Advertisement

Neonatology pp 2295-2314 | Cite as

The Timing of Neonatal Brain Damage

  • Serafina Perrone
  • Giuseppe Buonocore
Reference work entry

Abstract

Brain injury in newborns is a complex process involving multiple pathways, which may complicate the determination of timing of the injury and the early identification of infants at risk for neonatal encephalopathy. Much of the injury occurs before birth and may be the result of more than a single injury. An abnormal insult applied to a critical point in intrauterine life determines permanent changes in phenotype disrupting the normal fetal development and leading to fetal programming of diseases. Additionally, brain development, including maturation and structure, may render the baby more or less susceptible to perinatal injury. At present there is no universal agreement on objective laboratory biomarkers as a gold standard to support the diagnosis of perinatal asphyxia. Placental findings can serve as markers for processes occurring in the mother or fetus. An expert assessment of the placental pathology can provide temporally and mechanistically specific data not available from any other source. Magnetic resonance imaging (MRI) of the infants with neonatal encephalopathy is very contributive to elucidate the mechanism and timing of asphyxia in conjunction with the clinical examination.

Evidence of multi-organ failure in infants with severe encephalopathy is helpful and used as an additional diagnostic criterion in the recognition of the hypoxic–ischemic insult; however, it is not specific or essential. Several tissue biomarkers suggestive of brain injury in newborns with neonatal encephalopathy have been identified; however, they are not still validated as useful in clinical practice.

In the event of newborn with clinical signs of perinatal hypoxia at birth, it is necessary to have access to a readable cardiotocography, a well-documented partogram, a complete analysis of umbilical cord gases, a placental pathology, and an extensive clinical work-up of the newborn infant including cerebral MRI. Placental histologic examination should be required in order to confirm sudden catastrophic events occurring before or during labor or to detect occult thrombotic processes affecting the fetal circulation, patterns of decreased placental reserve, and adaptive responses to chronic hypoxia.

References

  1. Abend NS, Wusthoff CJ (2012) Neonatal seizures and status epilepticus. J Clin Neirophysiol 29(5):441–448CrossRefGoogle Scholar
  2. Altshuler G, Arizawa M, Molnar-Nadasdy G (1992) Meconium induced umbilical cord vascular necrosis and ulceration: a potential link between the placenta and poor pregnancy outcome. Obstet Gynecol 79:760–766PubMedGoogle Scholar
  3. Ambalavanan N, Carlo WA, Shankaran S et al (2006) Predicting outcomes of neonates diagnosed with hypoxemic-ischemic encephalopathy. Pediatrics 118:2084–2093PubMedCrossRefGoogle Scholar
  4. American College of Obstetricians and Gynecologists, American Academy of Pediatricians (2003) Criteria required to define an acute intrapartum hypoxic event as sufficient to cause cerebral palsy. In: Van Eerden P, Bernstein PS (eds) Neonatal encephalopathy and cerebral palsy. ACOG, Washington, DC, pp 73–80Google Scholar
  5. Arduini D, Rizzo G (1990) Normal values of Pulsatility index from fetal vessels: a cross-sectional study on 1556 healthy fetuses. J Perinat Med 18:165–172PubMedCrossRefGoogle Scholar
  6. Badawi N, Kurinczuk JJ, Keogh JM et al (1998a) Intrapartum risk factors for newborn encephalopathy: the western Australian case-control stdy. BMJ 317:1554–1558PubMedPubMedCentralCrossRefGoogle Scholar
