Advertisement

Laser-Induced Surface Acoustic Waves for Material Testing

  • Dieter Schneider
Living reference work entry

Abstract

Surface acoustic waves are elastic vibrations which propagate along the surface of the material. They are very sensitive to films and surface treatments, since the wave energy is concentrated near the surface. Therefore, there is a growing interest in using this acoustic wave mode for nondestructive testing. Whereas the wave velocity is constant for homogenous materials, the velocity c depends on frequency f for coated and surface-modified materials. This phenomenon, termed dispersion, can be used to determine important film parameters such as Young’s modulus, density, or film thickness. Especially, Young’s modulus is an interesting parameter for nondestructive characterization of film materials, since it depends on the bonding conditions and the microstructure. In order to determine the parameters of the film material, the dispersion curve c(f) is measured and fitted by a theoretical curve. Many experimental setups use pulse lasers to create surface acoustic waves. Short laser pulses can create wideband acoustic impulses. The laser is a non-contact acoustic source that can precisely be positioned on the material surface, which enables an accurate measurement of the dispersion. Five examples of application are presented which demonstrate that surface acoustic waves can be used for very different problems of surface characterization: diamond-like carbon films (ta-C) with thickness down to few nanometers, porous metal films of titanium with a thickness in the micrometer range, thermal-sprayed ceramic coatings with a thickness of some hundreds of micrometers, laser-hardened steels up to the depth of one millimeter, and subsurface damage in semiconductor materials.

