Advertisement

Local Acoustic Resonance Spectroscopy

  • Christian U. Grosse
  • Anne Jüngert
  • Philipp Jatzlau
Living reference work entry

Abstract

The local acoustic resonance spectroscopy (LARS) is a novel nondestructive testing (NDT) technique that is based on the well-known coin-tapping test. This rather old test utilizes the effect that a defect (such as a large void, crack, or delamination), that is invisible from the surface, causes a change of acoustic waves emitted from the structure as a person taps on it – e.g., using a coin or a small hammer. This procedure has obvious drawbacks as it depends strongly on the skills – tapping correctly and listening carefully to the sound emitted – of an experienced person who needs to apply this simple technique by hand being close to the structure. Proper interpretation of the emitted sound is often difficult – even for experienced investigators. However, the benefits of easy implementation, relatively fast surveying, and cost-efficiency are evident as well. This was the motivation for the instrumentation of this technique, where all steps are automated, including a contact-free recording microphone and a robot-based instrumented excitation of the component under test. The technique can be locally applied to structures constructed from fiber-reinforced polymers and uses the acoustic waves that are analyzed in the frequency domain according to resonance peak content. For industrial applications, LARS can be used as a rapid but reliable NDT technique to obtain an initial overview about larger defects in a structure prior to implementing more detailed investigations, thus raising the escalation level of quality control.