  7. Badawi N, Kurinczuk JJ, Keogh JM et al (1998b) Antepartum risk factors for newborn encephalopathy: the western Australian case-control study. BMJ 317:1549–1553PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bapat R, Narayana PA, Zhou Y, Parikh NA (2014) Magnetic resonance spectroscopy at term-equivalent age in extremely preterm infants: association with cognitive and language development. Pediatr Neurol 51(1):53–59PubMedPubMedCentralCrossRefGoogle Scholar
  9. Barbrese E, Barry C, Chou CH et al (1988) Expression and localization of myelin basic protein in oligodendrocytes and transfected fibroblasts. J Neurochem 51:1737–1745CrossRefGoogle Scholar
  10. Barkovich AJ (2006) A magnetic resonance approach to metabolic disorders in childhood. Rev Neurol 43:S5–S16PubMedGoogle Scholar
  11. Berger RP, Adelson PD, Pierce MC, Dulani T, Cassidy LD, Kochanek PM (2005) Serum neuron-specific enolase, S100B, and myelin basic protein concentrations after inflicted and noninflicted traumatic brain injury in children. J Neurosurg 103(1 Suppl):61–68. [PubMed PMID: 16122007. Epub 2005/08/27. eng]PubMedGoogle Scholar
  12. Blackwell SC, Refuerzo JS, Wolfe HM et al (2000) The relationship between nucleated red blood cell counts and early-onset neonatal seizures. Am J Obstet Gynecol 182:1452–1457PubMedCrossRefGoogle Scholar
  13. Blackwell SC, Hallak M, Hotra JW et al (2004) Timing of fetal nucleated red blood cell count elevation in response to acute hypoxia. Biol Neonate 85:217–220PubMedCrossRefGoogle Scholar
  14. Blennow M, Savman K, Ilves P et al (2001) Brain-specific proteins in the cerebrospinal fluid of severely asphyxiated newborn infants. Acta Paediatr 90:1171–1175PubMedCrossRefGoogle Scholar
  15. Bondurant MC, Lind RN, Koury MJ, Ferguson ME (1985) Control of globin gene transcription by erythropoietin in erythroblasts from fried virus-infected mice. Mol Cell Biol 5:675–683PubMedPubMedCentralCrossRefGoogle Scholar
  16. Boog G (2004) Microdosage rapide des lactates au sang du cordon et au scalp foetal. Gynecol Obstet Fertil 32:241–244PubMedCrossRefGoogle Scholar
  17. Brand-Niebelschutz S, Saling E (1994) Indication for operative termination of labor on cardiotocography and fetal blood analysis: the reliability of these methods. J Perinat Med 22:19–27CrossRefGoogle Scholar
  18. Buonocore G, Perrone S, Gioia D et al (1999) Nucleated red blood cell count at birth as an index of perinatal brain damage. Am J Obstet Gynecol 181:1500–1505PubMedCrossRefGoogle Scholar
  19. Buonocore G, Perrone S, Longini M et al (2003) Non protein bound iron as predictive marker of neonatal brain damage. Brain 126:1–7CrossRefGoogle Scholar
  20. Celtik C, Acunas B, Oner N, Pala O (2004) Neuron-specific enolase as a marker of the severity and outcome of hypoxic ischemic encephalopathy. Brain Dev 26(6):398–402. [PubMed PMID: 15275704. Epub 2004/07/28. eng]PubMedCrossRefGoogle Scholar
  21. Chau V, McFadden DE, Poskitt KJ, Miller SP (2013) Chorioamnionitis in the pathogenesis of brain injury in preterm infants. Clin Perinatol 41(1):83–103PubMedCrossRefGoogle Scholar
  22. Chen H, Yang TT (2015) Expression and significance of serum miRNA-21 control HIF-1a in newborn with asphyxia, chin. J Child Health Care 23:32–34Google Scholar
  23. Chou YH, Tsou Yau KI, Wang PJ (1998) Clinical application of the measurement of cord plasma lactate and pyruvate in the assessment of high-risk neonates. Acta Paediatr 87:764–768PubMedCrossRefGoogle Scholar
  24. Chouthai N, Sampers N, Desai N et al (2003) Changes in neurotrophin levels in umbilical cord blood from infant with different gestational age and clinical conditions. Pediatr Res 53:965–969PubMedCrossRefGoogle Scholar
  25. Ciambra G, Arachi S, Protano C et al (2013) Accuracy of transcranial ultrasound in the detection of mild white matter lesions in newborns. Neuroradiol J 26:284–289PubMedPubMedCentralCrossRefGoogle Scholar
