Advertisement

Optical Coherence Tomography for NDE

  • Jonas Golde
  • Lars Kirsten
  • Christian Schnabel
  • Julia Walther
  • Edmund Koch
Living reference work entry

Abstract

Optical coherence tomography (OCT) is a noninvasive, high-resolution, interferometric imaging modality using near-infrared light to acquire cross sections and three-dimensional images of the subsurface microstructure of samples. Because of the rapid enhancement of OCT with respect to acquisition speed and axial resolution over the past years, OCT is becoming more and more attractive for applications in nondestructive testing and evaluation. In this chapter, a brief introduction to the technique and the instrumentation is first given, followed by an overview of application of OCT in NDE reported so far.

References

  1. Adler DC, Stenger J, Gorczynska I, Lie H, Hensick T, Spronk R, Wolohojian S, Khandekar N, Jiang JY, Barry S (2007) Comparison of three-dimensional optical coherence tomography and high resolution photography for art conservation studies. Opt Express 15(24):15972–15986CrossRefGoogle Scholar
  2. Akcay AC, Rolland JP, Eichenholz JM (2003) Spectral shaping to improve the point spread function in optical coherence tomography. Opt Lett 28(20):1921–1923CrossRefGoogle Scholar
  3. Akhondi E, Wu B, Sun S, Marxer B, Lim W, Gu J, Liu L, Burkhardt M, McDougald D, Pronk W, Fane AG (2015) Gravity-driven membrane filtration as pretreatment for seawater reverse osmosis: linking biofouling layer morphology with flux stabilization. Water Res 70:158–173.  https://doi.org/10.1016/j.watres.2014.12.001CrossRefGoogle Scholar
  4. Alarousu E, AlSaggaf A, Jabbour GE (2013) Online monitoring of printed electronics by spectral-domain optical coherence tomography. Sci Rep 3:1562.  https://doi.org/10.1038/srep01562CrossRefGoogle Scholar
  5. Antoniuk P, Strąkowski M, Pluciński J, Kosmowski B (2012) Non-destructive inspection of anti-corrosion protective coatings using optical coherent tomography. Metrology Measur Syst 19(2):365–372Google Scholar
  6. Bail MA, Haeusler G, Herrmann JM, Lindner MW, Ringler R (1996) Optical coherence tomography with the “spectral radar”: fast optical analysis in volume scatterers by short-coherence interferometry. In: Benaron DA, Chance B, Mueller GJ (eds). In Photon Propagation in Tissues II (Vol. 2925, pp. 298–303)Google Scholar
  7. Bemand E, Liang H (2013) Optical coherence tomography for vulnerability assessment of sandstone. Appl Opt 52(14):3387–3393.  https://doi.org/10.1364/AO.52.003387CrossRefGoogle Scholar
  8. Buchsbaum A, Egger M, Burzic I, Koepplmayr T, Aigner M, Miethlinger J, Leitner M (2015) Optical coherence tomography based particle image velocimetry (OCT-PIV) of polymer flows. Opt Lasers Eng 69:40–48CrossRefGoogle Scholar
  9. Burkhardt A, Geissler S, Koch E (2010) Optical coherence tomography as approach for the minimal invasive localization of the germinal disc in ovo before chicken sexing. In Biophotonics: Photonic Solutions for Better Health Care II (Vol. 7715)Google Scholar
  10. Burkhardt A, Kirsten L, Bornitz M, Zahnert T, Koch E (2014) Investigation of the human tympanic membrane oscillation ex vivo by Doppler optical coherence tomography. J Biophotonics 7(6):434–441CrossRefGoogle Scholar
  11. Campello SL, dos Santos WP, Machado VF, Mota CCBO, Gomes ASL, de Souza RE (2014) Micro-structural information of porous materials by optical coherence tomography. Microporous Mesoporous Mater 198:50–54.  https://doi.org/10.1016/j.micromeso.2014.07.009CrossRefGoogle Scholar
  12. Chang S, Mao Y, Chang G, Flueraru C (2010) Jade detection and analysis based on optical coherence tomography images. Optical Engineering, 49(6)Google Scholar
  13. Chen Z, Shen Y, Bao W, Li P, Wang X, Ding Z (2015) Identification of surface defects on glass by parallel spectral domain optical coherence tomography. Opt Express 23(18):23634–23646.  https://doi.org/10.1364/OE.23.023634CrossRefGoogle Scholar
  14. Cheung CS, Tokurakawa M, Daniel JMO, Clarkson WA, Liang H (2013) Long wavelength optical coherence tomography for painted objects. In Optics for Arts, Architecture, and Archaeology IV (Vol. 8790)Google Scholar
  15. Cho NH, Jung U, Kim S, Kim J (2012) Non-destructive inspection methods for LEDs using real-time displaying optical coherence tomography. Sensors 12(8):10395CrossRefGoogle Scholar
  16. Cho NH, Park K, Kim J-Y, Jung Y, Kim J (2015) Quantitative assessment of touch-screen panel by nondestructive inspection with three-dimensional real-time display optical coherence tomography. Opt Lasers Eng 68:50–57.  https://doi.org/10.1016/j.optlaseng.2014.12.013CrossRefGoogle Scholar
  17. Choi W-J, Min G-H, Lee B-H, Eom J-H, Kim J-W (2010) Counterfeit detection using characterization of safety feature on banknote with full-field optical coherence tomography. J Opt Soc Korea 14(4):316–320CrossRefGoogle Scholar
  18. Choi WJ, Jung SP, Shin JG, Yang D, Lee BH (2011) Characterization of wet pad surface in chemical mechanical polishing (CMP) process with full-field optical coherence tomography (FF-OCT). Opt Express 19(14):13343–13350.  https://doi.org/10.1364/OE.19.013343CrossRefGoogle Scholar
  19. Choma M, Sarunic M, Yang C, Izatt J (2003) Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt Express 11(18):2183–2189CrossRefGoogle Scholar
  20. Choma MA, Hsu K, Izatt JA (2005) Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source. J Biomed Opt 10(4):044009CrossRefGoogle Scholar