References

  1. Abrate S (2005) Impact on composite structure. Cambridge University Press, CambridgeGoogle Scholar
  2. Andreisek G, Korthals D, Grosse CU, Seeber BU (2016) The virtual tap test – a training system for wind turbine rotor blade inspectors. In: Proceedings of the 19th world conference on non-destructive testing. WCNDT 2016, Th.4.E.3. pp 1–7Google Scholar
  3. Andreisek G, Grosse CU, Seeber BU (2015) Attribute zur Beschreibung akustischer Unterschiede von Fehlstellen an Rotorblättern von Windenergieanlagen. Fortschritte der Akustik – DAGA ’15. Dt. Ges. f. Akustik, Berlin, pp 513–515Google Scholar
  4. Carino NJ, Sansalone M, Hsu NN (1986) A point source−point receiver technique for flaw detection in concrete. J Am Conc Inst 83(2):199–208Google Scholar
  5. Cawley P, Adams RD (1988) The mechanics of the coin-tap method of non-destructive testing. J Sound Vib 122:299–316CrossRefGoogle Scholar
  6. Gibson A, Popovics JS (2005) Lamb wave basis for impact-echo method analysis. ASCE J Eng Mech 131:438–443CrossRefGoogle Scholar
  7. Groschup R, Grosse CU (2015) MEMS microphone Array sensor for air-coupled impact-Echo. Sensors 15:14932–14945.  https://doi.org/10.3390/s150714932CrossRefGoogle Scholar
  8. Grosse CU, Goldammer M, Grager JC, Heichler G, Jahnke P, Jatzlau P, Kiefel D, Mosch M, Oster R, Sause MGR, Stößel R, Ulrich M (2016) Comparison of NDT Techniques to Evaluate CFRC – Results Obtained in a MAIzfp Round Robin Test. In: Proceedings of the world conference on NDT. German Society of NDT, MünchenGoogle Scholar
  9. Ham S, Popovics J (2015) Application of micro-electro-mechanical sensors contactless NDT of concrete structures. Sensors 15:9078–9096CrossRefGoogle Scholar
  10. Hertz H (1881) Über die Berührung fester elastischer Körper. Journal für reine und angewandte Mathematik 92:156–171zbMATHGoogle Scholar
  11. Hornfeck C, Geiss C, Rücker M, Grosse CU (2015) Comparative study of state of the art nondestructive testing methods with the local acoustic resonance spectroscopy to detect damages in GFRP. J Nondestruct Eval 34(2):1–14CrossRefGoogle Scholar
  12. Jatzlau P, Müller M, Grosse CU (2016) Identification of flawed CFRP samples using local acoustic resonance spectroscopy (LARS). In: Proceedings of the 19th world conference on non-destructive testing, WCNDT 2016, NDT.net. 8p
  13. Jüngert A (2010) Untersuchung von GFK Bauteilen mit akustischen Verfahren am Beispiel der Rotorblätter von Windenergieanlagen. Ph.D. Thesis, University of Stuttgart, 179pGoogle Scholar
  14. Jüngert A, Grosse CU, Krüger M (2013) Local acoustic resonance spectroscopy (LARS) for glass Fiber-reinforced polymer applications. J Nondestruct Eval 33(1):23–33CrossRefGoogle Scholar
  15. Landau LD, Lifschitz EM (1989) Lehrbuch der Theoretischen Physik, Bd. VII Elastizitätstheorie, 6. Aufl. Akademie-Verlag (Berlin), 223pGoogle Scholar
  16. McLaskey G, Glaser SD (2010) Hertzian impact: experimental study of the force pulse and resulting stress waves. J Acoust Soc Am 128(3):1087–1096CrossRefGoogle Scholar
  17. Mitsuhashi K, Jyomuta C, Oka F, Nishikawa H (1989) Method and apparatus for impact-type inspection of structures. US Patent No 05,048,320Google Scholar
  18. Müller M (2015) Möglichkeiten und Grenzen von Resonanzanalyseverfahren zur zerstörungsfreien Prüfung von Faser-Kunststoff-Verbunden. Bachelor Thesis, Technical Univ. of Munich, Chair of Non-destructive Testing, 145pGoogle Scholar
  19. Narr A (2017) Einfluss von impact-Schäden bei der experimentellen Modalanalyse von CFK-Platten. Bachelor thesis, Technical University of Munich, chair of non-destructive testing, 131pGoogle Scholar
  20. Olympus (2010) Bondmaster 1000+ − multimode adhesive bond testing application guide. Olympus, TokyoGoogle Scholar
  21. Sansalone MJ, Carino NJ (1986) Impact-echo: a method for flaw detection in concrete using transient stress waves. In: National Bureau of Standards. NISEE, BerkeleyGoogle Scholar
  22. Sansalone MJ, Streett W (1997) Impact-Echo: nondestructive evaluation of concrete and masonry. Bullbrier Press, Jersey ShoreGoogle Scholar
  23. Schickert M, Neisecke J, Brameshuber W, Colla C, Flohrer C, Gardei A, Grosse CU, Krause M, Kroggel O, Krüger M, Willmes M (2009) DGZfP Merkblatt B11 – a guideline describing fundamentals and applications of the impact-Echo method, international symposium Non-Destructive Testing in Civil Engineering (NDT-CE), ISBN: 978-2-7208-2542-5, Nantes, pp 807–811Google Scholar
  24. Shi X, Polycarpou AA (2005) Measurement and modeling of normal contact stiffness and contact damping at the Meso scale. J Vib Acoust 127:52–60CrossRefGoogle Scholar
  25. Vandewalle N (2017) Local acoustic resonance spectroscopy. Non-destructive defect detection for carbon fiber reinforced composites, research internship report (PRE) at TU Munich, ENSTA ParisTech, 43pGoogle Scholar
  26. Wolffhugel T (2016) Local acoustic resonance spectroscopy. Research internship report (PRE) at TU Munich, ENSTA ParisTech, 67pGoogle Scholar
  27. Zhu JY, Popovics JS (2007) Imaging concrete structures using air-coupled impact-echo. ASCE J Eng Mech 133:628–640CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Christian U. Grosse
    • 1
  • Anne Jüngert
    • 2
  • Philipp Jatzlau
    • 1
  1. 1.Center for Building Materials, Chair of Non-destructive TestingTechnical University of MunichMünchenGermany
  2. 2.University of StuttgartStuttgartGermany

Section editors and affiliations

  • Ida Nathan
    • 1
  • Norbert Meyendorf
    • 2
  1. 1.Department of Electrical and Computer EngineeringUniversity of AkronAkronUSA
  2. 2.Center for Nondestructive EvaluationIowa State UniversityAmesUSA

Personalised recommendations