  26. Da Silva S, Hennerbert N, Denis R, Wayenberg JL (2000) Clinical value of a single postnatal lactate measurement after intrapartum asphyxia. Acta Paediatr 89:320–322PubMedCrossRefGoogle Scholar
  27. Dammann O, Leviton A (2004) Biomarker epidemiology of cerebral palsy. Ann Neurol 55:158–161PubMedCrossRefGoogle Scholar
  28. Davies L, McLeod JG, Muir A et al (1987) Diagnostic value of cerebrospinal fluid myelin basic protein in patients with neurological illness. Clin Exp Neurol 24:5–7PubMedGoogle Scholar
  29. Day IN, Thompson RJ (2010) UCHL1 (PGP 9.5): neuronal biomarker and ubiquitin system protein. Prog Neurobiol 90:327–362PubMedCrossRefGoogle Scholar
  30. Debieve F, Beerlandt S, Hubinont C, Thomas K (2000) Gonadotropins, prolactin, inhibin a, inhibin B, and activin a in human fetal serum from midpregnancy and term pregnancy. J Clin Endocrinol Metab 85:270–274PubMedCrossRefGoogle Scholar
  31. Deipolyi AR, Mukherjee P, Gill K et al (2005) Comparing microstructural and macrostructural development of the cerebral cortex in premature newborns: diffusion tensor imaging versus cortical gyration. NeuroImage 27:579–586PubMedCrossRefGoogle Scholar
  32. Delivoria-Papadopoulos M, Misbra OP (1998) Mechanisms of cerebral injury perinatal asphyxia and strategies for prevention. J Pediatr 132:S30–S34PubMedCrossRefGoogle Scholar
  33. Douglas-Escobar MV, Heaton SC, Bennett J et al (2014) UCH-L1 and GFAP serum levels in neonates with hypoxic-ischemic encephalopathy: a single center pilot study. Front Neurol 5:273PubMedPubMedCentralCrossRefGoogle Scholar
  34. Dubiel M, Seremak-Mrozikiewicz A, Breborowicz GH et al (2005) Fetal and maternal Doppler velocimetry and cytokines in high-risk pregnancy. J Perinat Med 33:17–21PubMedCrossRefGoogle Scholar
  35. Ennen CS, Huisman TA, Savage WJ, Northington FJ, Jennings JM, Everett AD et al (2011) Glial fibrillary acidic protein as a biomarker for neonatal hypoxic-ischemic encephalopathy treated with whole-body cooling. Am J Obstet Gynecol 205(3):251 e1–251 e7. [PubMed PMID: 21784396. Epub 2011/07/26. eng.]CrossRefGoogle Scholar
  36. Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post- transcriptional regulation by microRNA: are the answers in sight? Nat Rev Genet 9:102–114PubMedCrossRefGoogle Scholar
  37. Fily A, Pierrat V, Delporte V et al (2006) Factors associated with neurodevelopmental outcome at 2 years after very preterm birth: the population-based Nord-pas-de-Calais EPIPAGE cohort. Pediatrics 117:357–366PubMedCrossRefGoogle Scholar
  38. Florio P, Cobellis L, Luisi S et al (2001) Changes in inhibins and activin secretion in healthy and pathological pregnancies. Mol Cell Endocrinol 180:123–130PubMedCrossRefGoogle Scholar
  39. Florio P, Perrone S, Luisi S et al (2003) Activin a plasma levels at birth: an index of fetal hypoxia in preterm newborn. Pediatr Res 54:696–700PubMedCrossRefGoogle Scholar
  40. Florio P, Perrone S, Luisi S et al (2006) Increased plasma concentrations of activin a predict intraventricular hemorrhage in preterm newborns. Clin Chem 52:1516–1521PubMedCrossRefGoogle Scholar
  41. Fujii EY, Kozuki M, Mu J et al (2004) Correlation of neuron-specific enolase and S100B with histological cerebral damage in fetal sheep after severe asphyxia. Brain Res 1018:136–140PubMedCrossRefGoogle Scholar
  42. Gazzolo D, Vinesi P, Bartocci M et al (1999) Elevated S100 blood level as an early indicator of intraventricular hemorrhage in preterm infants. Correlation with cerebral Doppler velocimetry. J Neurol Sci 170:32–35PubMedCrossRefGoogle Scholar
  43. Gazzolo D, Bruschettini M, Lituania M et al (2001) Increased urinary S100B protein as an early indicator of intraventricular hemorrhage in preterm infants: correlation with the grade of hemorrhage. Clin Chem 47:1836–1838PubMedGoogle Scholar
