protoplanet – slowing down of runaway growth. Icarus 106:210ADSGoogle Scholar
  170. Ida S, Nakazawa K (1989) Collisional probability of planetesimals revolving in the Solar gravitational field. III. A&A 224:303–315Google Scholar
  171. Ikoma M, Genda H (2006) Constraints on the mass of a habitable planet with water of nebular origin. ApJ 648:696–706ADSGoogle Scholar
  172. Ikoma M, Hori Y (2012) In situ accretion of hydrogen-rich atmospheres on short-period super-Earths: implications for the Kepler-11 planets. ApJ 753:66ADSGoogle Scholar
  173. Inaba S, Wetherill GW, Ikoma M (2003) Formation of gas giant planets: core accretion models with fragmentation and planetary envelope. Icarus 166:46–62ADSGoogle Scholar
  174. Inamdar NK, Schlichting HE (2015) The formation of super-Earths and mini-Neptunes with giant impacts. MNRAS 448:1751–1760ADSGoogle Scholar
  175. Inamdar NK, Schlichting HE (2016) Stealing the gas: giant impacts and the large diversity in exoplanet densities. ApJ 817:L13ADSGoogle Scholar
  176. Isella A, Pérez LM, Carpenter JM et al (2013) An azimuthal asymmetry in the LkHα 330 disk. ApJ 775:30ADSGoogle Scholar
  177. Izidoro A, de Souza Torres K, Winter OC, Haghighipour N (2013) A compound model for the origin of Earth’s water. ApJ 767:54ADSGoogle Scholar
  178. Izidoro A, Haghighipour N, Winter OC, Tsuchida M (2014a) Terrestrial planet formation in a protoplanetary disk with a local mass depletion: a successful scenario for the formation of mars. ApJ 782:31ADSGoogle Scholar
  179. Izidoro A, Morbidelli A, Raymond SN (2014b) Terrestrial planet formation in the presence of migrating Super-Earths. ApJ 794:11ADSGoogle Scholar
  180. Izidoro A, Morbidelli A, Raymond SN, Hersant F, Pierens A (2015a) Accretion of Uranus and Neptune from inward-migrating planetary embryos blocked by Jupiter and Saturn. A&A 582:A99ADSGoogle Scholar
  181. Izidoro A, Raymond SN, Morbidelli A, Hersant F, Pierens A (2015b) Gas giant planets as dynamical barriers to inward-migrating super-Earths. ApJ 800:L22ADSGoogle Scholar
  182. Izidoro A, Raymond SN, Morbidelli A, Winter OC (2015c) Terrestrial planet formation constrained by Mars and the structure of the asteroid belt. MNRAS 453:3619–3634ADSGoogle Scholar
  183. Izidoro A, Raymond SN, Pierens A et al (2016) The asteroid belt as a relic from a chaotic early Solar System. ApJ 833:40ADSGoogle Scholar
  184. Izidoro A, Ogihara M, Raymond SN et al (2017) Breaking the chains: hot super-Earth systems from migration and disruption of compact resonant chains. MNRAS 470:1750–1770ADSGoogle Scholar
  185. Jacobsen SB (2005) The Hf-W Isotopic system and the origin of the Earth and Moon. Ann Rev Earth Planet Sci 33:531–570ADSGoogle Scholar
  186. Jacobson SA, Morbidelli A (2014) Lunar and terrestrial planet formation in the grand tack scenario. Philos Trans R Soc Lond A 372:0174ADSGoogle Scholar
  187. Jacobson SA, Walsh KJ (2015) Earth and terrestrial planet formation, vol 212. Geophysical monograph series. American Geophysical Union, Washington, DC, pp 49–70Google Scholar
  188. Jacobson SA, Morbidelli A, Raymond SN et al (2014) Highly siderophile elements in Earth’s mantle as a clock for the Moon-forming impact. Nature 508:84–87ADSGoogle Scholar
  189. Jin S, Mordasini C (2018) Compositional imprints in density–distance–time: a rocky composition for close-in low-mass exoplanets from the location of the valley of evaporation. ApJ 853:163ADSGoogle Scholar
  190. Johansen A, Lacerda P (2010) Prograde rotation of protoplanets by accretion of pebbles in a gaseous environment. MNRAS 404:475–485Google Scholar
  191. Johansen A, Lambrechts M (2017) Forming planets via pebble accretion. Ann Rev Earth Planet Sci 45:359–387ADSGoogle Scholar
  192. Johansen A, Youdin A (2007) Protoplanetary disk turbulence driven by the streaming instability: nonlinear saturation and particle concentration. ApJ 662:627–641ADSGoogle Scholar
  193. Johansen A, Oishi JS, Mac Low MM et al (2007) Rapid planetesimal formation in turbulent circumstellar disks. Nature 448:1022–1025ADSGoogle Scholar
  194. Johansen A, Youdin A, Mac Low MM (2009) Particle clumping and planetesimal formation depend strongly on metallicity. ApJ 704:L75–L79ADSGoogle Scholar
  195. Johansen A, Davies MB, Church RP, Holmelin V (2012a) Can planetary instability explain the Kepler dichotomy? ApJ 758:39ADSGoogle Scholar
  196. Johansen A, Youdin AN, Lithwick Y (2012b) Adding particle collisions to the formation of asteroids and Kuiper belt objects via streaming instabilities. A&A 537:A125ADSGoogle Scholar
  197. Johansen A, Blum J, Tanaka H et al (2014) The multifaceted planetesimal formation process. In: Beuther H (ed) Protostars and planets VI. University of Arizona Press, Tucson, pp 547–570Google Scholar
  198. Johansen A, Mac Low MM, Lacerda P, Bizzarro M (2015) Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion. Sci Adv 1:1500109ADSGoogle Scholar
  199. Johnson BC, Minton DA, Melosh HJ, Zuber MT (2015) Impact jetting as the origin of chondrules. Nature 517:339–341ADSGoogle Scholar
  200. Johnson JA, Butler RP, Marcy GW et al (2007) A new planet around an M dwarf: revealing a correlation between exoplanets and stellar mass. ApJ 670:833–840ADSGoogle Scholar
  201. Jurić M, Tremaine S (2008) Dynamical origin of extrasolar planet eccentricity distribution. ApJ 686:603–620ADSGoogle Scholar
  202. Kaib NA, Chambers JE (2016) The fragility of the terrestrial planets during a giant-planet instability. MNRAS 455:3561–3569ADSGoogle Scholar
  203. Kaib NA, Cowan NB (2015) The feeding zones of terrestrial planets and insights into Moon formation. Icarus 252:161–174ADSGoogle Scholar
  204. Kasting JF, Pollack JB (1983) Loss of water from Venus. I – Hydrodynamic escape of hydrogen. Icarus 53:479–508ADSGoogle Scholar
  205. Kenyon SJ, Bromley BC (2004) Collisional cascades in planetesimal disks. II. Embedded planets. AJ 127:513–530ADSGoogle Scholar
  206. Kenyon SJ, Bromley BC (2006) Terrestrial planet formation. I. The transition from oligarchic growth to chaotic growth. AJ 131:1837–1850ADSGoogle Scholar
  207. Kenyon SJ, Bromley BC (2009) Rapid formation of icy super-Earths and the cores of gas giant planets. ApJ 690:L140–L143ADSGoogle Scholar
