Advertisement

Eddy Current Tomography

  • Antonello TamburrinoEmail author
  • Guglielmo Rubinacci
Living reference work entry

Abstract

In eddy current tomography, the conductivity profile of conductive materials is reconstructed through the inversion of eddy current data (ECT). The state of the art of imaging methods in ECT data inversion is represented by iterative methods, the drawbacks of which are their high computational cost and the risk of becoming trapped in false solutions (local minima). In this chapter, we discuss the “Monotonicity Principle Method,” a fast non-iterative approach recently developed for elliptic problems (such as electrical resistance tomography) and then extended to parabolic problems (such as eddy current tomography) and hyperbolic problems (such as microwave tomography).

This chapter discusses the main features of the Monotonicity Principle in eddy current testing. Specifically, section “Monotonicity Principle for Eddy Current Imaging in the Large Skin-Depth Regime” discusses the Monotonicity Principle for eddy current testing in the “large” skin-depth regime, then section “Imaging Method” introduces the related imaging method (Monotonicity Principle Imaging Method, MPIM), and section “Monotonicity Principle for Eddy Currents in Other Settings” introduces other setting where Monotonicity Principle holds and MPIM can be applied.

Notes

Acknowledgments

Part of this work has been reproduced from (Tamburrino et al., 2010), (Tamburrino et al., 2012), (Su et al., 2017b) and (Tamburrino et al., 2016) with the permission of the Publishers. The Authors are grateful to the Publishers.