  44. Gazzolo D, di Iorio R, Marinoni E et al (2002) S100B protein is increased in asphyxiated term infants developing intraventricular hemorrhage. Crit Care Med 30:1356–1360PubMedCrossRefGoogle Scholar
  45. Gazzolo D, Marinoni E, Di Lorio R et al (2006) High maternal blood S100B concentrations in pregnancies complicated by intrauterine growth restriction and intraventricular hemorrhage. Clin Chem 52:819–826PubMedCrossRefGoogle Scholar
  46. Girard N, Gire C, Sigandy S, Porcu G et al (2003) MR imaging of acquired fetal brain disorders. Childs Nerv Syst 19:490–500PubMedCrossRefGoogle Scholar
  47. Govaert P, De Vries LS (2010) An atlas of neonatal brain sonography, 2nd edn. Mac Keith Press, LondonGoogle Scholar
  48. Graca AM, Cardoso KR, da Costa JM et al (2013) Cerebral volume at term age: comparison between preterm and term-born infants using cranial ultrasound. Early Hum Dev 89:643–648PubMedCrossRefGoogle Scholar
  49. Graham EM, Ruis KA, Hartman AL et al (2008) A systematic review of the role of intrapartum hypoxia-ischemia in the causation of neonatal encephalopathy. Am J Obstet Gynecol 199:587–595PubMedCrossRefGoogle Scholar
  50. Graves CR (2007) Antepartum fetal surveillance and timing of delivery in the pregnancy complicated by diabetes mellitus. Clin Obstet Gynecol 50:1007–1013PubMedCrossRefGoogle Scholar
  51. Hagelin A, Leyon J (1998) The effect of labor on the acid-base status of the newborn. Acta Obstet Gynecol Scand 158:356–361Google Scholar
  52. Hay E, Royds JA, Davies-Jones GA, Lewtas NA, Timperley WR, Taylor CB (1984) Cerebrospinal fluid enolase in stroke. J Neurol Neurosurg Psychiatry 47(7):724–729. [PubMed PMID: 6747647. Pubmed Central PMCID: 1027902. Epub 1984/07/01. eng]PubMedPubMedCentralCrossRefGoogle Scholar
  53. Hellstrom-Westas L, de Vries LS, Rosen I (2008) Atlas of amplitude-integrated EEGs in the newborn, 2nd edn. Informa Healthcare, LondonCrossRefGoogle Scholar
  54. Hermansen MC (2001) Nucleated red blood cells in the fetus and newborn. Arch Dis Child Fetal Neonatal Ed 84:F211–F215PubMedPubMedCentralCrossRefGoogle Scholar
  55. Hu SJ, Cheng YW, Han ZL et al (2009) Serum level of mylin basic protein in hypoxic-ischemic encephalopathy neonates. Acta Acad med Qingdao Univ 45:63–64Google Scholar
  56. Hüppi PS, Dubois J (2006) Diffusion tensor imaging of brain development. Semin Fetal Neonatal Med 11:489–497PubMedCrossRefGoogle Scholar
  57. Imam SS, Gad GI, Aterf SH et al (2009) Gord blood brain derived neurotrophic factor: diagnostic and prognostic marker in full-term newborns with perinatal asphyxia. Pak J Biol Sci 12:1498–1504PubMedCrossRefGoogle Scholar
  58. Impey L, Greenwood C, MacQuillan K et al (2001) Fever in labour and neonatal encephalopathy: a prospective cohort study. Br J Obstet Gynecol 108:594–597Google Scholar
  59. Inder TE, Warfield SK, Wang H et al (2005) Abnormal cerebral structure is present at term in premature infants. Pediatrics 115:286–294PubMedCrossRefGoogle Scholar
  60. Jenkin G, Ward J, Hooper S et al (2001) Feto-placental hypoxemia regulates the release of fetal activin a and prostaglandin E (2). Endocrinology 142:963–966PubMedCrossRefGoogle Scholar
  61. Jun JK, Yoon BH, Romero R et al (2000) Interleukin 6 determinations in cervical fluid have diagnostic and prognostic value in preterm premature rupture of membranes. Am J Obstet Gynecol 183:868–873PubMedCrossRefGoogle Scholar
  62. Kaneko T, Kasaoka S, Miyauchi T, Fujita M, Oda Y, Tsuruta R et al (2009) Serum glial fibrillary acidic protein as a predictive biomarker of neurological outcome after cardiac arrest. Resuscitation 80(7):790–794. [PubMed PMID: 19411130. Epub 2009/05/05. eng]PubMedCrossRefGoogle Scholar
  63. Kaukola T, Satyaraj E, Patel DD (2004) Cerebral palsy is characterized by protein mediators in cord serum. Ann Neurol 55:186–194PubMedCrossRefGoogle Scholar