  21. Cimalla P, Walther J, Mehner M, Cuevas M, Koch E (2009) Simultaneous dual-band optical coherence tomography in the spectral domain for high resolution in vivo imaging. Opt Express 17(22):19486–19500CrossRefGoogle Scholar
  22. Czajkowski J, Prykäri T, Alarousu E, Palosaari J, Myllylä R (2010) Optical coherence tomography as a method of quality inspection for printed electronics products. Opt Rev 17(3):257–262.  https://doi.org/10.1007/s10043-010-0045-0CrossRefGoogle Scholar
  23. Czajkowski J, Lauri J, Sliz R, Fält P, Fabritius T, Myllylä R, Cense B (2012) Sub-micron resolution high-speed spectral domain optical coherence tomography in quality inspection for printed electronics. In Optical Micro-and Nanometrology IV (Vol. 8430)Google Scholar
  24. de Boer JF, Cense B, Park BH, Pierce MC, Tearney GJ, Bouma BE (2003) Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt Lett 28(21):2067–2069CrossRefGoogle Scholar
  25. de Boer JF, Hitzenberger CK, Yasuno Y (2017) Polarization sensitive optical coherence tomography – a review [invited]. Biomed Opt Express 8(3):1838–1873.  https://doi.org/10.1364/Boe.8.001838CrossRefGoogle Scholar
  26. Dingemans LM, Papadakis VM, Liu P, Adam AJL, Groves RM (2015) Optical coherence tomography complemented by hyperspectral imaging for the study of protective wood coatings. In Optics for Arts, Architecture, and Archaeology V (Vol. 9527)Google Scholar
  27. Dong B, Chen S, Zhou F, Chan CHY, Yi J, Zhang HF, Sun C (2016) Real-time functional analysis of inertial microfluidic devices via spectral domain optical coherence tomography. Sci Rep 6:33250.  https://doi.org/10.1038/srep33250CrossRefGoogle Scholar
  28. Dong Y, Lin H, Abolghasemi V, Gan L, Zeitler JA, Shen Y-C (2017) Investigating intra-tablet coating uniformity with spectral-domain optical coherence tomography. J Pharm Sci 106(2):546–553.  https://doi.org/10.1016/j.xphs.2016.09.021CrossRefGoogle Scholar
  29. Dreszer C, Wexler AD, Drusová S, Overdijk T, Zwijnenburg A, Flemming HC, Kruithof JC, Vrouwenvelder JS (2014) In-situ biofilm characterization in membrane systems using optical coherence tomography: formation, structure, detachment and impact of flux change. Water Res 67:243–254.  https://doi.org/10.1016/j.watres.2014.09.006CrossRefGoogle Scholar
  30. Drexler W, Morgner U, Kartner FX, Pitris C, Boppart SA, Li XD, Ippen EP, Fujimoto JG (1999) In vivo ultrahigh-resolution optical coherence tomography. Opt Lett 24(17):1221–1223CrossRefGoogle Scholar
  31. Dunkers JP, Parnas RS, Zimba CG, Peterson RC, Flynn KM, Fujimoto JG, Bouma BE (1999) Optical coherence tomography of glass reinforced polymer composites. Compos A: Appl Sci Manuf 30(2):139–145.  https://doi.org/10.1016/S1359-835X(98)00084-0CrossRefGoogle Scholar
  32. Fan C, Yao G (2012) 3D imaging of tomato seeds using frequency domain optical coherence tomography. In Sensing for Agriculture and Food Quality and Safety IV (Vol. 8369)Google Scholar
  33. Felton LA (2016) Aqueous polymeric coatings for pharmaceutical dosage forms. CRC Press, Boca RatonCrossRefGoogle Scholar
  34. Fercher AF, Mengedoht K, Werner W (1988) Eye-length measurement by interferometry with partially coherent light. Opt Lett 13(3):186–188CrossRefGoogle Scholar
  35. Fercher AF, Hitzenberger CK, Kamp G, El-Zaiat SY (1995) Measurement of intraocular distances by backscattering spectral interferometry. Opt Commun 117(1–2):43–48.  https://doi.org/10.1016/0030-4018(95)00119-SCrossRefGoogle Scholar
  36. Fercher AF, Hitzenberger CK, Sticker M, Zawadzki R, Karamata B, Lasser T (2002) Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique. Opt Commun 204(1–6):67–74CrossRefGoogle Scholar
  37. Ford HD, Tatam RP (2013) Spatially-resolved volume monitoring of adhesive cure using correlated-image optical coherence tomography. Int J Adhes Adhes 42:21–29.  https://doi.org/10.1016/j.ijadhadh.2012.11.012CrossRefGoogle Scholar
  38. Fortunato L, Leiknes T (2017) In-situ biofouling assessment in spacer filled channels using optical coherence tomography (OCT): 3D biofilm thickness mapping. Bioresour Technol 229:231–235.  https://doi.org/10.1016/j.biortech.2017.01.021CrossRefGoogle Scholar
  39. Fuchs S, Wusnsche M, Nathanael J, Abel JJ, Rodel C, Biedermann J, Reinhard J, Hubner U, Paulus GG (2017) Optical coherence tomography with nanoscale axial resolution using a laser-driven high-harmonic source. Optica 4(8):903–906.  https://doi.org/10.1364/Optica.4.000903CrossRefGoogle Scholar
  40. Fujiwara K, Matoba O (2011a) Detection and evaluation of security features embedded in paper using spectral-domain optical coherence tomography. Opt Rev 18(1):171–175.  https://doi.org/10.1007/s10043-011-0018-yCrossRefGoogle Scholar
  41. Fujiwara K, Matoba O (2011b) High-speed cross-sectional imaging of valuable documents using common-path swept-source optical coherence tomography. Appl Opt 50(34):H165–H170.  https://doi.org/10.1364/AO.50.00H165CrossRefGoogle Scholar
  42. Gandhi V, Semenov D, Honkanen S, Hauta-Kasari M (2015) Optical identification based on time domain optical coherence tomography. Appl Opt 54(25):7514–7519.  https://doi.org/10.1364/AO.54.007514CrossRefGoogle Scholar
  43. Gardner MR, Lewis A, Park J, McElroy AB, Estrada AD, Fish S, Beaman JJ, Milner TE (2018) In situ process monitoring in selective laser sintering using optical coherence tomography. Optical Engineering, 57(4)Google Scholar