  208. Kenyon SJ, Hartmann L (1987) Spectral energy distributions of T Tauri stars – disk flaring and limits on accretion. ApJ 323:714–733ADSGoogle Scholar
  209. Kenyon SJ, Luu JX (1999) Accretion in the early Kuiper belt. II. Fragmentation. AJ 118: 1101–1119Google Scholar
  210. Kleine T, Touboul M, Bourdon B et al (2009) Hf-W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochim Cosmochim Acta 73:5150–5188ADSGoogle Scholar
  211. Kley W, Crida A (2008) Migration of protoplanets in radiative discs. A&A 487:L9–L12ADSGoogle Scholar
  212. Kley W, Nelson RP (2012) Planet-disk interaction and orbital evolution. ARA&A 50:211–249ADSGoogle Scholar
  213. Kley W, Bitsch B Klahr H (2009) Planet migration in three-dimensional radiative discs. A&A 506:971–987ADSMATHGoogle Scholar
  214. Kobayashi H, Tanaka H, Krivov AV, Inaba S (2010) Planetary growth with collisional fragmentation and gas drag. Icarus 209:836–847ADSGoogle Scholar
  215. Koerner DW, Ressler ME, Werner MW, Backman DE (1998) Mid-Infrared imaging of a circumstellar disk around HR 4796: mapping the debris of planetary formation. ApJ 503:L83–L87ADSGoogle Scholar
  216. Kokubo E, Ida S (1995) Orbital evolution of protoplanets embedded in a swarm of planetesimals. Icarus 114:247–257ADSGoogle Scholar
  217. Kokubo E, Ida S (1996) On runaway growth of planetesimals. Icarus 123:180–191ADSGoogle Scholar
  218. Kokubo E, Ida S (1998) Oligarchic growth of protoplanets. Icarus 131:171–178ADSGoogle Scholar
  219. Kokubo E, Ida S (2000) Formation of protoplanets from planetesimals in the solar nebula. Icarus 143:15–27ADSGoogle Scholar
  220. Kokubo E, Ida S (2002) Formation of protoplanet systems and diversity of planetary systems. ApJ 581:666–680ADSGoogle Scholar
  221. Kokubo E, Kominami J, Ida S (2006) Formation of terrestrial planets from protoplanets. I. Statistics of basic dynamical properties. ApJ 642:1131–1139ADSGoogle Scholar
  222. Kominami J, Ida S (2004) Formation of terrestrial planets in a dissipating gas disk with Jupiter and Saturn. Icarus 167:231–243ADSGoogle Scholar
  223. Kopparapu RK (2013) A revised estimate of the occurrence rate of terrestrial planets in the habitable zones around Kepler M-dwarfs. ApJ 767:L8ADSGoogle Scholar
  224. Kothe S, Güttler C, Blum J (2010) The Physics of protoplanetesimal dust agglomerates. V. Multiple impacts of dusty agglomerates at velocities above the fragmentation threshold. ApJ 725: 1242–1251ADSGoogle Scholar
  225. Kretke KA, Lin DNC (2007) Grain retention and formation of planetesimals near the snow line in MRI-driven turbulent protoplanetary disks. ApJ 664:L55–L58ADSGoogle Scholar
  226. Krijt S, Ormel CW, Dominik C, Tielens AGGM (2015) Erosion and the limits to planetesimal growth. A&A 574:A83ADSGoogle Scholar
  227. Krijt S, Ormel CW, Dominik C, Tielens AGGM (2016) A panoptic model for planetesimal formation and pebble delivery. A&A 586:A20ADSGoogle Scholar
  228. Krivov AV (2010) Debris disks: seeing dust, thinking of planetesimals and planets. Res Astron Astrophys 10:383–414ADSGoogle Scholar
  229. Kruijer TS, Sprung P, Kleine T et al (2012) Hf-W chronometry of core formation in planetesimals inferred from weakly irradiated iron meteorites. Geochim Cosmochim Acta 99:287–304Google Scholar
  230. Kurokawa H, Sato M, Ushioda M et al (2014) Evolution of water reservoirs on Mars: constraints from hydrogen isotopes in martian meteorites. Earth Planet Sci Lett 394:179–185ADSGoogle Scholar
  231. Lambrechts M, Johansen A (2012) Rapid growth of gas-giant cores by pebble accretion. A&A 544:A32ADSGoogle Scholar
  232. Lambrechts M, Johansen A (2014) Forming the cores of giant planets from the radial pebble flux in protoplanetary discs. A&A 572:A107ADSGoogle Scholar
  233. Lambrechts M, Lega E (2017) Reduced gas accretion on super-Earths and ice giants. A&A 606:A146ADSGoogle Scholar
  234. Lambrechts M, Johansen A, Morbidelli A (2014) Separating gas-giant and ice-giant planets by halting pebble accretion. A&A 572:A35ADSGoogle Scholar
  235. Laskar J (1997) Large scale chaos and the spacing of the inner planets. A&A 317:L75–L78Google Scholar
  236. Latham DW, Rowe JF, Quinn SN et al (2011) A first comparison of Kepler planet candidates in single and multiple systems. ApJ 732:L24ADSGoogle Scholar
  237. Lawrence DJ, Feldman WC, Goldsten JO et al (2013) Evidence for water ice near Mercury’s North Pole from MESSENGER neutron spectrometer measurements. Science 339:292ADSGoogle Scholar
  238. Lecar M, Aarseth SJ (1986) A numerical simulation of the formation of the terrestrial planets. ApJ 305:564–579ADSGoogle Scholar
  239. Lecar M, Podolak M, Sasselov D, Chiang E (2006) On the location of the snow line in a protoplanetary disk. ApJ 640:1115–1118ADSGoogle Scholar
  240. Lécuyer C, Gillet P, Robert F (1998) The hydrogen isotope composition of seawater and the global water cycle. Chem Geol 145:249–261ADSGoogle Scholar
  241. Lee EJ, Chiang E (2016) Breeding super-Earths and birthing super-puffs in transitional disks. ApJ 817:90ADSGoogle Scholar
  242. Lee EJ, Chiang E, Ormel CW (2014) Make super-Earths, not Jupiters: accreting nebular gas onto solid cores at 0.1 AU and beyond. ApJ 797:95ADSGoogle Scholar
  243. Leinhardt ZM (2008) Terrestrial planet formation: a review and current directions. In: Fischer D, Rasio FA, Thorsett SE, Wolszczan A (eds) Extreme solar systems. Astronomical society of the Pacific conference series, vol 398. http://adsabs.harvard.edu/abs/2008ASPC..398..225L
  244. Leinhardt ZM, Richardson DC (2005) Planetesimals to protoplanets. I. Effect of fragmentation on terrestrial planet formation. ApJ 625:427–440ADSGoogle Scholar
  245. Leinhardt ZM, Richardson DC, Lufkin G, Haseltine J (2009) Planetesimals to protoplanets – II. Effect of debris on terrestrial planet formation. MNRAS 396:718–728ADSGoogle Scholar
  246. Levison HF, Thommes E, Duncan MJ (2010) Modeling the formation of giant planet cores. I. Evaluating key processes. AJ 139:1297–1314ADSGoogle Scholar
  247. Levison HF, Morbidelli A, Tsiganis K, Nesvorný D, Gomes R (2011) Late orbital instabilities in the outer planets induced by interaction with a self-gravitating planetesimal disk. AJ 142:152ADSGoogle Scholar