References

  1. Akhmanov SA, Gusev VE (1992) Laser excitation of ultrashort acoustic pulses: new possibilities in solid-state spectroscopy, diagnostics of fast processes, and nonlinear acoustics. Sov Phys Usp 35:153–191CrossRefGoogle Scholar
  2. Arnold W, Betz B, Hoffmann B (1985) Efficient generation of surface acoustic waves by thermoelasticity. Appl Phys Lett 47:672–674.  https://doi.org/10.1063/1.96054CrossRefGoogle Scholar
  3. Asmani M, Kermel C, Leriche A, Ourak MJ (2001) Influence of porosity on Young’s modulus and Poisson’s ratio in alumina. Eur Ceram Soc 21:1081–1086CrossRefGoogle Scholar
  4. Aussel JD, Monchalin J (1989) Measurement of ultrasound attenuation by laser ultrasonics. Ultrasonics 27:165–117.  https://doi.org/10.1063/1.342738CrossRefGoogle Scholar
  5. Bennis A, Lomonosov M, Shen ZH, Hess P (2006) Laser-based measurement of elastic and mechanical properties of layered polycrystalline silicon structures with projection masks. Appl Phys Lett 88:101915-1–101915-3.  https://doi.org/10.1063/1.2181187CrossRefGoogle Scholar
  6. Berger LM, Schneider D, Großer T (2007) Non-destructive testing of coatings by surface acoustic waves. In: Marple BR, Hyland MM, Lau YC, Li CJ, Lima RS, Montavon G (eds) Thermal spray 2007: global coating solutions. ASM International, Materials Park, pp 916–921Google Scholar
  7. Berger LM (2011) Entwicklung einer zerstörungsfreuen Prüfmethode zur Messung mechanischer Kennwerte und der Porosität an thermisch gespritzten Schichten. Final report of the IGF Project 16.029 BR / DVS No. 02.056, promoted by the German Ministry of Economic Affairs and Technology (BMWi) via AiF within the framework of the program for the promotion of joint industrial research and development, Fraunhofer Institute for Material and Beam Technology (IWS) DresdenGoogle Scholar
  8. Berger LM, Schneider D, Barbosa M, Puschmann R (2012) Laser acoustic surface waves for the non-destructive characterization of thermally sprayed coatings. Therm Spray Bull 64(1):56–64Google Scholar
  9. Bescond C, Kruger SE, Le’vesque D, Lima RS, Marple BR (2007) In-situ simultaneous measurement of thickness, elastic moduli and density of thermal sprayed WC-Co coatings by Laser-Ultrasonics. J Therm Spray Technol 16:238–244. Thermal spray coatingsCrossRefGoogle Scholar
  10. Carvalho S, Vaz F, Rebouta L, Schneider D, Cavaleiro A, Alves E (2001) Elastic properties of (Ti,Al,Si)N nanocomposite films. Surf Coat Technol 142–144:110–116CrossRefGoogle Scholar
  11. Coufal H, Grygier R, Hess P, Neubrand A (1992) A broadband detection of laser-excited surface acoustic waves by a novel transducer employing ferroelectric polymers. J Acoust Soc Am 92:2980–2983CrossRefGoogle Scholar
  12. Dobmann G, Kern R, Altpeter I, Theiner W (1988) Quantitative hardening-depth-measurements up to 4mm by means if micro-magnetic microstructure multi-parameter analysis (3MA). In: Thomson DO, Chimenti DE (eds) Review of progress in quantitative nondestructive evaluation, vol 7b. Springer, Boston, pp 1471–1475CrossRefGoogle Scholar
  13. Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. Royal Soc A241:376–396.  https://doi.org/10.1098/rspa.1957.0133MathSciNetCrossRefMATHGoogle Scholar
  14. Farnell GW (1970) Properties of elastic surface waves. In: Mason WP, Thurston PM (eds) Physical acoustics, vol VI. Academic, New York/London, pp 109–166Google Scholar
  15. Farnell GW, Adler EL (1972) Elastic wave propagation in thin layers. In: Mason WP, Thurston RN (eds) Physical acoustics, vol IX. Academic, New York/London, pp 35–127.  https://doi.org/10.1016/B978-0-12-395670-5.50007-6CrossRefGoogle Scholar
  16. Flannery CM, Murray C, Streiter I, Schulz SE (2001) Characterization of thin-film aerogel porosity and stiffness with laser-generated surface acoustic waves. Thin Solid Films 388:1–4CrossRefGoogle Scholar
  17. Grünwald E, Nuster R, Treml R, Kiener D, Paltauf G, Brunner R (2015) Young’s Modulus and Poisson’s ratio characterization of tungsten thin films via laser ultrasound. nanoFIS 2014 Mater Today 2:4289–4294Google Scholar
  18. Hashin ZJ (1962) The elastic moduli of heterogeneous materials. Appl Mech 29:143–150MathSciNetCrossRefGoogle Scholar
  19. Haskell NA (1953) The dispersion of surface waves on multilayered media. Bull Seismol Soc Am 43:17–34Google Scholar