  44. Gastinger K, Johnsen L, Simonsen O, Aksnes A (2011) Inspection of processes during silicon wafer sawing using low coherence interferometry in the near infrared wavelength region. In Optical Measurement Systems for Industrial Inspection VII (Vol. 8082)Google Scholar
  45. Goldberg GR, Boldin A, Andersson SML, Ivanov P, Ozaki N, Taylor RJE, Childs DTD, Groom KM, Kennedy KL, Hogg RA (2017) Gallium nitride Superluminescent light emitting diodes for optical coherence tomography applications. IEEE J Sel Top Quantum Electron 23(6):1–11.  https://doi.org/10.1109/JSTQE.2017.2732941CrossRefGoogle Scholar
  46. Gora M, Targowski P, Rycyk A, Marczak J (2006) Varnish ablation control by optical coherence tomography. Laser Chem 2006:10647Google Scholar
  47. Götzinger E, Pircher M, Geitzenauer W, Ahlers C, Baumann B, Michels S, Schmidt-Erfurth U, Hitzenberger CK (2008) Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography. Opt Express 16(21):16410–16422.  https://doi.org/10.1364/OE.16.016410CrossRefGoogle Scholar
  48. Grombe R, Kirsten L, Mehner M, Linsinger TPJ, Emons H, Koch E (2014) Feasibility of non-invasive detection of engineered nanoparticles in food mimicking matrices by optical coherence tomography. Food Chem 153:444–449.  https://doi.org/10.1016/j.foodchem.2013.12.089CrossRefGoogle Scholar
  49. Grombe R, Kirsten L, Mehner M, Linsinger TPJ, Koch E (2016) Improved non-invasive optical coherence tomography detection of different engineered nanoparticles in food-mimicking matrices. Food Chem 212:571–575.  https://doi.org/10.1016/j.foodchem.2016.06.008CrossRefGoogle Scholar
  50. Guan G, Hirsch M, Syam WP, Leach RK, Huang Z, Clare AT (2016) Loose powder detection and surface characterization in selective laser sintering via optical coherence tomography. Proc R Soc A Math Phys Eng Sci 472(2191):201607.  https://doi.org/10.1098/rspa.2016.0201CrossRefGoogle Scholar
  51. Guss GM, Bass IL, Hackel RP, Mailhiot C, Demos SG (2008) In situ monitoring of surface postprocessing in large-aperture fused silica optics with optical coherence tomography. Appl Opt 47(25):4569–4573.  https://doi.org/10.1364/AO.47.004569CrossRefGoogle Scholar
  52. Haindl R, Trasischker W, Wartak A, Baumann B, Pircher M, Hitzenberger CK (2016) Total retinal blood flow measurement by three beam Doppler optical coherence tomography. Biomed Opt Express 7(2):287–301CrossRefGoogle Scholar
  53. Haußmann A, Kirsten L, Schmidt S, Cimalla P, Wehmeier L, Koch E, Eng LM (2017) Three-dimensional, time-resolved profiling of ferroelectric domain wall dynamics by spectral-domain optical coherence tomography. Ann Phys 529(8):1700139.  https://doi.org/10.1002/andp.201700139CrossRefGoogle Scholar
  54. Heise B, Wiesauer K, Götzinger E, Pircher M, Hitzenberger CK, Engelke R, Ahrens G, Grützner G, Stifter D (2010) Spatially resolved stress measurements in materials with polarisation-sensitive optical coherence tomography: image acquisition and processing aspects. Strain 46(1):61–68.  https://doi.org/10.1111/j.1475-1305.2008.00589.xCrossRefGoogle Scholar
  55. Hellmuth T, Börret R, Khrennikov K (2007) 3-dimensional scanning of grinded optical surfaces based on optical coherence tomography. In: Optical engineering + applications. In Optical Manufacturing and Testing VII (Vol. 6671, p. 66710X). International Society for Optics and PhotonicsGoogle Scholar
  56. Hierzenberger P, Leiss-Holzinger E, Heise B, Stifter D, Eder G (2014) In-situ optical coherence tomography (OCT) for the time-resolved investigation of crystallization processes in polymers. Macromolecules 47(6):2072–2079.  https://doi.org/10.1021/ma4023839CrossRefGoogle Scholar
  57. Hitzenberger CK (1991) Optical measurement of the axial eye length by laser Doppler interferometry. Invest Ophthalmol Vis Sci 32(3):616–624Google Scholar
  58. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, Fujimoto JG (1991) Optical coherence tomography. Science 254(5035):1178–1181CrossRefGoogle Scholar
  59. Huber R, Adler DC, Fujimoto JG (2006) Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s. Opt Lett 31(20):2975–2977CrossRefGoogle Scholar
  60. Hughes M, Spring M, Podoleanu A (2010) Speckle noise reduction in optical coherence tomography of paint layers. Appl Opt 49(1):99–107CrossRefGoogle Scholar
  61. Johnson B, Atia W, Kuznetsov M, Larson N, McKenzie E, Mathur V, Goldberg B, Whitney P (2015) Optical teardown of a Kindle Paperwhite display by OCT. arXiv preprint arXiv:160505174Google Scholar
  62. Ju MJ, Lee SJ, Min EJ, Kim Y, Kim HY, Lee BH (2010) Evaluating and identifying pearls and their nuclei by using optical coherence tomography. Opt Express 18(13):13468–13477CrossRefGoogle Scholar
  63. Kang J, Feng P, Wei X, Lam EY, Tsia KK, Wong KKY (2018) 102-nm, 44.5-MHz inertial-free swept source by mode-locked fiber laser and time stretch technique for optical coherence tomography. Opt Express 26(4):4370–4381.  https://doi.org/10.1364/OE.26.004370CrossRefGoogle Scholar
  64. Kirillin MY, Myllylä R, Priezzhev AV (2007) Optical coherence tomography of paper: Monte Carlo simulation for multilayer model. In Saratov Fall Meeting 2006: Coherent Optics of Ordered and Random Media VII (Vol. 6536)Google Scholar
  65. Kirillin MY, Priezzhev AV, Myllylä R (2008) Effect of paper porosity on OCT images: Monte Carlo study. In Advanced Laser Technologies 2007 (Vol. 7022)Google Scholar
  66. Kirsten L, Domaschke T, Schneider C, Walther J, Meissner S, Hampel R, Koch E (2015) Visualization of dynamic boiling processes using high-speed optical coherence tomography. Exp Fluids 56(3):52.  https://doi.org/10.1007/s00348-015-1921-yCrossRefGoogle Scholar