  248. Levison HF, Duncan MJ, Thommes E (2012) A lagrangian integrator for planetary accretion and dynamics (LIPAD). AJ 144:119ADSGoogle Scholar
  249. Levison HF, Kretke KA, Duncan MJ (2015a) Growing the gas-giant planets by the gradual accumulation of pebbles. Nature 524:322–324ADSGoogle Scholar
  250. Levison HF, Kretke KA, Walsh KJ, Bottke WF (2015b) Growing the terrestrial planets from the gradual accumulation of sub-meter sized objects. Proc Natl Acad Sci 112:14,180–14,185ADSGoogle Scholar
  251. Lichtenberg T, Golabek GJ, Dullemond CP et al (2017) Impact splash chondrule formation during planetesimal recycling. ArXiv e-printsGoogle Scholar
  252. Lin DNC, Ida S (1997) On the origin of massive eccentric planets. ApJ 477:781–+ADSGoogle Scholar
  253. Lin DNC, Papaloizou J (1986) On the tidal interaction between protoplanets and the protoplanetary disk. III – Orbital migration of protoplanets. ApJ 309:846–857ADSGoogle Scholar
  254. Lin DNC, Bodenheimer P, Richardson DC (1996) Orbital migration of the planetary companion of 51 Pegasi to its present location. Nature 380:606–607ADSGoogle Scholar
  255. Lin MK, Youdin AN (2015) Cooling requirements for the vertical shear instability in protoplanetary disks. ApJ 811:17ADSGoogle Scholar
  256. Lineweaver CH, Fenner Y, Gibson BK (2004) The galactic habitable zone and the age distribution of complex life in the milky way. Science 303:59–62ADSGoogle Scholar
  257. Lissauer JJ (1987) Timescales for planetary accretion and the structure of the protoplanetary disk. Icarus 69:249–265ADSGoogle Scholar
  258. Lissauer JJ (1993) Planet formation. ARA&A 31:129–174ADSGoogle Scholar
  259. Lissauer JJ (2007) Planets formed in habitable zones of M dwarf stars probably are deficient in volatiles. ApJ 660:L149–L152ADSGoogle Scholar
  260. Lissauer JJ, Fabrycky DC, Ford EB et al (2011a) A closely packed system of low-mass, low-density planets transiting Kepler-11. Nature 470:53–58ADSGoogle Scholar
  261. Lissauer JJ, Ragozzine D, Fabrycky DC et al (2011b) Architecture and dynamics of Kepler’s candidate multiple transiting planet systems. ApJS 197:8ADSGoogle Scholar
  262. Lissauer JJ, Jontof-Hutter D, Rowe JF et al (2013) All six planets known to orbit Kepler-11 have low densities. ApJ 770:131ADSGoogle Scholar
  263. Lodders K (2003) Solar system abundances and condensation temperatures of the elements. ApJ 591:1220–1247ADSGoogle Scholar
  264. Lopez ED (2017) Born dry in the photoevaporation desert: Kepler’s ultra-short-period planets formed water-poor. MNRAS 472:245–253ADSGoogle Scholar
  265. Lopez ED, Fortney JJ (2014) Understanding the mass-radius relation for sub-neptunes: radius as a proxy for composition. ApJ 792:1ADSGoogle Scholar
  266. Lopez ED,Rice K (2016) Predictions for the period dependence of the transition between rocky super-Earths and gaseous sub-Neptunes and implications for η_⊕. ArXiv e-printsGoogle Scholar
  267. Lovis C, Mayor M (2007) Planets around evolved intermediate-mass stars. I. Two substellar companions in the open clusters NGC 2423 and NGC 4349. A&A 472:657–664ADSGoogle Scholar
  268. Luger R, Sestovic M, Kruse E et al (2017) A seven-planet resonant chain in TRAPPIST-1. Nat Astron 1:0129Google Scholar
  269. Lykawka PS, Ito T (2013) Terrestrial planet formation during the migration and resonance crossings of the giant planets. ApJ 773:65ADSGoogle Scholar
  270. Lykawka PS, Ito T (2017) Terrestrial planet formation: constraining the formation of Mercury. ApJ 838:106ADSGoogle Scholar
  271. Lyra W, Klahr H (2011) The baroclinic instability in the context of layered accretion. Self-sustained vortices and their magnetic stability in local compressible unstratified models of protoplanetary disks. A&A 527:A138ADSMATHGoogle Scholar
  272. Lyra W, Johansen A, Klahr H, Piskunov N (2008a) Embryos grown in the dead zone. Assembling the first protoplanetary cores in low mass self-gravitating circumstellar disks of gas and solids. A&A 491:L41–L44ADSGoogle Scholar
  273. Lyra W, Johansen A, Klahr H, Piskunov N (2008b) Global magnetohydrodynamical models of turbulence in protoplanetary disks. I. A cylindrical potential on a Cartesian grid and transport of solids. A&A 479:883–901ADSGoogle Scholar
  274. Lyra W, Johansen A, Klahr H, Piskunov N (2009) Standing on the shoulders of giants. Trojan Earths and vortex trapping in low mass self-gravitating protoplanetary disks of gas and solids. A&A 493:1125–1139ADSGoogle Scholar
  275. Lyra W, Paardekooper SJ, Mac Low MM (2010) Orbital migration of low-mass planets in evolutionary radiative models: avoiding catastrophic infall. ApJ 715:L68–L73ADSGoogle Scholar
  276. Mamajek EE (2009) Initial conditions of planet formation: lifetimes of primordial disks. In: Usuda T, Tamura M, Ishii M (eds) American institute of physics conference series, vol 1158, pp 3–10. https://doi.org/10.1063/1.3215910
  277. Mandell AM, Raymond SN, Sigurdsson S (2007) Formation of Earth-like planets during and after giant planet migration. ApJ 660:823–844ADSGoogle Scholar
  278. Marcy GW, Isaacson H, Howard AW et al (2014) Masses, radii, and orbits of small Kepler planets: the transition from gaseous to rocky planets. ApJS 210:20Google Scholar
  279. Martin RG, Livio M (2012) On the evolution of the snow line in protoplanetary discs. MNRAS 425:L6–L9ADSGoogle Scholar
  280. Martin RG, Livio M (2015) The Solar System as an exoplanetary system. ApJ 810:105ADSGoogle Scholar
  281. Marty B (2012) The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet Sci Lett 313:56–66ADSGoogle Scholar
  282. Marty B, Yokochi R (2006) Water in the early Earth. Rev Mineral Geochem 62(1):421. http://dx.doi.org/10.2138/rmg.2006.62.18 ADSGoogle Scholar
  283. Marty B, Avice G, Sano Y et al (2016) Origins of volatile elements (H, C, N, noble gases) on Earth and Mars in light of recent results from the ROSETTA cometary mission. Earth Planet Sci Lett 441:91–102ADSGoogle Scholar
  284. Marzari F (2014) Impact of planet-planet scattering on the formation and survival of debris discs. MNRAS 444:1419–1424ADSGoogle Scholar