  20. Hess P (2002) Surface acoustic waves in materials science. Phys Today 55:42:47CrossRefGoogle Scholar
  21. Hess P (2009) Determination of linear and nonlinear mechanical properties of diamond by laser-based surface acoustic waves. Diamond Relat Mater 18:186–190.  https://doi.org/10.1016/j.diamond.2008.10.005CrossRefGoogle Scholar
  22. Hill R (1965) Continuum micro-mechanics of elastoplastic polycrystals. J Mech Phys Solids 13:89–101CrossRefGoogle Scholar
  23. Karabutov AA (1985) Laser excitation of surface acoustic waves: a new direction in opto-acoustic spectroscopy of a solid. Sov Phys Usp 28:1042–1051CrossRefGoogle Scholar
  24. Knopoff L (1964) A matrix method for elastic wave problems. Bull Seism Soc Am 54:431–438Google Scholar
  25. Kolomenskii AA, Szabadi M, Hess P (1995) Laser diagnostics of C60 and C70 films by broadband surface acoustic wave spectroscopy. Appl Surf Sci 86:591–596CrossRefGoogle Scholar
  26. Kreher W, Janssen R (1992) On microstructural residual stresses in particle reinforced ceramics. J Eur Ceram Soc 10:167–173CrossRefGoogle Scholar
  27. Kreher W, Pompe W (eds) (1989) Internal stresses in heterogeneous solids. Akademie-Verlag, BerlinMATHGoogle Scholar
  28. Kröner E (1961) Zur plastischen Verformung des Vielkristalls. Acta Metall 9:155–161CrossRefGoogle Scholar
  29. Kurdjumov GV (1960) Phenomena occurring in the quenching and tempering of steels. J Iron Steel Inst 195:26–48Google Scholar
  30. Kuschnereit R, Fath H, Kolomenskii AA, Szabadi M, Hess P (1995) Mechanical and elastic properties of amorphous hydrogenated silicon films studied by broadband surface acoustic wave spectroscopy. Appl Phys A61:269–276.  https://doi.org/10.1007/BF01538192CrossRefGoogle Scholar
  31. Lee RE, White RM (1968) Excitation of surface elastic waves by transient surface heating. Appl Phys Lett 12:12–14.  https://doi.org/10.1063/1.1651832CrossRefGoogle Scholar
  32. Leonhardt M, Schneider D, Kaspar J, Schenk S (2004) Characterizing the porosity in thin titanium films by laser-acoustics. Surf Coat Technol 185:292–302.  https://doi.org/10.1016/j.surfcoat.2004.01.020CrossRefGoogle Scholar
  33. Lima RS, Kruger SE, Lamouche G, Marple BR (2005) Elastic Modulus measurements via laser-ultrasonic and Knoop indentation. J Therm Spray Technol 14:52–60.  https://doi.org/10.1361/10599630522701CrossRefGoogle Scholar
  34. Lomonosov AM, Mayer AP, Hess P (2001) Laser-based surface acoustic waves in material science. In: Levy M, Bass HE, Stern R (eds) Modern acoustical techniques for the measurement of mechanical properties, vol 39. Academic, San Diego, pp 65–134CrossRefGoogle Scholar
  35. Lowe MJS (1995) Matrix techniques for modeling ultrasonic waves in multilayered media. IEEE Trans Ultrason Ferroelectr Freq Control 42:525–542.  https://doi.org/10.1109/58.393096CrossRefGoogle Scholar
  36. Lyamshev LM (1981) Optoacoustic sources of sound. Sov Phys Usp 24:977–995CrossRefGoogle Scholar
  37. Maier-Schneider D, Ersoy A, Maibach J, Schneider D, Obermeier E (1995) Influence of annealing on the elastic properties of LPCVD silicon nitride and LPCVD polysilicon. Sens Mater 7:121–129Google Scholar
  38. Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11(2):431–441MathSciNetCrossRefGoogle Scholar
  39. Maznev AA, Mazurenko A, Li Z, Gostein M (2003) Laser-based surface acoustic wave spectrometer for industrial applications. Rev Sci Instrum 74:667–669.  https://doi.org/10.1063/1.1512680CrossRefGoogle Scholar
  40. Mittal KL (ed) (1976) Adhesion measurement of thin films, thick films and bulk coatings, ASTM Symposium Philadelphia, ASTM special technical publication, vol 640. ASTM, PhiladelphiaGoogle Scholar
  41. Monchalin JP (1985) Optical detection of ultrasound at a distance using a confocal Fabry–Perot interferometer. Appl Phys Lett 47:14–16.  https://doi.org/10.1063/1.96411CrossRefGoogle Scholar
  42. Neubrand A, Hess P (1992) Laser generation and detection of surface acoustic waves: elastic properties of surface layers. J Appl Phys 71:227–238CrossRefGoogle Scholar
  43. O’Connor DJ, Sexton BA, Smart R, St C (eds) (1992) Surface analysis methods in materials science. Springer, HeidelbergGoogle Scholar
  44. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583CrossRefGoogle Scholar