  67. Kirsten L, Haußmann A, Schnabel C, Schmidt S, Cimalla P, Eng LM, Koch E (2017) Advanced analysis of domain walls in Mg doped LiNbO3 crystals with high resolution OCT. Opt Express 25(13):14871–14882.  https://doi.org/10.1364/OE.25.014871CrossRefGoogle Scholar
  68. Koller DM, Hannesschläger G, Leitner M, Khinast JG (2011) Non-destructive analysis of tablet coatings with optical coherence tomography. Eur J Pharm Sci 44(1):142–148.  https://doi.org/10.1016/j.ejps.2011.06.017CrossRefGoogle Scholar
  69. Kottig F, Cimalla P, Gartner M, Koch E (2012) An advanced algorithm for dispersion encoded full range frequency domain optical coherence tomography. Opt Express 20(22):24925–24948CrossRefGoogle Scholar
  70. Latour G, Echard J-P, Soulier B, Emond I, Vaiedelich S, Elias M (2009) Structural and optical properties of wood and wood finishes studied using optical coherence tomography: application to an 18th century Italian violin. Appl Opt 48(33):6485–6491.  https://doi.org/10.1364/AO.48.006485CrossRefGoogle Scholar
  71. Lee BS, Strand TC (1990) Profilometry with a coherence scanning microscope. Appl Opt 29(26):3784–3788.  https://doi.org/10.1364/AO.29.003784CrossRefGoogle Scholar
  72. Lee C, Lee S-Y, Kim J-Y, Jung H-Y, Kim J (2011) Optical sensing method for screening disease in melon seeds by using optical coherence tomography. Sensors 11(10):9467CrossRefGoogle Scholar
  73. Lee S-Y, Lee C, Kim J, Jung H-Y (2012) Application of optical coherence tomography to detect cucumber green mottle mosaic virus (CGMMV) infected cucumber seed. Hortic Environ Biotechnol 53(5):428–433.  https://doi.org/10.1007/s13580-012-0071-xCrossRefGoogle Scholar
  74. Lee Y-J, Chou C-Y, Huang C-Y, Yao Y-C, Haung Y-K, Tsai M-T (2017) Determination on the coefficient of thermal expansion in high-power InGaN-based light-emitting diodes by optical coherence tomography. Sci Rep 7(1):14390.  https://doi.org/10.1038/s41598-017-14689-yCrossRefGoogle Scholar
  75. Lei M, Sun Y, Wang D, Li P (2009) Automated thickness measurements of pearl from optical coherence tomography images. In: IEEE, pp 247–251Google Scholar
  76. Leitgeb R, Wojtkowski M, Kowalczyk A, Hitzenberger CK, Sticker M, Fercher AF (2000) Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography. Opt Lett 25(11):820–822CrossRefGoogle Scholar
  77. Leitgeb R, Hitzenberger C, Fercher A (2003a) Performance of fourier domain vs. time domain optical coherence tomography. Opt Express 11(8):889–894CrossRefGoogle Scholar
  78. Leitgeb RA, Hitzenberger CK, Fercher AF, Bajraszewski T (2003b) Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography. Opt Lett 28(22):2201–2203.  https://doi.org/10.1364/OL.28.002201CrossRefGoogle Scholar
  79. Lenz M, Mazzon C, Dillmann C, Gerhardt NC, Welp H, Prange M, Hofmann MR (2017) Spectral domain optical coherence tomography for non-destructive testing of protection coatings on metal substrates. Appl Sci 7(4):364CrossRefGoogle Scholar
  80. Lewis AD, Katta N, McElroy AB, Milner TE, Fish S, Beaman JJ (2018) Understanding and improving optical coherence tomography imaging depth in selective laser sintering nylon 12 parts and powder. Optical Engineering, 57(4), 041414Google Scholar
  81. Li M, Verboven P, Buchsbaum A, Cantre D, Nicolaï B, Heyes J, Mowat A, East A (2015) Characterising kiwifruit (Actinidia sp.) near skin cellular structures using optical coherence tomography. Postharvest Biol Technol 110:247–256.  https://doi.org/10.1016/j.postharvbio.2015.08.021CrossRefGoogle Scholar
  82. Li C, Felz S, Wagner M, Lackner S, Horn H (2016) Investigating biofilm structure developing on carriers from lab-scale moving bed biofilm reactors based on light microscopy and optical coherence tomography. Bioresour Technol 200:128–136.  https://doi.org/10.1016/j.biortech.2015.10.013CrossRefGoogle Scholar
  83. Liang H, Lange R, Peric B, Spring M (2013) Optimum spectral window for imaging of art with optical coherence tomography. Appl Phys B 111(4):589–602CrossRefGoogle Scholar
  84. Liang H, Cheung CS, Daniel JMO, Tokurakawa M, Clarkson WA (2015) Spring M High resolution Fourier domain Optical Coherence Tomography at 2 microns for painted objects. In: International society for optics and photonics, p 952705Google Scholar
  85. Lin H, Dong Y, Shen Y, Axel Zeitler J (2015) Quantifying pharmaceutical film coating with optical coherence tomography and terahertz pulsed imaging: an evaluation. J Pharm Sci 104(10):3377–3385.  https://doi.org/10.1002/jps.24535CrossRefGoogle Scholar
  86. Lin H, Dong Y, Markl D, Williams BM, Zheng Y, Shen Y, Zeitler JA (2017a) Measurement of the intertablet coating uniformity of a pharmaceutical pan coating process with combined terahertz and optical coherence tomography in-line sensing. J Pharm Sci 106(4):1075–1084.  https://doi.org/10.1016/j.xphs.2016.12.012CrossRefGoogle Scholar
  87. Lin H, Dong Y, Markl D, Zhang Z, Shen Y, Zeitler JA (2017b) Pharmaceutical film coating catalog for spectral domain optical coherence tomography. J Pharm Sci 106(10):3171–3176.  https://doi.org/10.1016/j.xphs.2017.05.032CrossRefGoogle Scholar
  88. Lippok N, Coen S, Nielsen P, Vanholsbeeck F (2012) Dispersion compensation in Fourier domain optical coherence tomography using the fractional Fourier transform. Opt Express 20(21):23398–23413CrossRefGoogle Scholar
  89. Liu X, Kang JU (2010) Compressive SD-OCT: the application of compressed sensing in spectral domain optical coherence tomography. Opt Express 18(21):22010–22019.  https://doi.org/10.1364/OE.18.022010CrossRefGoogle Scholar