  64. Kotiranta-Ainamo A, Rautonen J, Rautonen N (2004) Imbalanced cytokine secretion in newborn. Biol Neonate 85:55–60PubMedCrossRefGoogle Scholar
  65. Kroenke CD, Bretthorst GL, Inder TE, Neil JJ (2006) Modeling water diffusion anisotropy within fixed newborn primate brain using Bayesian probability theory. Magn Reson Med 55:187–197PubMedCrossRefGoogle Scholar
  66. Kurinczuk JJ, White-Koning M, Badawi N (2010) Epidemiology of neonatal encephalopathy and hypoxic–ischaemic encephalopathy. Early Hum Dev 86:329–338CrossRefPubMedGoogle Scholar
  67. Kuypers E, Ophelders D, Jellema RK et al (2012) White matter injury following fetal inflammatory response syndrome induced by chorioamnionitis and fetal sepsis: lessons from experimental ovine models. Early Hum Dev 88(12):931–936PubMedCrossRefGoogle Scholar
  68. van Laerhoven H, de Haan TR, Offringa M, Post B, van der Lee JH (2013) Prognostic tests in term neonates with hypoxic-ischemic encephalopathy: a systematic review. Pediatrics 131(1):88–98PubMedCrossRefGoogle Scholar
  69. Leijser LM, de Vries LS, Cowan FM (2006) Using cerebral ultrasound effectively in the newborn infant. Early Hum Dev 82:827–835PubMedCrossRefGoogle Scholar
  70. Leonardo CC, Pennypacker KR (2009) Neuroinflammation and MMPs: potential therapeutic targets in neonatal hypoxic-ischemic injury. J Neuroinflammation 6:13PubMedPubMedCentralCrossRefGoogle Scholar
  71. Levene MI (1988) Cerebral ultrasound and neurological impairment: telling the future. Arch Dis Child 63:17–22PubMedPubMedCentralCrossRefGoogle Scholar
  72. Longini M, Perrone S, Kenanidis A et al (2005) Isoprostanes in amniotic fluid: a predictive marker for fetal growth restriction in pregnancy. Free Radic Biol Med 38:1537–1541PubMedCrossRefGoogle Scholar
  73. Longini M, Perrone S, Vezzosi P et al (2007) Association between oxidative stress in pregnancy and preterm premature rupture of membranes. Clin Biochem 40:793–797PubMedCrossRefGoogle Scholar
  74. Lorenzl S, De Pasquale G, Segal AZ, Beal MF (2003) Dysregulation of the levels of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases in the early phase of cerebral ischemia. Stroke 34:37–38CrossRefGoogle Scholar
  75. Low JA, Galbraith RS, Muir DW et al (1984) Factors associated with motor and cognitive deficits in children after intrapartum fetal hypoxiam. J Obstet Gynaecol 148:533–539Google Scholar
  76. Low JA, Lindasay BG, Derrick EJ (1997) Threshold of metabolic acidosis associated with newborn complications. Am J Obstet Gynecol 177:1391–1394PubMedCrossRefGoogle Scholar
  77. Lumpkins KM, Bochicchio GV, Keledjian K, Simard JM, McCunn M, Scalea T (2008) Glial fi- brillary acidic protein is highly correlated with brain injury. J Trauma 65(4):778–782. [discussion 82–4; PubMed PMID: 18849790. Epub 2008/10/14. eng]PubMedCrossRefGoogle Scholar
  78. Machin GA, Ackerman J, Gilbert-Barness E (2000) Abnormal umbilical cord coiling is associated with adverse perinatal outcomes. Pediatr Dev Pathol 3:462–471PubMedCrossRefGoogle Scholar
  79. Mathur AM, Neil JJ, McKinstry RC, Inder TE (2008) Transport, monitoring, and successful brain MR imaging in unsedated neonates. Pediatr Radiol 38:260–264PubMedCrossRefGoogle Scholar
  80. Maunu J, Ekholm E, Parkkola R et al (2007) Antenatal Doppler measurements and early brain injury in very low birth weight infants. J Pediatr 150:51–56PubMedCrossRefGoogle Scholar
  81. McDonald DG, Kelehan P, McMenamin JB et al (2004) Placental fetal thrombotic vasculopathy is associated with neonatal encephalopathy. Hum Pathol 35:875–880PubMedCrossRefGoogle Scholar
  82. McQuillen PS, Ferriero DM (2004) Selective vulnerability in the developing central nervous system. Pediatr Neurol 30:227–235PubMedCrossRefGoogle Scholar