  45. Ollendorf H, Schneider D (1999) A comparative study of adhesion test methods for hard coatings. Surf Coat Technol 113:86–102CrossRefGoogle Scholar
  46. Paehler D, Schneider D, Herben M (2007) Nondestructive characterization of sub-surface damage in rotational ground silicon wafers by laser acoustics. Microelectron Eng 84:340–354.  https://doi.org/10.1016/j.mee.2006.11.001CrossRefGoogle Scholar
  47. Rayleigh L (1885) On waves propagating along the plane surface of an elastic solid. Proc Lond Math Soc 17:4MathSciNetCrossRefGoogle Scholar
  48. Rebholz C, Leyland A, Matthews A, Charitidis C, Logothetidis S, Schneider D (2006) Correlation of elastic modulus, hardness and density for sputtered TiAlBN thin films. Thin Solid Films 514:81–86CrossRefGoogle Scholar
  49. Retzko I, Unger W (2003) Analysis of carbon materials by X-ray photoelectron spectroscopy and X-ray absorption spectroscopy. Adv Eng Mater 5:519–522.  https://doi.org/10.1002/adem.200320138CrossRefGoogle Scholar
  50. Robertson J (2002) Diamond-like amorphous carbon. Mater Sci Eng R 37:129–281CrossRefGoogle Scholar
  51. Rogers JA, Yang Y, Nelson KA (1994) Elastic Modulus and In-Plane Thermal Diffusivity Measurements in Thin Polyimide Films Using Symmetry-Selective Real-Time Impulsive Stimulated Thermal Scattering. Appl Phys A 58:523–534CrossRefGoogle Scholar
  52. Royer D (2001) Mixed matrix formulation for the analysis of laser-generated acoustic waves by thermoelastic line sources. Ultrasonics 39:345–354CrossRefGoogle Scholar
  53. Royer D, Chenu C (2000) Experimental and theoretical waveforms of Rayleigh waves generated by a thermoelastic laser line source. Ultrasonics 38:891–895CrossRefGoogle Scholar
  54. Ruiz AM, Nagy PB (2002) Diffraction correction for precision surface acoustic wave. J Acoust Soc Am 112(3):835–842.  https://doi.org/10.1121/1.1497368CrossRefGoogle Scholar
  55. Sachse W, Pao YH (1978) On the determination of phase and group velocities of dispersive waves in solids. J Appl Phys 49:4320–4327.  https://doi.org/10.1063/1.325484CrossRefGoogle Scholar
  56. Schneider D (2013) Laser acoustic testing machine for the surface analysis of silicon blocks and solar wafers. Annu Rep Fraunhofer IWS Dresden, pp 52–53Google Scholar
  57. Schneider D, Franke K (1990) Anwendung interdigitaler Oberflächenwellenwandler für die zertörungsfreie Werkstoffprüfung. Feingerätetechnik 39:117–120Google Scholar
  58. Schneider D, Schwarz T (1997) A photoacoustic method for characterizing thin films. Surf Coat Technol 91:136–146CrossRefGoogle Scholar
  59. Schneider D, Herrmann K, Brenner B, Schläfer D, Winderlich B (1986) Investigation of the influence of grinding on regions near the surface by ultrasonic surface waves. Cryst Res Technology 21:897–905CrossRefGoogle Scholar
  60. Schneider D, Schwarz T, Schultrich B (1992) Determination of elastic modulus and thickness of surface layers by ultrasonic surface waves. Thin Solid Films 219:92–102CrossRefGoogle Scholar
  61. Schneider D, Schwarz T, Buchkremer HP, Stöver D (1993) Non-destructive characterization of plasma-sprayed ZrO2 coatings by ultrasonic surface waves. Thin Solid Films 224:177–183CrossRefGoogle Scholar
  62. Schneider D, Schwarz T, Scheibe HJ, Panzner M (1997) Non-destructive evaluation of diamond and diamond-like carbon films by laser induced surface acoustic waves. Thin Solid Films 295:107–116CrossRefGoogle Scholar
  63. Schneider D, Schultrich B, Scheibe HJ, Ziegele H, Griepentrog M (1998a) A laser-acoustic method for testing and classifying hard surface layers. Thin Solid Films 332:157–163CrossRefGoogle Scholar
  64. Schneider D, Meyer CF, Mai H, Schöneich B, Ziegele H, Scheibe HJ, Lifshitz Y (1998b) Nondestructive evaluation of diamond and diamond-like carbon films by laser induced surface acoustic waves. Diam Relat Mater 7:973–980CrossRefGoogle Scholar
  65. Schneider D, Hammer R, Jurisch M (1999) Non-destructive testing of damage layers in GaAs wafers by surface acoustic waves. Semicond Sci Technol 14:93–98.  https://doi.org/10.1088/0268-1242/14/1/015CrossRefGoogle Scholar
  66. Schneider D, Siemroth P, Schuelke T, Berthold J, Schultrich B, Schneider HH, Ohr R, Petereit B, Hillgers H (2002a) Quality control of ultra-thin and super-hard coatings by laser-acoustics. Surf Coat Technol 153:252–260.  https://doi.org/10.1016/S0257-8972(01)01664-4CrossRefGoogle Scholar