  90. Liu C, Wong A, Bizheva K, Fieguth P, Bie H (2012) Homotopic, non-local sparse reconstruction of optical coherence tomography imagery. Opt Express 20(9):10200–10211.  https://doi.org/10.1364/OE.20.010200CrossRefGoogle Scholar
  91. Liu J, Tian XL, Sun YK (2013) Pearl thickness measurements from optical coherence tomography images. In: Trans Tech Publ, pp 415–420Google Scholar
  92. Liu P, Groves RM, Benedictus R (2014a) 3D monitoring of delamination growth in a wind turbine blade composite using optical coherence tomography. NDT & E International 64:52–58.  https://doi.org/10.1016/j.ndteint.2014.03.003CrossRefGoogle Scholar
  93. Liu P, Groves RM, Benedictus R (2014b) Non-destructive evaluation of delamination growth in glass fiber composites using optical coherence tomography. In Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland Security 2014 (Vol. 9063, p. 90631M). International Society for Optics and PhotonicsGoogle Scholar
  94. Liu P, Groves RM, Benedictus R (2014c) Optical coherence elastography for measuring the deformation within glass fiber composite. Appl Opt 53(22):5070–5077.  https://doi.org/10.1364/AO.53.005070CrossRefGoogle Scholar
  95. Liu P, Groves RM, Benedictus R (2014d) Optical coherence tomography for the study of polymer and polymer matrix composites. Strain 50(5):436–443.  https://doi.org/10.1111/str.12095CrossRefGoogle Scholar
  96. Liu X, Li W, Chong TH, Fane AG (2017a) Effects of spacer orientations on the cake formation during membrane fouling: quantitative analysis based on 3D OCT imaging. Water Res 110:1–14.  https://doi.org/10.1016/j.watres.2016.12.002CrossRefGoogle Scholar
  97. Liu X, Zaki F, Wang Y, Huang Q, Mei X, Wang J (2017b) Secure fingerprint identification based on structural and microangiographic optical coherence tomography. Appl Opt 56(8):2255–2259.  https://doi.org/10.1364/AO.56.002255CrossRefGoogle Scholar
  98. Lorenser D, Singe CC, Curatolo A, Sampson DD (2014) Energy-efficient low-Fresnel-number Bessel beams and their application in optical coherence tomography. Opt Lett 39(3):548–551.  https://doi.org/10.1364/Ol.39.000548CrossRefGoogle Scholar
  99. Lv H, Liu A, Tong J, Yi X, Li Q, Wang X, Ding Y (2010) Nondestructive measurement of refractive index profile of gradient refractive index rod lens. Rev Sci Instrum 81(10):103104.  https://doi.org/10.1063/1.3492154CrossRefGoogle Scholar
  100. Magwaza LS, Ford HD, Cronje PJR, Opara UL, Landahl S, Tatam RP, Terry LA (2013) Application of optical coherence tomography to non-destructively characterise rind breakdown disorder of ‘Nules Clementine’ mandarins. Postharvest Biol Technol 84:16–21.  https://doi.org/10.1016/j.postharvbio.2013.03.019CrossRefGoogle Scholar
  101. Manukyan S, Sauer HM, Roisman IV, Baldwin KA, Fairhurst DJ, Liang H, Venzmer J, Tropea C (2013) Imaging internal flows in a drying sessile polymer dispersion drop using spectral radar optical coherence tomography (SR-OCT). J Colloid Interface Sci 395:287–293.  https://doi.org/10.1016/j.jcis.2012.11.037CrossRefGoogle Scholar
  102. Markl D, Hannesschläger G, Sacher S, Leitner M, Khinast JG (2014) Optical coherence tomography as a novel tool for in-line monitoring of a pharmaceutical film-coating process. Eur J Pharm Sci 55:58–67.  https://doi.org/10.1016/j.ejps.2014.01.011CrossRefGoogle Scholar
  103. Markl D, Hannesschläger G, Sacher S, Leitner M, Khinast JG, Buchsbaum A (2015a) Automated pharmaceutical tablet coating layer evaluation of optical coherence tomography images. Meas Sci Technol 26(3):035701CrossRefGoogle Scholar
  104. Markl D, Zettl M, Hannesschläger G, Sacher S, Leitner M, Buchsbaum A, Khinast JG (2015b) Calibration-free in-line monitoring of pellet coating processes via optical coherence tomography. Chem Eng Sci 125:200–208.  https://doi.org/10.1016/j.ces.2014.05.049CrossRefGoogle Scholar
  105. Meemon P, Yao J, Lee K-S, Thompson KP, Ponting M, Baer E, Rolland JP (2013) Optical coherence tomography enabling non destructive metrology of layered polymeric GRIN material. Sci Rep 3:1709.  https://doi.org/10.1038/srep01709CrossRefGoogle Scholar
  106. Meissner S, Breithaupt R, Koch E (2013) Defense of fake fingerprint attacks using a swept source laser optical coherence tomography setup. In Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications XIII (Vol. 8611, p. 86110L). International Society for Optics and PhotonicsGoogle Scholar
  107. Pan L, Wang X, Li Z, Zhang X, Bu Y, Nan N, Chen Y, Wang X (2017) Depth-dependent dispersion compensation for full-depth OCT image. Opt Express 25(9):10345–10354CrossRefGoogle Scholar
  108. Park S, You J, Ahn Y, Jung W, Kim J, Lee S, Park J, Cho KH (2018) Evaluating the effects of organic matter bioavailability on nanofiltration membrane using real-time monitoring. J Membr Sci 548:519–525.  https://doi.org/10.1016/j.memsci.2017.11.053CrossRefGoogle Scholar
  109. Pei S-C, Ho T-S, Tsai C-C, Chen T-H, Ho Y, Huang P-L, Kung AH, Huang S-L (2011) Non-invasive characterization of the domain boundary and structure properties of periodically poled ferroelectrics. Opt Express 19(8):7153–7160.  https://doi.org/10.1364/OE.19.007153CrossRefGoogle Scholar
  110. Pfeiffer T, Draxinger W, Grill C, Huber R (2017) Long-range live 3D-OCT at different spectral zoom levels. In: Optical coherence imaging techniques and imaging in scattering media II, Munich, SPIE Proceedings. Optical Society of America, p 104160L.  https://doi.org/10.1117/12.2287484.
