Advertisement

The Acousto-elastic Effect and Its Use in NDE

  • Hans-Rüdiger Herzer
  • Michael Mathias Becker
  • Eckhardt Schneider
Living reference work entry

Abstract

The acousto-elastic effect describes the influence of an elastic strain state on the elastic properties of a metallic material and hence on the velocities of elastic waves propagating in the strained component. The effect is used to evaluate stress states by ultrasonic methods. This chapter summarizes the fundamental concepts, measuring techniques, and evaluation procedures of nondestructive ultrasonic methods to evaluate one, two, and three axial stress states of components. The state of the art is detailed by discussing results of applications in, e.g., bolts, sheets, gear parts, and turbine rotors. The applicability and limitations of such techniques will be discussed in detail.

References

  1. Becker M, Gross N, Herzer R (2016) Determination of preload in bolts by ultrasound without referencing in unloaded state. In: Conference proceedings: 19th world conference of nondestructive testingGoogle Scholar
  2. Brokowski A, Deputat J (1985) Ultrasonic measurements of residual stresses in rails. In: Conference proceedings: 11th world conference of nondestructive testing, pp 592–598Google Scholar
  3. Deputat J (1995) DEBBIE the fast nondestructive measurement of stress for in service railway wheel inspection. DEBRO UMS, Akademicka 3, 02-038 WarsawGoogle Scholar
  4. Egle DM, Bray DE (1976) Measurement of acoustoelastic and third order elastic constants for rail steel. J Acoust Soc Am 60(3):741–744CrossRefGoogle Scholar
  5. Gilardoni C, Gherbin M, Carboni M, Gianneo A (2014) High-performance methodology for residual stress measurement in railway wheels. In: Conference proceedings: 11th European conference of nondestructive testingGoogle Scholar
  6. Herzer R, Frotscher H, Schillo K, Bruche D, Schneider E (1994) Ultrasonic set-up to characterize stress states in rims of railroad wheels. In: Green RE, Kozaczek KJ, Ruud CO (eds) Nondestructive characterization of materials VI. Springer, Boston, pp 699–706CrossRefGoogle Scholar
  7. Hughes DS, Kelly JL (1953) Second order elastic deformation of solids. Phys Rev 94(5):1145–1149.  https://doi.org/10.1103/PhysRev921145CrossRefzbMATHGoogle Scholar
  8. Intellifast GmbH (2009) Bolting failure-free technology on the offshore wind industry. In: Power & energy & solutions Europe, pp 54–57. Available via PES Europe. http://cdn.pes.eu.com/assets/misc/corperate-focus-intellifast-gmbhpdf-35.pdf. Accessed 29 Mar 2018
  9. Jemec V, Grum J, Bozicko S (2008) Ultrasonic measurement of hoop stress in the rim of monoblock railroad wheel. In: 38th international CNdT conference Defektoskopie 2008. Conference Proceedings, Brno, pp 269–274Google Scholar
  10. Jimenez JA, Garcia V, Boyero C (2016) Handheld solution for measurement of residual stresses on railway wheels using EMATs. In: Conference proceedings: 19th world conference of nondestructive testingGoogle Scholar
  11. Kibblewhite IE (1989) Ultrasonic load indicating member, apparatus and method. Patent number 4899591. Type: Grant. Assignee: SPS Technology, Inc.Google Scholar
  12. Murnaghan FD (1951) Finite deformation of an elastic solid. Wiley, New YorkzbMATHGoogle Scholar
  13. Schneider E (1997) Ultrasonic techniques. In: Hauk V (ed) Structural and residual stress analysis by nondestructive methods. Elsevier, Amsterdam, pp 522–563Google Scholar
  14. Schneider E (2000) Untersuchung der materialspezifischen Einflüsse und verfahrenstechnische Entwicklungen der Ultraschallverfahren zur Spannungsanalyse an Bauteilen. Fraunhofer IRB, StuttgartGoogle Scholar
  15. Schneider E, Herzer R (2006) Ultraschall-System zur on-line Bestimmung der Schraubenvorspannkraft und zur Schraubersteuerung. ZfP-Zeitung 100:40–46Google Scholar
  16. Schneider E, Herzer R, Bruche D, Frotscher H (1994) Ultrasonic characterization of stress states in rims of railroad wheels. In: Green RE, Kozaczek KJ, Ruud CO (eds) Nondestructive characterization of materials VI. Springer, Boston, pp 383–390CrossRefGoogle Scholar
  17. Szelazek J (2001) Postepy W Ultradzwiekowych Badaniach Naprezen. Praca Habilitacyjna ISSN0208–5658Google Scholar
  18. Thompson RB, Lu WY, Clark AV Jr (1996) Ultrasonic methods. In: Lu J (ed) Handbook of experimental mechanics. The Fairemont Press Inc., Lilburn, pp 149–178Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Hans-Rüdiger Herzer
    • 1
  • Michael Mathias Becker
    • 1
  • Eckhardt Schneider
    • 1
  1. 1.Fraunhofer Institute for Nondestructive Testing IZFPSaarbrückenGermany

Section editors and affiliations

  • Ida Nathan
    • 1
  • Norbert Meyendorf
    • 2
  1. 1.Department of Electrical and Computer EngineeringUniversity of AkronAkronUSA
  2. 2.Center for Nondestructive EvaluationIowa State UniversityAmesUSA

Personalised recommendations