  285. Masset F, Snellgrove M (2001) Reversing type II migration: resonance trapping of a lighter giant protoplanet. MNRAS 320:L55–L59ADSGoogle Scholar
  286. Masset FS, Papaloizou JCB (2003) Runaway migration and the formation of hot Jupiters. ApJ 588:494–508ADSGoogle Scholar
  287. Masset FS, Morbidelli A, Crida A, Ferreira J (2006) Disk surface density transitions as protoplanet traps. ApJ 642:478–487ADSGoogle Scholar
  288. Matsumura S, Ida S, Nagasawa M (2013) Effects of dynamical evolution of giant planets on survival of terrestrial planets. ApJ 767:129ADSGoogle Scholar
  289. Mayor M, Marmier M, Lovis C et al (2011) The HARPS search for southern extra-solar planets XXXIV. Occurrence, mass distribution and orbital properties of super-Earths and Neptune-mass planets. arXiv:11092497Google Scholar
  290. McKee CF, Ostriker EC (2007) Theory of star formation. ARA&A 45:565–687ADSGoogle Scholar
  291. McNeil DS, Nelson RP (2010) On the formation of hot Neptunes and super-Earths. MNRAS 401:1691–1708ADSGoogle Scholar
  292. Mills SM, Fabrycky DC, Migaszewski C et al (2016) A resonant chain of four transiting, sub-Neptune planets. Nature 533:509–512ADSGoogle Scholar
  293. Mizuno H (1980) Formation of the giant planets. Prog Theor Phys 64:544–557ADSGoogle Scholar
  294. Moorhead AV, Adams FC (2005) Giant planet migration through the action of disk torques and planet planet scattering. Icarus 178:517–539ADSGoogle Scholar
  295. Morbidelli A, Crida A (2007) The dynamics of Jupiter and Saturn in the gaseous protoplanetary disk. Icarus 191:158–171ADSGoogle Scholar
  296. Morbidelli A, Nesvorny D (2012) Dynamics of pebbles in the vicinity of a growing planetary embryo: hydro-dynamical simulations. A&A 546:A18ADSGoogle Scholar
  297. Morbidelli A, Raymond SN (2016) Challenges in planet formation. J Geophys Res (Planets) 121:1962–1980ADSGoogle Scholar
  298. Morbidelli A, Chambers J, Lunine JI et al (2000) Source regions and time scales for the delivery of water to Earth. Meteorit Planet Sci 35:1309–1320Google Scholar
  299. Morbidelli A, Levison HF, Tsiganis K, Gomes R (2005) Chaotic capture of Jupiter’s Trojan asteroids in the early Solar System. Nature 435:462–465ADSGoogle Scholar
  300. Morbidelli A, Tsiganis K, Crida A, Levison HF, Gomes R (2007) Dynamics of the giant planets of the Solar System in the gaseous protoplanetary disk and their relationship to the current orbital architecture. AJ 134:1790–1798ADSGoogle Scholar
  301. Morbidelli A, Bottke WF, Nesvorný D, Levison HF (2009) Asteroids were born big. Icarus 204:558–573ADSGoogle Scholar
  302. Morbidelli A, Lunine JI, O’Brien DP, Raymond SN, Walsh KJ (2012) Building terrestrial planets. Ann Rev Earth Planet Sci 40:251–275ADSGoogle Scholar
  303. Morbidelli A, Lambrechts M, Jacobson S, Bitsch B (2015a) The great dichotomy of the Solar System: small terrestrial embryos and massive giant planet cores. Icarus 258:418–429ADSGoogle Scholar
  304. Morbidelli A, Walsh KJ, O’Brien DP, Minton DA, Bottke WF (2015b) The dynamical evolution of the asteroid belt. pp 493–507.  https://doi.org/10.2458/azu_uapress_9780816532131-ch026
  305. Morbidelli A, Bitsch B, Crida A et al (2016) Fossilized condensation lines in the Solar System protoplanetary disk. Icarus 267:368–376ADSGoogle Scholar
  306. Morbidelli A, Nesvorny D, Laurenz V et al (2018) The timeline of the Lunar bombardment – revisited. ArXiv e-printsADSGoogle Scholar
  307. Moriarty J, Fischer D (2015) Building massive compact planetesimal disks from the accretion of pebbles. ApJ 809:94ADSGoogle Scholar
  308. Morishima R (2015) A particle-based hybrid code for planet formation. Icarus 260:368–395ADSGoogle Scholar
  309. Morishima R (2017) Onset of oligarchic growth and implication for accretion histories of dwarf planets. Icarus 281:459–475ADSGoogle Scholar
  310. Morishima R, Schmidt MW, Stadel J, Moore B (2008) Formation and accretion history of terrestrial planets from runaway growth through to late time: implications for orbital eccentricity. ApJ 685:1247–1261ADSGoogle Scholar
  311. Morishima R, Stadel J, Moore B (2010) From planetesimals to terrestrial planets: N-body simulations including the effects of nebular gas and giant planets. Icarus 207:517–535ADSGoogle Scholar
  312. Moro-Martín A, Marshall JP, Kennedy G et al (2015) Does the presence of planets affect the frequency and properties of extrasolar Kuiper belts? Results from the Herschel Debris and Dunes Surveys. ApJ 801:143ADSGoogle Scholar
  313. Morris MA, Desch SJ (2010) Thermal histories of chondrules in solar nebula shocks. apj 722:1474–1494ADSGoogle Scholar
  314. Mulders GD, Pascucci I, Apai D (2015a) A stellar-mass-dependent drop in planet occurrence rates. ApJ 798:112ADSGoogle Scholar
  315. Mulders GD, Pascucci I, Apai D (2015b) An increase in the mass of planetary systems around lower-mass stars. ApJ 814:130ADSGoogle Scholar
  316. Nagasawa M, Ida S, Bessho T (2008) Formation of hot planets by a combination of planet scattering, tidal circularization, and the Kozai mechanism. ApJ 678:498–508ADSGoogle Scholar
  317. Najita JR, Carr JS, Glassgold AE, Valenti JA (2007) Gaseous inner disks. In: Reipurth B, Jewitt D, Keil K (eds) Protostars and planets V. University of Arizona Press, Tucson, pp 507–522Google Scholar
  318. Nakagawa Y, Sekiya M, Hayashi C (1986) Settling and growth of dust particles in a laminar phase of a low-mass solar nebula. Icarus 67:375–390ADSGoogle Scholar
  319. Natta A, Testi L, Calvet N et al (2007) Dust in protoplanetary disks: properties and evolution. In: Reipurth B, Jewitt D, Keil K (eds) Protostars and planets V. University of Arizona Press, Tucson, pp 767–781Google Scholar
  320. Nelson RP, Gressel O, Umurhan OM (2013) Linear and non-linear evolution of the vertical shear instability in accretion discs. MNRAS 435:2610–2632ADSGoogle Scholar
  321. Nesvorný D, Morbidelli A (2012) Statistical study of the early Solar System’s instability with four, five, and six giant planets. AJ 144:117ADSGoogle Scholar
  322. Nimmo F, Kleine T (2007) How rapidly did Mars accrete? Uncertainties in the Hf-W timing of core formation. Icarus 191:497–504ADSGoogle Scholar