  111. Prykäri T, Czajkowski J, Alarousu E, Myllylä R (2010) Optical coherence tomography as an accurate inspection and quality evaluation technique in paper industry. Opt Rev 17(3):218–222.  https://doi.org/10.1007/s10043-010-0039-yCrossRefGoogle Scholar
  112. Qi B, Himmer AP, Gordon LM, Yang XDV, Dickensheets LD, Vitkin IA (2004) Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror. Opt Commun 232(1–6):123–128CrossRefGoogle Scholar
  113. Rodriguez A, Kang JU, Huang Y (2011) Real-time 4D non-invasive subsurface corrosion inspection using ultrahigh-speed, Fourier-domain optical coherence tomography. In: International society for optics and photonics, p 81550WGoogle Scholar
  114. Sabuncu M, Akdoğan M (2014) Utilizing optical coherence tomography in the nondestructive and noncontact measurement of egg shell thickness. Sci World J 4.  https://doi.org/10.1155/2014/205191
  115. Sabuncu M, Akdoğan M (2015) Photonic imaging with optical coherence tomography for quality monitoring in the poultry industry: a preliminary study. Rev Bras Ciênc Avícola 17:319–324CrossRefGoogle Scholar
  116. Sabuncu M, Ozdemir H, Akdogan MU (2017) Automatic identification of weave patterns of checked and colored fabrics using optical coherence tomography. IEEE Photonics J 9(5):1–8.  https://doi.org/10.1109/JPHOT.2017.2742148CrossRefGoogle Scholar
  117. Sandrian MG, Tomlins PH, Woolliams PD, Rasakanthan J, Lee GCB, Yang A, Považay B, Alex A, Sugden K, Drexler W (2012) Three-dimensional calibration targets for optical coherence tomography. In: Nordstrom RJ, Coté GL (eds) Optical diagnostics and sensing XII. SPIE proceedings, vol 8229.  https://doi.org/10.1117/12.907748
  118. Schmitt R, Ackermann P (2016) OCT for process monitoring of laser transmission welding. Laser Tech J 13(5):15–18.  https://doi.org/10.1002/latj.201600030CrossRefGoogle Scholar
  119. Schmitt JM, Lee SL, Yung KM (1997) An optical coherence microscope with enhanced resolving power in thick tissue. Opt Commun 142(4–6):203–207.  https://doi.org/10.1016/S0030-4018(97)00280-0CrossRefGoogle Scholar
  120. Schmitt R, Mallmann G, Winands K, Pothen M (2012) Inline process metrology system for the control of laser surface structuring processes. Phys Procedia 39:814–822.  https://doi.org/10.1016/j.phpro.2012.10.105CrossRefGoogle Scholar
  121. Schneider S, Eppler F, Weber M, Olowojoba G, Weiss P, Hübner C, Mikonsaari I, Freude W, Koos C (2016) Multiscale dispersion-state characterization of nanocomposites using optical coherence tomography. Sci Rep 6:31733.  https://doi.org/10.1038/srep31733CrossRefGoogle Scholar
  122. Seck HL, Zhang Y, Soh YC (2011) Optical coherence tomography by using frequency measurements in wavelength domain. Opt Express 19(2):1324–1334.  https://doi.org/10.1364/OE.19.001324CrossRefGoogle Scholar
  123. Shen Y, Huang C, Monroy GL, Janjaroen D, Derlon N, Lin J, Espinosa-Marzal R, Morgenroth E, Boppart SA, Ashbolt NJ, Liu W-T, Nguyen TH (2016) Response of simulated drinking water biofilm mechanical and structural properties to long-term disinfectant exposure. Environ Sci Technol 50(4):1779–1787.  https://doi.org/10.1021/acs.est.5b04653CrossRefGoogle Scholar
  124. Shirazi M, Jeon M, Kim J (2017) Structural analysis of polymer composites using spectral domain optical coherence tomography. Sensors 17(5):1155CrossRefGoogle Scholar
  125. Shu X, Beckmann L, Zhang HF (2017) Visible-light optical coherence tomography: a review. J Biomed Opt 22(12):1–14.  https://doi.org/10.1117/1.Jbo.22.12.121707CrossRefGoogle Scholar
  126. Song S, Xu J, Wang RK (2016) Long-range and wide field of view optical coherence tomography for in vivo 3D imaging of large volume object based on akinetic programmable swept source. Biomed Opt Express 7(11):4734–4748.  https://doi.org/10.1364/BOE.7.004734CrossRefGoogle Scholar
  127. Spöler F, Kray S, Grychtol P, Hermes B, Bornemann J, Först M, Kurz H (2007) Simultaneous dual-band ultra-high resolution optical coherence tomography. Opt Express 15(17):10832–10841CrossRefGoogle Scholar
  128. Spring M, Liang H, Peric B, Saunders D, Podoleanu A (2008) Optical coherence tomography-a tool for high resolution non-invasive 3D-imaging of the subsurface structure of paintings. In International Council of Museums Conservation Committee Triennial Meeting ICOM-CC, New Delhi, 22–26 September 2008, vol. II, p. 633–640. http://irep.ntu.ac.uk/id/eprint/14553
  129. Stifter D, Burgholzer P, Höglinger O, Götzinger E, Hitzenberger CK (2003) Polarisation-sensitive optical coherence tomography for material characterisation and strain-field mapping. Appl Phys A 76(6):947–951.  https://doi.org/10.1007/s00339-002-2065-5CrossRefGoogle Scholar
  130. Stifter D, Wiesauer K, Wurm M, Schlotthauer E, Kastner J, Pircher M, Götzinger E, Hitzenberger CK (2008) Investigation of polymer and polymer/fibre composite materials with optical coherence tomography. Meas Sci Technol 19(7):074011.  https://doi.org/10.1088/0957-0233/19/7/074011
  131. Stifter D, Leiss-Holzinger E, Major Z, Baumann B, Pircher M, Götzinger E, Hitzenberger CK, Heise B (2010) Dynamic optical studies in materials testing with spectral-domain polarization-sensitive optical coherence tomography. Opt Express 18(25):25712–25725.  https://doi.org/10.1364/OE.18.025712CrossRefGoogle Scholar