References

  1. Abu-Nabah BA, Nagy PB (2006) Iterative inversion method for eddy current profiling of near-surface residual stress in surface-treated metals. NDT & E Int 39(8):641–651CrossRefGoogle Scholar
  2. Ammari H, Iakovleva E, Lesselier D (2005) A music algorithm for locating small inclusions buried in a half-space from the scattering amplitude at a fixed frequency. Multiscale Model Simul 3(3): 597–628MathSciNetzbMATHCrossRefGoogle Scholar
  3. Aykroyd RG, Soleimani M, Lionheart WRB (2005) Full shape reconstruction from partial ERT monotonicity information using a Bayes-MCMC approach. In: Proceedings of the 4th world congress in industrial process tomography, International Society for Industrial Process Tomography, Japan, pp 697–702Google Scholar
  4. Badics Z, Pávó J, Komatsu H, Kojima S, Matsumoto Y, Aoki K (1998) Fast flaw reconstruction from 3D eddy current data. IEEE Trans Magn 34(5):2823–2828CrossRefGoogle Scholar
  5. Bowler J (2002) Thin-skin eddy-current inversion for the determination of crack shapes. Inverse Probl 18(6):1891–1905MathSciNetzbMATHCrossRefGoogle Scholar
  6. Calvano F, Caturano G, Cavaccini G, Rubinacci G, Tamburrino A, Ventre S (2010) Crack shape reconstruction from ect using topology constrained optimization (TOPCSA) algorithms. Stud Appl Electromagn Mech 33:230–237Google Scholar
  7. Colton D, Kirsch A (1996) A simple method for solving inverse scattering problems in the resonance region. Inverse Probl 12(4):383–393MathSciNetzbMATHCrossRefGoogle Scholar
  8. Devaney AJ (2000) Super-resolution processing of multi-static data using time reversal and music. Northeastern University Preprint. http://ece.neu.edu/fac-ece/devaney/preprints/paper02n_00.pdf
  9. Dorn O, Lesselier D (2009) Level set methods for inverse scattering – some recent developments. Inverse Probl 25(12):125001MathSciNetzbMATHCrossRefGoogle Scholar
  10. Flores-Tapia D, Pistorius S (2010) Electrical impedance tomography reconstruction using a monotonicity approach based on a priori knowledge. In: 2010 Annual international conference of the IEEE Engineering in Medicine and Biology Society, EMBC’10, pp 4996–4999Google Scholar
  11. Flores-Tapia D, O’Halloran M, Pistorius S (2011) A bimodal reconstruction method for breast cancer imaging. Prog Electromagn Res 118:461–486CrossRefGoogle Scholar
  12. Garde H (2018) Comparison of linear and non-linear monotonicity-based shape reconstruction using exact matrix characterizations. Inverse Probl Sci Eng 26(1):33–50MathSciNetzbMATHCrossRefGoogle Scholar
  13. Garde H, Staboulis S (2017) Convergence and regularization for monotonicity-based shape reconstruction in electrical impedance tomography. Numer Math 135(4):1221–1251MathSciNetzbMATHCrossRefGoogle Scholar
  14. Hanke M, Brühl M (2003) Recent progress in electrical impedance tomography. Inverse Probl 19(6):S65–S90MathSciNetzbMATHCrossRefGoogle Scholar
  15. Harrach B, Ullrich M (2013) Monotonicity-based shape reconstruction in electrical impedance tomography. SIAM J Math Anal 45(6):3382–3403MathSciNetzbMATHCrossRefGoogle Scholar
  16. Harrach B, Ullrich M (2015) Resolution guarantees in electrical impedance tomography. IEEE Trans Med Imaging 34(7):1513–1521CrossRefGoogle Scholar
  17. Harrach B, Lee E, Ullrich M (2015) Combining frequency-difference and ultrasound modulated electrical impedance tomography. Inverse Probl 31(9):095003MathSciNetzbMATHCrossRefGoogle Scholar
  18. Isakov V (1993) Uniqueness and stability in multi-dimensional inverse problems. Inverse Probl 9(6):579–621MathSciNetzbMATHCrossRefGoogle Scholar
  19. Kirsch A (1998) Characterization of the shape of a scattering obstacle using the spectral data of the far field operator. Inverse Probl 14(6):1489–1512MathSciNetzbMATHCrossRefGoogle Scholar
  20. Li Y, Udpa L, Udpa SS (2004) Three-dimensional defect reconstruction from eddy-current NDE signals using a genetic local search algorithm. IEEE Trans Magn 40(2):410–417CrossRefGoogle Scholar
  21. Lionheart WRB, Soleimani M, Peyton AJ (2003) Sensitivity analysis of 3D magnetic induction tomography (MIT). In: Proceedings of the 3rd world congress on industrial process tomography, International Society for Industrial Process Tomography, Canada, pp 239–244Google Scholar
  22. Luong B, Santosa F (1998) Quantitative imaging of corrosion in plates by eddy current methods. SIAM J Appl Math 58(5):1509–1531MathSciNetzbMATHCrossRefGoogle Scholar
  23. Maffucci A, Vento A, Ventre S, Tamburrino A (2016) A novel technique for evaluating the effective permittivity of inhomogeneous interconnects based on the monotonicity property. IEEE Transactions on Components, Packaging and Manufacturing Technology 6(9):1417–1427CrossRefGoogle Scholar
  24. Nair S, Rose JH (1990) Reconstruction of three-dimensional conductivity variations from eddy current (electromagnetic induction) data. Inverse Probl 6(6):1007zbMATHCrossRefGoogle Scholar