  323. Nomura H, Tsukagoshi T, Kawabe R et al (2016) ALMA observations of a gap and a ring in the protoplanetary disk around TW Hya. ApJ 819:L7ADSGoogle Scholar
  324. Nomura R, Hirose K, Uesugi K et al (2014) Low core-mantle boundary temperature inferred from the solidus of pyrolite. Science 343:522–525ADSGoogle Scholar
  325. O’dell CR, Wen Z (1994) Postrefurbishment mission hubble space telescope images of the core of the orion nebula: proplyds, Herbig-Haro objects, and measurements of a circumstellar disk. ApJ 436:194–202ADSGoogle Scholar
  326. O’Brien DP, Morbidelli A, Levison HF (2006) Terrestrial planet formation with strong dynamical friction. Icarus 184:39–58ADSGoogle Scholar
  327. O’Brien DP, Walsh KJ, Morbidelli A, Raymond SN, Mandell AM (2014) Water delivery and giant impacts in the ‘Grand Tack’ scenario. Icarus 239:74–84ADSGoogle Scholar
  328. O’Brien DP, Izidoro A, Jacobson SA, Raymond SN, Rubie DC (2018) The delivery of water during terrestrial planet formation. ArXiv e-printsGoogle Scholar
  329. Ogihara M, Ida S (2009) N-body simulations of planetary accretion around M dwarf stars. ApJ 699:824–838ADSGoogle Scholar
  330. Ogihara M, Morbidelli A, Guillot T (2015) A reassessment of the in situ formation of close-in super-Earths. A&A 578:A36ADSGoogle Scholar
  331. Okuzumi S (2009) Electric charging of dust aggregates and its effect on dust coagulation in protoplanetary disks. ApJ 698:1122–1135ADSGoogle Scholar
  332. Okuzumi S, Tanaka H, Kobayashi H, Wada K (2012) Rapid coagulation of porous dust aggregates outside the snow line: a pathway to successful icy planetesimal formation. ApJ 752:106ADSGoogle Scholar
  333. Ormel CW, Klahr HH (2010) The effect of gas drag on the growth of protoplanets. Analytical expressions for the accretion of small bodies in laminar disks. A&A 520:A43ADSGoogle Scholar
  334. Ormel CW, Spaans M, Tielens AGGM (2007) Dust coagulation in protoplanetary disks: porosity matters. A&A 461:215–232ADSGoogle Scholar
  335. Ormel CW, Dullemond CP, Spaans M (2010a) A new condition for the transition from runaway to oligarchic growth. ApJ 714:L103–L107ADSGoogle Scholar
  336. Ormel CW, Dullemond CP, Spaans M (2010b) Accretion among preplanetary bodies: the many faces of runaway growth. Icarus 210:507–538ADSGoogle Scholar
  337. Owen JE, Wu Y (2013) Kepler planets: a tale of evaporation. ApJ 775:105ADSGoogle Scholar
  338. Owen JE, Wu Y (2017) The evaporation valley in the Kepler planets. ApJ 847:29ADSGoogle Scholar
  339. Owen T, Maillard JP, de Bergh C, Lutz BL (1988) Deuterium on Mars – the abundance of HDO and the value of D/H. Science 240:1767–1770ADSGoogle Scholar
  340. Paardekooper SJ, Mellema G (2006) Halting type I planet migration in non-isothermal disks. A&A 459:L17–L20ADSGoogle Scholar
  341. Paardekooper SJ, Mellema G (2008) Growing and moving low-mass planets in non-isothermal disks. A&A 478:245–266ADSGoogle Scholar
  342. Paardekooper SJ, Papaloizou JCB (2008) On disc protoplanet interactions in a non-barotropic disc with thermal diffusion. A&A 485:877–895ADSMATHGoogle Scholar
  343. Paardekooper SJ, Baruteau C, Crida A, Kley W (2010) A torque formula for non-isothermal type I planetary migration – I. Unsaturated horseshoe drag. MNRAS 401:1950–1964ADSGoogle Scholar
  344. Paardekooper SJ, Baruteau C, Kley W (2011) A torque formula for non-isothermal type I planetary migration – II. Effects of diffusion. MNRAS 410:293–303ADSGoogle Scholar
  345. Papaloizou JCB, Lin DNC (1995) Theory Of accretion disks I: angular momentum transport processes. ARA&A 33:505–540ADSGoogle Scholar
  346. Papaloizou JCB, Terquem C (2006) Planet formation and migration. Rep Prog Phys 69:119–180ADSGoogle Scholar
  347. Petigura EA, Howard AW, Marcy GW (2013) Prevalence of Earth-size planets orbiting Sun-like stars. Proc Natl Acad Sci 110:19273–19278ADSGoogle Scholar
  348. Petit JM, Morbidelli A, Chambers J (2001) The primordial excitation and clearing of the asteroid belt. Icarus 153:338–347ADSGoogle Scholar
  349. Petit JM, Chambers J, Franklin F, Nagasawa M (2002) Primordial excitation and depletion of the main belt. University of Arizona Press, Tucson, pp 711–723Google Scholar
  350. Pierens A, Nelson RP (2008) On the formation and migration of giant planets in circumbinary discs. A&A 483:633–642ADSGoogle Scholar
  351. Pierens A, Raymond SN (2011) Two phase, inward-then-outward migration of Jupiter and Saturn in the gaseous solar nebula. A&A 533:A131ADSGoogle Scholar
  352. Pierens A, Raymond SN, Nesvorny D, Morbidelli A (2014) Outward migration of Jupiter and Saturn in 3:2 or 2:1 resonance in radiative disks: implications for the grand tack and nice models. ApJ 795:L11ADSGoogle Scholar
  353. Pollack JB, Hubickyj O, Bodenheimer P et al (1996) Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124:62–85ADSGoogle Scholar
  354. Poppe T, Blum J, Henning T (2000) Experiments on collisional grain charging of micron-sized preplanetary dust. ApJ 533:472–480ADSGoogle Scholar
  355. Raettig N, Lyra W, Klahr H (2013) A parameter study for baroclinic vortex amplification. ApJ 765:115ADSGoogle Scholar
  356. Rafikov RR (2003a) Planetesimal disk evolution driven by embryo-planetesimal gravitational scattering. AJ 125:922–941ADSGoogle Scholar
  357. Rafikov RR (2003b) The growth of planetary embryos: orderly, runaway, or Oligarchic? AJ 125:942–961ADSGoogle Scholar
  358. Rafikov RR (2004) Fast accretion of small planetesimals by protoplanetary cores. AJ 128: 1348–1363ADSGoogle Scholar
  359. Rasio FA, Ford EB (1996) Dynamical instabilities and the formation of extrasolar planetary systems. Science 274:954–956ADSGoogle Scholar
  360. Rauch KP, Hamilton DP (2002) The HNBody package for symplectic integration of nearly-Keplerian systems. In: AAS/division of dynamical astronomy meeting #33. Bulletin of the American astronomical society, vol 34, p 938. http://adsabs.harvard.edu/abs/2002DDA....33.0802R
  361. Raymond SN, Cossou C (2014) No universal minimum-mass extrasolar nebula: evidence against in situ accretion of systems of hot super-Earths. MNRAS 440:L11–L15ADSGoogle Scholar
  362. Raymond SN, Izidoro A (2017a) Origin of water in the inner Solar system: planetesimals scattered inward during Jupiter and Saturn’s rapid gas accretion. Icarus 297:134–148ADSGoogle Scholar