  67. Schneider D, Stiehl E, Hammer R, Franke A, Riegert R, Schuelke T (2002b) Nondestructive testing of damage layers in semiconductor materials by surface acoustic waves. Proc SPIE 4692:195–203.  https://doi.org/10.1117/12.475660CrossRefGoogle Scholar
  68. Schneider D, Frühauf S, Schulz SE, Gessner T (2005) The current limits of the laser-acoustic test method to characterize low-k films. Microelectron Eng 82:393–398.  https://doi.org/10.1016/j.mee.2005.07.073CrossRefGoogle Scholar
  69. Schneider D, Hofmann R, Schwarz T, Grosser T, Hensel E (2012) Evaluating surface hardened steels by laser-acoustics. Surf Coat Technol 206:2079–2088.  https://doi.org/10.1016/j.surfcoat.2011.09.017CrossRefGoogle Scholar
  70. Schuelke T, Anders A, Siemroth P (1997) Macroparticle filtering of high-current vacuum arc plasmas. IEEE Trans Plasma Sci 25:660–664.  https://doi.org/10.1109/27.640681CrossRefGoogle Scholar
  71. Schuelke T, Witke T, Scheibe HJ, Siemroth P, Schultrich B, Zimmer O, Vetter J (1999) Comparison of DC and AC arc thin film deposition techniques. Surf Coat Technol 120–121:226–232CrossRefGoogle Scholar
  72. Schultrich B, Scheibe HJ, Grandremy G, Drescher D, Schneider D (1996) Elastic modulus as a measure of the diamond likeness and hardness of amorphous carbon films. Diam Relat Mater 5:914–918CrossRefGoogle Scholar
  73. Schulz H (2005) Amorphe Kohlenstoffschichten hergestellt mittels Laser-Arc Verfahren unter besonderer Berücksichtigung der Oberflächentopographie zur Herstellung superhydrophober Oberflächen. PhD Thesis, TU Dresden, Fakultät MaschinenwesenGoogle Scholar
  74. Shan Q, Jawad SM, and Dewhurst RJ (1993) An automatic stabilization system for a confocal Fabry-Perot interferometer used in the detection of laser-generated ultrasound. Ultrasonics 31:105–115CrossRefGoogle Scholar
  75. Silva SR, Xu S, Tay BK, Tan HS, Scheibe HJ, Chhowalla M, Milne WI (1996) The structure of tetrahedral amorphous carbon thin films. Thin Solid Films 290:317–322CrossRefGoogle Scholar
  76. Singer F, Kufner M (2017) Model based laser-ultrasound determination of hardness gradients of gascarburized steel. NDT&E Int 88:24–32CrossRefGoogle Scholar
  77. Szabo TL, Slobodnik AL (1973) The effect of diffraction on the design of acoustic surface wave devices. IEEE Trans Sonics Ultrason 20:240–251CrossRefGoogle Scholar
  78. Thomson WT (1950) Transmission of elastic waves through a stratified solid medium. J Appl Phys 21:89–93.  https://doi.org/10.1063/1.1699629MathSciNetCrossRefMATHGoogle Scholar
  79. White RM (1963) Generation of elastic waves by transient surface heating. J Appl Phys 34:3559–3567.  https://doi.org/10.1063/1.1729258CrossRefGoogle Scholar
  80. White RM (1970) Surface elastic waves. Proc IEEE 58:1238–1276CrossRefGoogle Scholar
  81. Whitman RL, Korpel A (1969) Probing of acoustic surface perturbations by coherent light. Appl Opt 8:1567–1576CrossRefGoogle Scholar
  82. Wienss A, Persch-Schuy G, Vogelgesang M, Hartmann U (1999) Scratching resistance of diamond-like carbon coatings in the subnanometer regime. Appl Phys Lett 75:1077:1079CrossRefGoogle Scholar
  83. Willems H (1991) Nondestructive determination of hardening depth in induction hardened components by ultrasonic backscattering. In: Thompson DO, Chimenti DE (eds) Review of progress in quantitative non-destructive evaluation, vol 10B. Plenum Press, New York, pp 1707–1713CrossRefGoogle Scholar
  84. Xiao X, You X (2006) Numerical study on surface acoustic wave method for determining Young’s modulus of low-k films involved in multi-layered structures. Appl Surf Sci 253:2958–2963CrossRefGoogle Scholar
  85. Xiao X, Qi H, Tao Y, Kikkawal T (2016) Study on the interfacial adhesion property of low-k thin film by the surface acoustic waves with cohesive zone model. Appl Surf Sci 388:448–454CrossRefGoogle Scholar
  86. Zinin P, Lefeuvre O, Briggs GAD, Zeller D, Cawley P, Kinloch AJ (1997) Anomalous behaviour of leaky surface waves for stiffening layer near cutoff. J Appl Phys 82:1031–1035CrossRefGoogle Scholar
  87. Zinin P, Manghnani MH, Zhang X, Feldermann H, Ronning C, Hofsäss H (2002) Surface Brillouin scattering of cubic boron nitride films. J Appl Phys 91:4196–4204CrossRefGoogle Scholar