  132. Strupler M, Beckley AM, Benboujja F, Dubois S, Noiseux I, Mermut O, Bouchard J-P, Boudoux C (2015) Toward an automated method for optical coherence tomography characterization. J Biomed Optics, 20(12), 126007.  https://doi.org/10.1117/1.JBO.20.12.126007
  133. Sun H, Gang T, Hu M, Liu N, Tong R, Liu X, Zhang Q, Zhou J (2016) 1310 nm source spectral-domain optical coherence tomography for Chinese pigment and jadeite research. Optics Photonics J 06(08):5.  https://doi.org/10.4236/opj.2016.68B009CrossRefGoogle Scholar
  134. Szkulmowski M, Wojtkowski M, Bajraszewski T, Gorczynska I, Targowski P, Wasilewski W, Kowalczyk A, Radzewicz C (2005) Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source. Opt Commun 246(4–6):569–578.  https://doi.org/10.1016/j.optcom.2004.11.024CrossRefGoogle Scholar
  135. Targowski P, Gora M, Bajraszewski T, Szkulmowski M, Rouba B, Łękawa-Wysłouch T, Tymińska-Widmer L (2006a) Optical coherence tomography for tracking canvas deformation. Laser Chem 2006:93658.  https://doi.org/10.1155/2006/93658
  136. Targowski P, Gora M, Wojtkowski M (2006b) Optical coherence tomography for artwork diagnostics. Laser Chem 2006:35373.  https://doi.org/10.1155/2006/35373
  137. Thrane L, Jørgensen TM, Jørgensen M, Krebs FC (2012) Application of optical coherence tomography (OCT) as a 3-dimensional imaging technique for roll-to-roll coated polymer solar cells. Sol Energy Mater Sol Cells 97:181–185.  https://doi.org/10.1016/j.solmat.2011.10.004CrossRefGoogle Scholar
  138. Trinh TA, Li W, Han Q, Liu X, Fane AG, Chew JW (2018) Analyzing external and internal membrane fouling by oil emulsions via 3D optical coherence tomography. J Membr Sci 548:632–640.  https://doi.org/10.1016/j.memsci.2017.10.043CrossRefGoogle Scholar
  139. Tripathi R, Nassif N, Nelson JS, Park BH, de Boer JF (2002) Spectral shaping for non-Gaussian source spectra in optical coherence tomography. Opt Lett 27(6):406–408CrossRefGoogle Scholar
  140. Tsai M-T, Chang F-Y, Yao Y-C, Mei J, Lee Y-J (2015) Optical inspection of solar cells using phase-sensitive optical coherence tomography. Sol Energy Mater Sol Cells 136:193–199.  https://doi.org/10.1016/j.solmat.2015.01.016CrossRefGoogle Scholar
  141. Vakoc B, Yun S, de Boer J, Tearney G, Bouma B (2005) Phase-resolved optical frequency domain imaging. Opt Express 13(14):5483–5493CrossRefGoogle Scholar
  142. Van der Jeught S, Bradu A, Podoleanu AG (2010) Real-time resampling in Fourier domain optical coherence tomography using a graphics processing unit. J Biomed Opt 15(3):030511CrossRefGoogle Scholar
  143. Verboven P, Nemeth A, Abera MK, Bongaers E, Daelemans D, Estrade P, Herremans E, Hertog M, Saeys W, Vanstreels E, Verlinden B, Leitner M, Nicolaï B (2013) Optical coherence tomography visualizes microstructure of apple peel. Postharvest Biol Technol 78:123–132.  https://doi.org/10.1016/j.postharvbio.2012.12.020CrossRefGoogle Scholar
  144. Walther J, Koch E (2014) Relation of joint spectral and time domain optical coherence tomography (jSTdOCT) and phase-resolved Doppler OCT. Opt Express 22(19):23129–23146CrossRefGoogle Scholar
  145. Walther J, Gaertner M, Cimalla P, Burkhardt A, Kirsten L, Meissner S, Koch E (2011) Optical coherence tomography in biomedical research. Anal Bioanal Chem 400(9):2721–2743CrossRefGoogle Scholar
  146. Wang XJ, Milner TE, Nelson JS (1995) Characterization of fluid flow velocity by optical Doppler tomography. Opt Lett 20(11):1337–1339CrossRefGoogle Scholar
  147. Wang TS, Pfeiffer T, Regar E, Wieser W, van Beusekom H, Lancee CT, Springeling G, Krabbendam I, van der Steen AFW, Huber R, van Soest G (2015) Heartbeat OCT: in vivo intravascular megahertz-optical coherence tomography. Biomed Opt Express 6(12):5021–5032CrossRefGoogle Scholar
  148. Webster PJL, Muller MS, Fraser JM (2007) High speed in situ depth profiling of ultrafast micromachining. Opt Express 15(23):14967–14972.  https://doi.org/10.1364/OE.15.014967CrossRefGoogle Scholar
  149. Wehrmeister U, Goetz H, Jacob DE, Soldati A, Xu W, Duschner H, Hofmeister W (2008) Visualization of the internal structure of freshwater cultured pearls by computerized x-ray microtomography. J Gemmol 31(1/2):15–21 The Gemmological Association of Great Britain, mq-iris:0000131633CrossRefGoogle Scholar
  150. Weiss N, Obied KETE, Kalkman J, Lammertink RGH, van Leeuwen TG (2016) Measurement of biofilm growth and local hydrodynamics using optical coherence tomography. Biomed Opt Express 7(9):3508–3518.  https://doi.org/10.1364/BOE.7.003508CrossRefGoogle Scholar
  151. West S, Wagner M, Engelke C, Horn H (2016) Optical coherence tomography for the in situ three-dimensional visualization and quantification of feed spacer channel fouling in reverse osmosis membrane modules. J Membr Sci 498:345–352.  https://doi.org/10.1016/j.memsci.2015.09.047CrossRefGoogle Scholar
  152. Wiesauer K, Dufau ADS, Götzinger E, Pircher M, Hitzenberger CK, Stifter D (2005) Non-destructive quantification of internal stress in polymer materials by polarisation sensitive optical coherence tomography. Acta Mater 53(9):2785–2791.  https://doi.org/10.1016/j.actamat.2005.02.034CrossRefGoogle Scholar
  153. Wiesauer K, Pircher M, Götzinger E, Hitzenberger CK, Engelke R, Ahrens G, Grützner G, Stifter D (2006) Transversal ultrahigh-resolution polarization-sensitive optical coherence tomography for strain mapping in materials. Opt Express 14(13):5945–5953.  https://doi.org/10.1364/OE.14.005945CrossRefGoogle Scholar