  363. Raymond SN, Izidoro A (2017b) The empty primordial asteroid belt. Sci Adv 3:e1701,138ADSGoogle Scholar
  364. Raymond SN, Morbidelli A (2014) The grand tack model: a critical review. In: Complex planetary systems. Proceedings of the international astronomical union, IAU Symposium, vol 310, pp 194–203. https://doi.org/10.1017/S1743921314008254 ADSGoogle Scholar
  365. Raymond SN, Quinn T, Lunine JI (2004) Making other Earths: dynamical simulations of terrestrial planet formation and water delivery. Icarus 168:1–17ADSGoogle Scholar
  366. Raymond SN, Quinn T, Lunine JI (2005) Terrestrial planet formation in disks with varying surface density profiles. ApJ 632:670–676ADSGoogle Scholar
  367. Raymond SN, Mandell AM, Sigurdsson S (2006a) Exotic Earths: forming habitable worlds with Giant planet migration. Science 313:1413–1416ADSGoogle Scholar
  368. Raymond SN, Quinn T, Lunine JI (2006b) High-resolution simulations of the final assembly of Earth-like planets I. Terrestrial accretion and dynamics. Icarus 183:265–282ADSGoogle Scholar
  369. Raymond SN, Quinn T, Lunine JI (2007a) High-resolution simulations of the final assembly of Earth-like planets. 2. Water delivery and planetary habitability. Astrobiology 7:66–84ADSGoogle Scholar
  370. Raymond SN, Scalo J, Meadows VS (2007b) A decreased probability of habitable planet formation around low-mass stars. ApJ 669:606–614ADSGoogle Scholar
  371. Raymond SN, Barnes R, Mandell AM (2008) Observable consequences of planet formation models in systems with close-in terrestrial planets. MNRAS 384:663–674ADSGoogle Scholar
  372. Raymond SN, O’Brien DP, Morbidelli A, Kaib NA (2009) Building the terrestrial planets: constrained accretion in the inner Solar System. Icarus 203:644–662ADSGoogle Scholar
  373. Raymond SN, Armitage PJ, Gorelick N (2010) Planet-planet scattering in planetesimal disks. II. Predictions for outer extrasolar planetary systems. ApJ 711:772–795ADSGoogle Scholar
  374. Raymond SN, Armitage PJ, Moro-Martín A et al (2011) Debris disks as signposts of terrestrial planet formation. A&A 530:A62ADSGoogle Scholar
  375. Raymond SN, Armitage PJ, Moro-Martín A et al (2012) Debris disks as signposts of terrestrial planet formation. II. Dependence of exoplanet architectures on giant planet and disk properties. A&A 541:A11ADSGoogle Scholar
  376. Raymond SN, Kokubo E, Morbidelli A, Morishima R, Walsh KJ (2014) Terrestrial planet formation at home and abroad. In: Beuther H (ed) Protostars and planets VI. University of Arizona Press, Tucson, pp 595–618Google Scholar
  377. Raymond SN, Izidoro A, Bitsch B, Jacobson SA (2016) Did Jupiter’s core form in the innermost parts of the Sun’s protoplanetary disc? MNRAS 458:2962–2972ADSGoogle Scholar
  378. Raymond SN, Armitage PJ, Veras D, Quintana EV, Barclay T (2017) Implications of the interstellar object 1I/’Oumuamua for planetary dynamics and planetesimal formation. ArXiv e-printsGoogle Scholar
  379. Rein H, Spiegel DS (2015) IAS15: a fast, adaptive, high-order integrator for gravitational dynamics, accurate to machine precision over a billion orbits. MNRAS 446:1424–1437Google Scholar
  380. Rein H, Tamayo D (2015) WHFAST: a fast and unbiased implementation of a symplectic Wisdom-Holman integrator for long-term gravitational simulations. MNRAS 452:376–388ADSGoogle Scholar
  381. Rein H, Lesur G, Leinhardt ZM (2010) The validity of the super-particle approximation during planetesimal formation. A&A 511:A69ADSGoogle Scholar
  382. Ricci L, Testi L, Natta A et al (2010) Dust properties of protoplanetary disks in the Taurus-Auriga star forming region from millimeter wavelengths. A&A 512:A15ADSGoogle Scholar
  383. Richardson DC, Quinn T, Stadel J, Lake G (2000) Direct large-scale N-body simulations of planetesimal dynamics. Icarus 143:45–59ADSMathSciNetGoogle Scholar
  384. Rodmann J, Henning T, Chandler CJ, Mundy LG, Wilner DJ (2006) Large dust particles in disks around T Tauri stars. A&A 446:211–221ADSGoogle Scholar
  385. Rogers LA (2015) Most 1.6 Earth-radius planets are not rocky. ApJ 801:41ADSGoogle Scholar
  386. Romanova MM, Ustyugova GV, Koldoba AV, Wick JV, Lovelace RVE (2003) Three-dimensional simulations of disk accretion to an inclined dipole. I. Magnetospheric flows at different θ. ApJ 595:1009–1031ADSGoogle Scholar
  387. Romanova MM, Ustyugova GV, Koldoba AV, Lovelace RVE (2004) Three-dimensional simulations of disk accretion to an inclined dipole. II. Hot spots and variability. ApJ 610:920–932ADSGoogle Scholar
  388. Romanova MM, Kulkarni AK, Lovelace RVE (2008) Unstable disk accretion onto magnetized stars: first global three-dimensional magnetohydrodynamic simulations. ApJ 673:L171ADSGoogle Scholar
  389. Rowan D, Meschiari S, Laughlin G et al (2016) The Lick-Carnegie Exoplanet Survey: HD 32963 – a new Jupiter analog orbiting a Sun-like Star. ApJ 817:104ADSGoogle Scholar
  390. Safronov VS (1972) Evolution of the protoplanetary cloud and formation of the Earth and planets. IPST, JerusalemGoogle Scholar
  391. Saha P, Tremaine S (1994) Long-term planetary integration with individual time steps. AJ 108:1962–1969ADSGoogle Scholar
  392. Sato T, Okuzumi S, Ida S (2016) On the water delivery to terrestrial embryos by ice pebble accretion. A&A 589:A15ADSGoogle Scholar
  393. Schäfer U, Yang CC, Johansen A (2017) Initial mass function of planetesimals formed by the streaming instability. A&A 597:A69Google Scholar
  394. Scheinberg A, Fu RR, Elkins-Tanton LT, Weiss BP (2015) Asteroid differentiation: melting and large-scale structure, pp 533–552. doi: https://doi.org/10.2458/azu˙uapress˙9780816532131-ch028Google Scholar
  395. Schlaufman KC (2014) Tests of in situ formation scenarios for compact multiplanet systems. ApJ 790:91ADSGoogle Scholar
  396. Schlichting HE (2014) Formation of close in super-Earths and mini-Neptunes: required disk masses and their implications. ApJ 795:L15ADSGoogle Scholar
  397. Schlichting HE, Sari R (2011) Runaway growth during planet formation: explaining the size distribution of large Kuiper belt objects. ApJ 728:68ADSGoogle Scholar