  83. Meyer RS (1975) Four patterns of perinatal brain damage and their conditions of occurrence in primates. Adv Neurol 10:223–234Google Scholar
  84. Miller SP, Newton N, Ferriero DM et al (2002) Predictors of 30- month outcome after perinatal depression: role of proton MRS and socioeconomic factors. Pediatr Res 52:71–77PubMedCrossRefGoogle Scholar
  85. Miller SP, Ramaswamy V, Michelson D et al (2005) Patterns of brain injury in term neonatal encephalopathy. J Pediatr 146:453–460PubMedCrossRefGoogle Scholar
  86. Minagawa K, Tsuji Y, Ueda H et al (2002) Possible correlation between high levels of IL-18 in the cord blood of preterm infants and neonatal development of periventricular leukomalacia and cerebral palsy. Cytokine 17:164–170PubMedCrossRefGoogle Scholar
  87. Mishra OP, Delivoria-Papadopoulus M (1998) Cellular mechanisms of hypoxic in the developing brain. Brain Res Bull 48:233–238CrossRefGoogle Scholar
  88. Murray DM, Boylan GB, Ali I, Ryan CA, Murphy BP, Connolly S (2008) Defining the gap between electrographic seizure burden, clinical expression and staff recognition of neonatal seizures. Arch Dis Child Fetal Neonatal Ed 93:F187–F191PubMedCrossRefGoogle Scholar
  89. Murray DM, O'Riordan MN, Horgan R, Boylan G, Higgins JR, Ryan CA (2009) Fetal heart rate patterns in neonatal hypoxic-ischemic encephalopathy: relationship with early cerebral activity and neurodevelopmental outcome. Am J Perinatol 26(8):605–612PubMedCrossRefGoogle Scholar
  90. Naeye RL (1991) Acute chorioamnionitis and the disorders that produce placental insufficiency. Monogr Pathol 33:286–307Google Scholar
  91. Naeye RL, Lin HM (2001) Determination of the timing of fetal brain damage from hypoxemia-ischemia. Am J Obstet Gynecol 184:217–224PubMedCrossRefGoogle Scholar
  92. Naeye RL, Russell Localio A (1995) Determining the time before birth when ischemia and hypoxemia initiated cerebral palsy. Obstet Gynecol 86:713–719PubMedCrossRefGoogle Scholar
  93. Nagdyman N, Komen W, Ko HK et al (2001) Early biochemical indicators of hypoxic-ischemic encephalopathy after birth asphyxia. Pediatr Res 49:502–506PubMedCrossRefGoogle Scholar
  94. Nasiell J, Papadogiannakis N, Löf E, Elofsson F, Hallberg B (2016) Hypoxic ischemic encephalopathy in newborns linked to placental and umbilical cord abnormalities. J Matern Fetal Neonatal Med 29(5):721–726PubMedCrossRefGoogle Scholar
  95. Neil JJ, Inder TE (2004) Imaging perinatal brain injury in premature infants. Semin Perinatol 28:433–443PubMedCrossRefGoogle Scholar
  96. Neil JJ, Shiran SI, McKinstry RC et al (1998) Normal brain in human newborns: apparent diffusion coefficient and diffusion anisotropy measured by using diffusion tensor MR imaging. Radiology 209:57–66PubMedCrossRefGoogle Scholar
  97. Nelson KB (2005) Neonatal encephalopathy: etiology and outcome. Dev Med Child Neurol 47:292PubMedCrossRefGoogle Scholar
  98. Nosarti C, Al-Asady MH, Frangou S et al (2002) Adolescents who were born very preterm have decreased brain volumes. Brain 125(Pt 7):1616–1623PubMedCrossRefGoogle Scholar
  99. Nosarti C, Rushe TM, Woodruff PW et al (2004) Corpus Callosum size and very preterm birth: relationship to neuropsychological outcome. Brain 127(Pt 9):2080–2089PubMedCrossRefGoogle Scholar
  100. Nurullah O, Canan T, Eray EO et al (2008) Tau and s-100B proteins as biochemical markers of bilirubin-induced neurotoxicity in term neonates. Pediatr Neurol 39:245–250CrossRefGoogle Scholar
  101. Ogino S, Redline RW (2000) Villous capillary lesions of the placenta: distinctions between chorangioma, chorangiomatosis, and chorangiosis. Hum Pathol 31:945–954PubMedCrossRefGoogle Scholar
  102. Okumara A, Hayakawa F, Okumura A (1999) Neonatal EEG: a powerful tool in the assessment of brain damage in preterm infants. Brain Dev 21:361–372CrossRefGoogle Scholar