Reprinted from the Following Publications with Permission from Elsevier

  1. Leonhardt M, Schneider D, Kaspar J, Schenk S (2004) Characterizing the porosity in thin titanium films by laser-acoustics. Surf Coat Technol 185:292–302. Elsevier Reuse License Number 4186960496489Google Scholar
  2. Paehler D, Schneider D, Herben M (2007) Nondestructive characterization of sub-surface damage in rotational ground silicon wafers by laser acoustics. Microelectron Eng 84:340–354.  https://doi.org/10.1016/j.mee.2006.11.001. Elsevier Reuse License Number 4187020428836
  3. Schneider D, Schwarz T (1997) A photoacoustic method for characterizing thin films. Surf Coat Technol 91:136–146. Elsevier Reuse License Number 4160710855584Google Scholar
  4. Schneider D, Schwarz T, Scheibe HJ, Panzner M (1997) Non-destructive evaluation of diamond and diamond-like carbon films by laser induced surface acoustic waves. Thin Solid Films 295:107–116. Elsevier Reuse License Number 4164621126820Google Scholar
  5. Schneider D, Schultrich B, Scheibe HJ, Ziegele H, Griepentrog M (1998) A laser-acoustic method for testing and classifying hard surface layers. Thin Solid Films 332:157–163. Elsevier Reuse License Number 4187021304650Google Scholar
  6. Schneider D, Siemroth P, Schuelke T, Berthold J, Schultrich B, Schneider HH, Ohr R, Petereit B, Hillgers H (2002) Quality control of ultra-thin and super-hard coatings by laser-acoustics. Surf Coat Technol 153:252–260.  https://doi.org/10.1016/S0257-8972(01)01664-4. Elsevier Reuse License Number 4186911186263
  7. Schneider D, Frühauf S, Schulz SE, Gessner T (2005) The current limits of the laser-acoustic test method to characterize low-k films. Microelectron Eng 82:393–398.  https://doi.org/10.1016/j.mee.2005.07.073. Elsevier Reuse License Number 4186910426737
  8. Schneider D, Hofmann R, Schwarz T, Grosser T, Hensel E (2012) Evaluating surface hardened steels by laser-acoustics. Surf Coat Technol 206:2079–2088.  https://doi.org/10.1016/j.surfcoat.2011.09.017. Elsevier Reuse License Number 4187020878545

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Fraunhofer Institute for Material and Beam Technology (IWS)DresdenGermany

Section editors and affiliations

  • Ida Nathan
    • 1
  • Norbert Meyendorf
    • 2
  1. 1.Department of Electrical and Computer EngineeringUniversity of AkronAkronUSA
  2. 2.Center for Nondestructive EvaluationIowa State UniversityAmesUSA

Personalised recommendations