  398. Schlichting HE, Fuentes CI, Trilling DE (2013) Initial planetesimal sizes and the size distribution of small Kuiper belt objects. AJ 146:36ADSGoogle Scholar
  399. Schneider G, Smith BA, Becklin EE et al (1999) NICMOS imaging of the HR 4796A circumstellar disk. ApJ 513:L127–L130ADSGoogle Scholar
  400. Scott ERD (2007) Chondrites and the protoplanetary disk. Ann Rev Earth Planet Sci 35:577–620ADSGoogle Scholar
  401. Scott ERD, Krot AN (2014) Chondrites and their components. In: Davis AM (ed) Meteorites and cosmochemical processes, pp 65–137. http://adsabs.harvard.edu/abs/2014mcp..book...65S Google Scholar
  402. Scott ERD, Taylor GJ (1983) Chondrules and other components in C, O, and E chondrites: similarities in their properties and origins. J Geophys Res 88:B275–B286ADSGoogle Scholar
  403. Selsis F, Chazelas B, Bordé P et al (2007) Could we identify hot ocean-planets with CoRoT, Kepler and Doppler velocimetry? Icarus 191:453–468ADSGoogle Scholar
  404. Shi JM, Chiang E (2013) From dust to planetesimals: criteria for gravitational instability of small particles in gas. ApJ 764:20ADSGoogle Scholar
  405. Shu FH, Adams FC, Lizano S (1987) Star formation in molecular clouds – observation and theory. ARA&A 25:23–81ADSGoogle Scholar
  406. Shu FH, Shang H, Gounelle M, Glassgold AE, Lee T (2001) The origin of chondrules and refractory inclusions in chondritic meteorites. ApJ 548:1029–1050ADSGoogle Scholar
  407. Simon JB, Armitage PJ, Li R, Youdin AN (2016) The mass and size distribution of planetesimals formed by the streaming instability. I. The role of self-gravity. ApJ 822:55ADSGoogle Scholar
  408. Sirono Si (2011) Planetesimal formation induced by sintering. ApJ 733:L41ADSGoogle Scholar
  409. Smith BA, Terrile RJ (1984) A circumstellar disk around Beta Pictoris. Science 226:1421–1424ADSGoogle Scholar
  410. Spaute D, Weidenschilling SJ, Davis DR, Marzari F (1991) Accretional evolution of a planetesimal swarm. I – a new simulation. Icarus 92:147–164ADSGoogle Scholar
  411. Squire J, Hopkins PF (2017) Resonant drag instabilities in protoplanetary disks: the streaming instability and new, faster-growing instabilities. ArXiv e-printsGoogle Scholar
  412. Steffen JH, Ragozzine D, Fabrycky DC et al (2012) Kepler constraints on planets near hot Jupiters. Proc Natl Acad Sci 109:7982–7987ADSGoogle Scholar
  413. Stewart ST, Leinhardt ZM (2009) Velocity-dependent catastrophic disruption criteria for planetesimals. ApJ 691:L133–L137ADSGoogle Scholar
  414. Stoll MHR, Kley W (2016) Particle dynamics in discs with turbulence generated by the vertical shear instability. A&A 594:A57ADSGoogle Scholar
  415. Takeuchi T, Artymowicz P (2001) Dust migration and morphology in optically thin circumstellar gas disks. ApJ 557:990–1006ADSGoogle Scholar
  416. Tanaka H, Ida S (1997) Distribution of planetesimals around a protoplanet in the nebula gas. Icarus 125:302–316ADSGoogle Scholar
  417. Tanaka H, Ida S (1999) Growth of a migrating protoplanet. Icarus 139:350–366ADSGoogle Scholar
  418. Tanaka H, Ward WR (2004) Three-dimensional interaction between a planet and an isothermal gaseous disk. II. Eccentricity waves and bending waves. ApJ 602:388–395ADSGoogle Scholar
  419. Tanaka H, Takeuchi T, Ward WR (2002) Three-dimensional interaction between a planet and an isothermal gaseous disk. I. Corotation and Lindblad torques and planet migration. ApJ 565:1257–1274ADSGoogle Scholar
  420. Teiser J, Wurm G (2009) Decimetre dust aggregates in protoplanetary discs. A&A 505:351–359ADSGoogle Scholar
  421. Terquem C, Papaloizou JCB (2007) Migration and the formation of systems of hot super-Earths and Neptunes. ApJ 654:1110–1120ADSGoogle Scholar
  422. Testi L, Natta A, Shepherd DS, Wilner DJ (2003) Large grains in the disk of CQ Tau. A&A 403:323–328ADSGoogle Scholar
  423. Testi L, Birnstiel T, Ricci L et al (2014) Dust evolution in protoplanetary disks. In: Beuther H (ed) Protostars and planets VI. University of Arizona Press, Tucson, pp 339–361Google Scholar
  424. Thommes EW, Duncan MJ, Levison HF (2003) Oligarchic growth of giant planets. Icarus 161: 431–455ADSGoogle Scholar
  425. Toliou A, Morbidelli A, Tsiganis K (2016) Magnitude and timing of the giant planet instability: a reassessment from the perspective of the asteroid belt. A&A 592:A72ADSGoogle Scholar
  426. Toomre A (1964) On the gravitational stability of a disk of stars. ApJ 139:1217–1238ADSGoogle Scholar
  427. Touboul M, Kleine T, Bourdon B, Palme H, Wieler R (2007) Late formation and prolonged differentiation of the Moon inferred from W isotopes in lunar metals. Nature 450:1206–1209ADSGoogle Scholar
  428. Tremaine S, Dong S (2012) The statistics of multi-planet systems. AJ 143:94ADSGoogle Scholar
  429. Tsiganis K, Gomes R, Morbidelli A, Levison HF (2005) Origin of the orbital architecture of the giant planets of the Solar System. Nature 435:459–461ADSGoogle Scholar
  430. Udry S, Santos NC (2007) Statistical properties of exoplanets. ARA&A 45:397–439ADSGoogle Scholar
  431. Umurhan OM, Nelson RP, Gressel O (2016) Linear analysis of the vertical shear instability: outstanding issues and improved solutions. A&A 586:A33ADSGoogle Scholar
  432. van der Marel N, van Dishoeck EF, Bruderer S et al (2013) A major asymmetric dust trap in a transition disk. Science 340:1199–1202ADSGoogle Scholar
  433. Veras D, Armitage PJ (2005) The influence of massive planet scattering on Nascent terrestrial planets. ApJ 620:L111–L114ADSGoogle Scholar
  434. Veras D, Armitage PJ (2006) Predictions for the correlation between giant and terrestrial extrasolar planets in dynamically evolved systems. ApJ 645:1509–1515ADSGoogle Scholar
  435. Villeneuve J, Chaussidon M, Libourel G (2009) Homogeneous distribution of 26Al in the Solar System from the Mg isotopic composition of chondrules. Science 325:985ADSGoogle Scholar
  436. Volk K Gladman B (2015) Consolidating and crushing exoplanets: did it happen here? ApJ 806:L26ADSGoogle Scholar
  437. Wada K, Tanaka H, Suyama T, Kimura H, Yamamoto T (2009) Collisional growth conditions for dust aggregates. ApJ 702:1490–1501ADSGoogle Scholar