  103. Pelinka LE, Kroepfl A, Leixnering M, Buchinger W, Raabe A, Redl H (2004a) GFAP versus S100B in serum after traumatic brain injury: relationship to brain damage and out- come. J Neurotrauma 21(11):1553–1561. [PubMed PMID: 15684648. Epub 2005/02/03. eng]PubMedCrossRefGoogle Scholar
  104. Pelinka LE, Kroepfl A, Schmidhammer R, Krenn M, Buchinger W, Redl H et al (2004b) Glial fibrillary acidic protein in serum after traumatic brain injury and multiple trauma. J Trauma 57(5):1006–1012. [PubMed PMID: 15580024. Epub 2004/12/08. eng]PubMedCrossRefGoogle Scholar
  105. Perrone S, Tataranno ML, Negro S et al (2010) Early identification of the risk for free radical related diseases in preterm newborns. Early Hum Dev 86:241–244PubMedCrossRefGoogle Scholar
  106. Perrone S, Tataranno ML, Santacroce A et al (2016a) Fetal programming, maternal nutrition and oxidative stress hypothesis. J Pediatr Biochem 6:96–102CrossRefGoogle Scholar
  107. Perrone S, Santacroce A, Picardi A, Buonocore G (2016b) Fetal programming and early identification of newborn at high risk of free-radical mediated diseases. World J Clin Pediatr 5:172–181PubMedPubMedCentralCrossRefGoogle Scholar
  108. Perrone S, Tataranno ML, Longini M et al (2016c) Placental histological examination and the relationship with oxidative stress in preterm infants. Placenta 46:72–78PubMedCrossRefGoogle Scholar
  109. Peterson BS, Vohr B, Staib LH et al (2000) Regional brain volume abnormalities and long-term cognitive outcome in preterm infants. JAMA 284:1939–1947PubMedCrossRefGoogle Scholar
  110. Petersson KH, Pinar H, Stopa EG et al (2002) White matter injury after cerebral ischemia in ovine fetuses. Pediatr Res 51:768–778PubMedCrossRefGoogle Scholar
  111. Redline RW (2006) Placental pathology and cerebral palsy. Clin Perinatol 33:503–516PubMedCrossRefGoogle Scholar
  112. Redline RW, Faye-Petersen O, Heller D et al (2003) Amniotic infection syndrome: nosology and reproducibility of placental reaction patterns. Pediatr Dev Pathol 6:435–448PubMedCrossRefGoogle Scholar
  113. Roberts JM, Copper DW (2001) Pathogenesis and genetics of preeclampsia. Lancet 357:53–56PubMedCrossRefGoogle Scholar
  114. Roine RO, Somer H, Kaste M, Viinikka L, Karonen SL (1989) Neurological outcome after out-of-hospital cardiac arrest. Prediction by cerebrospinal fluid enzyme analysis. Arch Neurol 46(7):753–756. [PubMed PMID: 2742544. Epub 1989/07/01. eng]PubMedCrossRefGoogle Scholar
  115. Rosell A, Ortega-Aznar A, Alvarez-Sabin J et al (2006) Increased brain expression of matrix metalloproteinase- 9 after ischemic and hemorrhagic human stroke. Stroke 37:1399–1406PubMedCrossRefGoogle Scholar
  116. Rosèn KG, Amer-Wahlin I, Luzietti R, Noren H (2004) Fetal ECG waveform analysis. Best Pract Res Clin Obstet Gynaecol 18:485–514PubMedCrossRefGoogle Scholar
  117. Roth SC, Baudin J, Cady E et al (1997) Relation of deranged neonatal cerebral oxidative metabolism with neurodevelopmental outcome and head circumference at 4 years. Dev Med Child Neurol 39:718–725PubMedCrossRefGoogle Scholar
  118. Rundgren M, Karlsson T, Nielsen N, Cronberg T, Johnsson P, Friberg H (2009) Neuron specific enolase and S-100B as predictors of outcome after cardiac arrest and induced hypothermia. Resuscitation 80(7):784–789. [PubMed PMID: 19467754. Epub 2009/05/27. eng]PubMedCrossRefGoogle Scholar
  119. Sarnat HB, Sarnat MS (1976) Neonatal encephalopathy following fetal distress. A clinical and electroencephalographic study. Arch Neurol 33:696–705CrossRefPubMedGoogle Scholar
  120. Saxonhouse MA, Rimsza LM, Christensen RD et al (2003) Effects of anoxia on megakaryocyte progenitors derived from cord blood CD34pos cells. Eur J Haematol 71:359–365PubMedCrossRefGoogle Scholar