  154. Wiesauer K, Pircher M, Götzinger E, Hitzenberger CK, Oster R, Stifter D (2007) Investigation of glass–fibre reinforced polymers by polarisation-sensitive, ultra-high resolution optical coherence tomography: internal structures, defects and stress. Compos Sci Technol 67(15):3051–3058.  https://doi.org/10.1016/j.compscitech.2007.04.018CrossRefGoogle Scholar
  155. Wieser W, Biedermann BR, Klein T, Eigenwillig CM, Huber R (2010) Multi-Megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second. Opt Express 18(14):14685–14704.  https://doi.org/10.1364/OE.18.014685CrossRefGoogle Scholar
  156. Wijesinghe REH, Lee S-Y, Jung H-Y, Jeon M, Kim J (2017a) The validity of the diagnosis of plant leaf infections using non-destructive optical inspection technique and depth-scan signal analysis. Int J Appl Eng Res 12Google Scholar
  157. Wijesinghe REH, Lee S-Y, Kim P, Jung H-Y, Jeon M, Kim J (2017b) Optical sensing method to analyze germination rate of Capsicum annum seeds treated with growth-promoting chemical compounds using optical coherence tomography. J Biomed Optics, 22(9), 091502.  https://doi.org/10.1117/1.JBO.22.9.091502
  158. Yang VXD, Gordon M, Sj T, Marcon N, Gardiner G, Qi B, Bisland S, Seng-Yue E, Lo S, Pekar J, Wilson B, Vitkin I (2003) High speed, wide velocity dynamic range Doppler optical coherence tomography (part III): in vivo endoscopic imaging of blood flow in the rat and human gastrointestinal tracts. Opt Express 11(19):2416–2424CrossRefGoogle Scholar
  159. Yao J, Meemon P, Lee K-S, Rolland JP (2013) Nondestructive metrology by optical coherence tomography empowering manufacturing iterations of layered polymeric optical materials. Optical Engineering, 52(11), 112111Google Scholar
  160. Yao J, Meemon P, Ponting M, Rolland JP (2015a) Angular scan optical coherence tomography imaging and metrology of spherical gradient refractive index preforms. Opt Express 23(5):6428–6443.  https://doi.org/10.1364/OE.23.006428CrossRefGoogle Scholar
  161. Yao J, Xu D, Zhao N, Rolland JP (2015b) Freeform metrology using swept-source optical coherence tomography with custom pupil-relay precision scanning configuration. Optifab 2015. Vol. 9633. International Society for Optics and Photonics, 2015Google Scholar
  162. Yao J, Thompson KP, Ma B, Ponting M, Rolland JP (2016) Volumetric rendering and metrology of spherical gradient refractive index lens imaged by angular scan optical coherence tomography system. Opt Express 24(17):19388–19404.  https://doi.org/10.1364/OE.24.019388CrossRefGoogle Scholar
  163. Yao J, Anderson A, Rolland JP (2018) Point-cloud noncontact metrology of freeform optical surfaces. Opt Express 26(8):10242–10265.  https://doi.org/10.1364/OE.26.010242CrossRefGoogle Scholar
  164. Yasuno Y, Hong Y, Makita S, Yamanari M, Akiba M, Miura M, Yatagai T (2007) In vivo high-contrast imaging of deep posterior eye by 1-μm swept source optical coherence tomography and scattering optical coherence angiography. Opt Express 15(10):6121–6139CrossRefGoogle Scholar
  165. Yi LY, Sun LQ, Ding WW (2017) Multifocal spectral-domain optical coherence tomography based on Bessel beam for extended imaging depth. J Biomed Opt 22(10):1–8.  https://doi.org/10.1117/1.Jbo.22.10.106016CrossRefGoogle Scholar
  166. Yin BW, Hyun C, Gardecki JA, Tearney GJ (2017) Extended depth of focus for coherence-based cellular imaging. Optica 4(8):959–965.  https://doi.org/10.1364/Optica.4.000959CrossRefGoogle Scholar
  167. Yun SH, Tearney G, de Boer J, Bouma B (2004) Motion artifacts in optical coherence tomography with frequency-domain ranging. Opt Express 12(13):2977–2998CrossRefGoogle Scholar
  168. Zeng N, He Y, Ma H (2008) Application of optical coherence tomography in nacre identification and characterization. Microw Opt Technol Lett 50(2):442–445CrossRefGoogle Scholar
  169. Zhang Y, Dong B, Bai Y, Ye S, Lei Z, Zhou Y (2015) Measurement of depth-resolved thermal deformation distribution using phase-contrast spectral optical coherence tomography. Opt Express 23(21):28067–28075.  https://doi.org/10.1364/OE.23.028067CrossRefGoogle Scholar
  170. Zhou Y, Liu T, Shi Y, Chen Z, Mao J, Zhou W (2016) Automated internal classification of beadless Chinese ZhuJi fleshwater pearls based on optical coherence tomography images. Sci Rep 6:33819.  https://doi.org/10.1038/srep33819CrossRefGoogle Scholar
  171. Zhou Y, Wu D, Hui G, Mao J, Liu T, Zhou W, Zhao Y, Chen Z, Chen F (2018) Loquat bruise detection using optical coherence tomography based on microstructural parameters. Food Anal Methods.  https://doi.org/10.1007/s12161-018-1246-6

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jonas Golde
    • 1
  • Lars Kirsten
    • 1
  • Christian Schnabel
    • 1
  • Julia Walther
    • 1
  • Edmund Koch
    • 1
  1. 1.Clinical Sensoring and Monitoring, Anesthesiology and Intensive Care Medicine, Faculty of Medicine Carl Gustav CarusTU DresdenDresdenGermany

Section editors and affiliations

  • Ida Nathan
    • 1
  • Norbert Meyendorf
    • 2
  1. 1.Department of Electrical and Computer EngineeringUniversity of AkronAkronUSA
  2. 2.Center for Nondestructive EvaluationIowa State UniversityAmesUSA

Personalised recommendations