  438. Wakita S, Matsumoto Y, Oshino S, Hasegawa Y (2017) Planetesimal collisions as a chondrule forming event. ApJ 834:125ADSGoogle Scholar
  439. Walsh KJ, Levison HF (2016) Terrestrial planet formation from an annulus. AJ 152:68ADSGoogle Scholar
  440. Walsh KJ, Morbidelli A, Raymond SN, O’Brien DP, Mandell AM (2011) A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475:206–209ADSGoogle Scholar
  441. Walsh KJ, Morbidelli A, Raymond SN, O’Brien DP, Mandell AM (2012) Populating the asteroid belt from two parent source regions due to the migration of giant planets –“The Grand Tack”. Meteorit Planet Sci 47:1941–1947ADSGoogle Scholar
  442. Ward W (1997) Protoplanet migration by nebula tides. Icarus 126(2):261–281. http://adsabs.harvard.edu/abs/1997Icar..126..261W ADSGoogle Scholar
  443. Ward WR (1986) Density waves in the solar nebula – Differential Lindblad torque. Icarus 67: 164–180ADSGoogle Scholar
  444. Ward WR (1997) Protoplanet migration by nebula tides. Icarus 126:261–281ADSGoogle Scholar
  445. Weidenschilling SJ (1977) The distribution of mass in the planetary system and solar nebula. Ap&SS 51:153–158Google Scholar
  446. Weidenschilling SJ (1980) Dust to planetesimals – Settling and coagulation in the solar nebula. Icarus 44:172–189ADSGoogle Scholar
  447. Weidenschilling SJ, Marzari F (1996) Gravitational scattering as a possible origin for giant planets at small stellar distances. Nature 384:619–621ADSGoogle Scholar
  448. Weidenschilling SJ, Spaute D, Davis DR, Marzari F Ohtsuki K (1997) Accretional Evolution of a Planetesimal Swarm. Icarus 128:429–455ADSGoogle Scholar
  449. Weiss BP, Elkins-Tanton LT (2013) Differentiated planetesimals and the parent bodies of chondrites. Ann Rev Earth Planet Sci 41:529–560ADSGoogle Scholar
  450. Weiss LM, Marcy GW (2014) The Mass-radius relation for 65 exoplanets smaller than 4 Earth radii. ApJ 783:L6ADSGoogle Scholar
  451. Weiss LM, Marcy GW, Rowe JF et al (2013) The Mass of KOI-94d and a relation for planet radius, mass, and incident flux. ApJ 768:14ADSGoogle Scholar
  452. Weiss LM, Marcy GW, Petigura EA et al (2018) The California-Kepler survey. V. Peas in a pod: planets in a Kepler multi-planet system are similar in size and regularly spaced. AJ 155:48ADSGoogle Scholar
  453. Wetherill GW (1978) Accumulation of the terrestrial planets. In: Gehrels T (ed) IAU Colloq. 52: protostars and planets, University of Arizona Press, Tucson, pp 565–598Google Scholar
  454. Wetherill GW (1986) Accumulation of the terrestrial planets and implications concerning lunar origin. In: Hartmann WK, Phillips RJ, Taylor GJ (eds) Origin of the Moon. Lunar and Planetary Institute, Houston, pp 519–550Google Scholar
  455. Wetherill GW (1990) Formation of the Earth. Ann Rev Earth Planet Sci 18:205–256ADSGoogle Scholar
  456. Wetherill GW (1991) Why isn’t Mars as big as Earth? In: Lunar and planetary science conference, vol 22Google Scholar
  457. Wetherill GW (1996) The formation and habitability of extra-solar planets. Icarus 119:219–238ADSGoogle Scholar
  458. Wetherill GW, Stewart GR (1989) Accumulation of a swarm of small planetesimals. Icarus 77: 330–357ADSGoogle Scholar
  459. Wetherill GW, Stewart GR (1993) Formation of planetary embryos – effects of fragmentation, low relative velocity, and independent variation of eccentricity and inclination. Icarus 106:190ADSGoogle Scholar
  460. Whipple FL (1972) On certain aerodynamic processes for asteroids and comets. In: Elvius A (ed) From plasma to planet. p 211. http://adsabs.harvard.edu/abs/1972fpp..conf..211W
  461. Williams JP, Cieza LA (2011) Protoplanetary disks and their evolution. ARA&A 49:67–117ADSGoogle Scholar
  462. Wilner DJ, D’Alessio P, Calvet N, Claussen MJ, Hartmann L (2005) Toward planetesimals in the disk around TW hydrae: 3.5 centimeter dust emission. ApJ 626:L109–L112ADSGoogle Scholar
  463. Windmark F, Birnstiel T, Güttler C et al (2012a) Planetesimal formation by sweep-up: how the bouncing barrier can be beneficial to growth. A&A 540:A73ADSGoogle Scholar
  464. Windmark F, Birnstiel T, Ormel CW, Dullemond CP (2012b) Breaking through: the effects of a velocity distribution on barriers to dust growth. A&A 544:L16ADSGoogle Scholar
  465. Wisdom J, Holman M (1991) Symplectic maps for the n-body problem. AJ 102:1528–1538ADSGoogle Scholar
  466. Wittenmyer RA, Butler RP, Tinney CG et al (2016) The Anglo-Australian planet search XXIV: the frequency of Jupiter analogs. ApJ 819:28ADSGoogle Scholar
  467. Wolfgang A, Rogers LA, Ford EB (2016) Probabilistic mass-radius relationship for sub-Neptune-sized planets. ApJ 825:19ADSGoogle Scholar
  468. Wright JT, Marcy GW, Howard AW et al (2012) The frequency of hot Jupiters orbiting nearby solar-type Stars. ApJ 753:160ADSGoogle Scholar
  469. Wurm G, Paraskov G, Krauss O (2005) Growth of planetesimals by impacts at 25 m/s. Icarus 178:253–263ADSGoogle Scholar
  470. Wyatt MC (2008) Evolution of debris disks. ARA&A 46:339–383ADSGoogle Scholar
  471. Xu Z, Bai XN, Murray-Clay RA (2017) Pebble accretion in turbulent protoplanetary disks. ApJ 847:52ADSGoogle Scholar
  472. Yin Q, Jacobsen SB, Yamashita K et al (2002) A short timescale for terrestrial planet formation from Hf-W chronometry of meteorites. Nature 418:949–952ADSGoogle Scholar
  473. Youdin AN, Goodman J (2005) Streaming instabilities in protoplanetary disks. ApJ 620:459–469ADSGoogle Scholar
  474. Youdin AN, Shu FH (2002) Planetesimal formation by gravitational instability. ApJ 580:494–505ADSGoogle Scholar
  475. Zhang H, Zhou JL (2010) On the orbital evolution of a giant planet pair embedded in a gaseous disk. I. Jupiter-Saturn configuration. ApJ 714:532–548Google Scholar
  476. Zsom A, Ormel CW, Güttler C, Blum J, Dullemond CP (2010) The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals? II. Introducing the bouncing barrier. A&A 513:A57ADSGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.UNESP, Universidade Estadual Paulista – Grupo de Dinâmica Orbital PlanetologiaSão PauloBrazil
  2. 2.Laboratoire d’Astrophysique de BordeauxUniversity of Bordeaux, CNRSBordeauxFrance

Section editors and affiliations

  • Ralph Pudritz
    • 1
  1. 1.Origins InstituteMcMaster UniversityHamiltonCanada

Personalised recommendations