  25. Norton SJ, Bowler JR (1993) Theory of eddy current inversion. J Appl Phys 73(2):501–512CrossRefGoogle Scholar
  26. Pirani A, Ricci M, Specogna R, Tamburrino A, Trevisan F (2008) Multi-frequency identification of defects in conducting media. Inverse Probl 24(3):035011MathSciNetzbMATHCrossRefGoogle Scholar
  27. Premel D, Baussard A (2002) Eddy-current evaluation of three-dimensional flaws in flat conductive materials using a bayesian approach. Inverse Probl 18(6):1873MathSciNetzbMATHCrossRefGoogle Scholar
  28. Qi-Nian J (2000) On the iteratively regularized gauss-newton method for solving nonlinear ill-posed problems. Math Comput 69(232):1603–1623MathSciNetzbMATHCrossRefGoogle Scholar
  29. Soleimani M, Lionheart WRB (2006) Absolute conductivity reconstruction in magnetic induction tomography using a nonlinear method. IEEE Trans Med Imaging 25(12):1521–1530CrossRefGoogle Scholar
  30. Stolzenburg JC, Doane JW, Jarzynski J, Jacobs LJ (2003) Near field inversion method to measure the material properties of a layer. NDT & E Int 36(7):523–533CrossRefGoogle Scholar
  31. Su Z, Udpa L, Giovinco G, Ventre S, Tamburrino A (2017a) Monotonicity principle in pulsed eddy current testing and its application to defect sizing. In: Proceedings of the 2017 International Applied Computational Electromagnetics Society (ACES) symposium, Institute of Electrical and Electronics Engineers Inc., Italy, pp 1–2Google Scholar
  32. Su Z, Ventre S, Udpa L, Tamburrino A (2017b) Monotonicity based imaging method for time-domain eddy current problems. Inverse Probl 33(12):125007MathSciNetzbMATHCrossRefGoogle Scholar
  33. Su Z, Ye C, Giovinco G, Ventre S, Udpa L, Tamburrino A (2018) Evaluation of electrical conductivity of metals via monotonicity of time constants. Stud Appl Electromagn Mech 43:88–95Google Scholar
  34. Tamburrino A (2006) Monotonicity based imaging methods for elliptic and parabolic inverse problems. J Inverse Ill-Posed Probl 14(6):633–642MathSciNetzbMATHCrossRefGoogle Scholar
  35. Tamburrino A, Rubinacci G (2002) A new non-iterative inversion method for electrical resistance tomography. Inverse Probl 18(6):1809–1829MathSciNetzbMATHCrossRefGoogle Scholar
  36. Tamburrino A, Rubinacci G (2006) Fast methods for quantitative eddy-current tomography of conductive materials. IEEE Trans Magn 42(8):2017–2028CrossRefGoogle Scholar
  37. Tamburrino A, Ventre S, Rubinacci G (2010) Recent developments of a monotonicity imaging method for magnetic induction tomography in the small skin-depth regime. Inverse Probl 26(7):074016zbMATHCrossRefGoogle Scholar
  38. Tamburrino A, Calvano F, Ventre S, Rubinacci G (2012) Non-iterative imaging method for experimental data inversion in eddy current tomography. NDT & E Int 47:26–34CrossRefGoogle Scholar
  39. Tamburrino A, Barbato L, Colton D, Monk P (2015) Imaging of dielectric objects via monotonicity of the transmission eigenvalues. In: Proceedings of the 12th international conference on mathematical and numerical aspects of wave propagation, Karlsruhe, pp 99–100Google Scholar
  40. Tamburrino A, Vento A, Ventre S, Maffucci A (2016) Monotonicity imaging method for flaw detection in aeronautical applications. Stud Appl Electromagn Mech 41:284–292Google Scholar
  41. Wallinger C, Watzenig D, Steiner G, Brandst¨atter B (2009) Adaptive monotonicity method for permittivity imaging. COMPEL 28(4):892–906zbMATHCrossRefGoogle Scholar
  42. Yamamoto M (1997) A mathematical aspect of inverse problems for non-stationary Maxwell’s equations. Int J Appl Electromagn Mech 8(1):77–98Google Scholar
  43. Yin W, Dickinson SJ, Peyton AJ (2005) Imaging the continuous conductivity profile within layered metal structures using inductance spectroscopy. IEEE Sensors J 5(2):161–166CrossRefGoogle Scholar
  44. Yusa N, Cheng W, Uchimoto T, Miya K (2002) Profile reconstruction of simulated natural cracks from eddy current signals. NDT & E Int 35(1):9–18CrossRefGoogle Scholar
  45. Yusa N, Chen Z, Miya K, Uchimoto T, Takagi T (2003) Large-scale parallel computation for the reconstruction of natural stress corrosion cracks from eddy current testing signals. NDT & E Int 36(7):449–459CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Electrical and Information EngineeringUniversità degli Studi di Cassino e del Lazio MeridionaleCassinoItaly
  2. 2.Department of Electrical and Computer EngineeringMichigan State UniversityEast LansingUSA
  3. 3.Department of Electrical Engineering and Information TechnologyUniversità degli Studi di Napoli Federico IINapoliItaly

Section editors and affiliations

  • Nathan Ida
    • 1
  • Norbert Meyendorf
    • 2
  1. 1.Department of Electrical and Computer EngineeringUniversity of AkronAkronUSA
  2. 2.Center for Nondestructive EvaluationIowa State UniversityAmesUSA

Personalised recommendations