  121. Schmitt B, Bauersfeld U, Schmid ER, Tuchschmid P, Molinari L, Fanconi S et al (1998) Serum and CSF levels of neuron-specific enolase (NSE) in cardiac surgery with cardiopulmonary bypass: a marker of brain injury? Brain Dev 20(7):536–539. [PubMed PMID: 9840675. Epub 1998/12/05. eng]PubMedCrossRefGoogle Scholar
  122. Schofield JN, Dayl N, Thompson RJ et al (1995) PGP 9.5, a ubiquitin C-terminal hydro- lase: pauem of mRNA and protein expression during neural development in the mouse. Brain Res Dev Brain Res 85:224–228CrossRefGoogle Scholar
  123. Shellhaas RA (2015) Continuous long-term electroencephalography: the gold standard for neonatal seizures diagnosis. Semin Fetal Neonatal Med 20(3):149–153PubMedCrossRefGoogle Scholar
  124. Shevell MI (2001) The pediatric neurologist as expert witness with particular reference to perinatal asphyxia. Can J Neurol Sci 28:107–112PubMedCrossRefGoogle Scholar
  125. Sie LT, van der Knaap MS, Oosting J, de Vries LS, Lafeber HN, Valk J (2000) MR patterns of hypoxic-ischemic brain damage after prenatal, perinatal or postnatal asphyxia. Neuropediatrics 31:128–136PubMedCrossRefGoogle Scholar
  126. Stanek J (1999) Numerical criteria for the diagnosis of placental chorangiosis using CD34 immunostaining. Trophoblast res 13:443–452Google Scholar
  127. Steggerda SJ, van Wezel-Meijler G (2016) Cranial ultrasonography of the immature cerebellum: role and limitations. Semin Fetal Neonatal Med 21(5):295–304PubMedCrossRefGoogle Scholar
  128. Sun YL, Meng L, Guo JL et al (2007) Relationship between serum myelin basic protein and neonatal hypoxic ischemic encephalopathy. Chin J Birth Health Hered 15:16–17Google Scholar
  129. Sunugawa S, Ichiyama T, Honda R et al (2009) Matrix metalloproteinase- 9 and tissue inhibitor of metalloproteinase-1 in perinatal asphyxia. Brain Dev 31:588–593CrossRefGoogle Scholar
  130. Task Force on Neonatal Encephalopathy (2014) Neonatal encephalopathy and neurologic outcome, second edition report of the American College of Obstetricians and Gynecologists. Obstet Gynecol 123(4):896–901CrossRefGoogle Scholar
  131. Thompson RJ, Doran JF, Jackson P et al (1983) PGP 9.5-a new marker for vertebrate neurons and neuroendocrine cells. Brain Res 278:224–228CrossRefPubMedGoogle Scholar
  132. Toet MC, Hellstrom-Westas L, Groenedal F, Eken P, de Vries LS (1999) Amplitude integrated EEG 3 and 6 hours after birth in full term neonates with hypoxic-ischaemic encephalopathy. Arch Dis Child Fetal Neonatal Ed 81(1):F19–F23PubMedPubMedCentralCrossRefGoogle Scholar
  133. Ugwumadu A (2013) Understanding cardiotocographic patterns associated with intrapartum fetal hypoxia and neurologic injury. Best Pract Res Clin Obstet Gynaecol 27(4):509–536PubMedCrossRefGoogle Scholar
  134. Van Bel F, Walther FJ (1990) Myocardial dysfunction and cerebral blood flow velocity following birth asphyxia. Acta Paediatr Scand 79:756–762PubMedCrossRefGoogle Scholar
  135. Vatansever U, Acuna B, Demin AM et al (2002) Nucleated red blood cell counts and erythropoietin levels in high-risk neonates. Pediatr Int 44:590–595PubMedCrossRefGoogle Scholar
  136. Volpe JJ (1996) Subplate neurons – missing link in brain injury of the premature infant? Pediatrics 97:112–113PubMedGoogle Scholar
  137. Volpe J (ed) (2008) Neurology of the newborn, 5th edn. W.B. Saunders, PhiladelphiaGoogle Scholar
  138. Vos PE, Lamers KJ, Hendriks JC, van Haaren M, Beems T, Zimmerman C et al (2004) Glial and neuronal proteins in serum predict outcome after severe traumatic brain injury. Neurology 62(8):1303–1310. [PubMed PMID: 15111666. Epub 2004/04/28. eng]PubMedCrossRefGoogle Scholar
  139. Wachtel EV, Hendricks-Muñoz KD (2011) Current management of the infants who presents with neonatal encephalopathy. Curr Probl Pediatr Adolesc Health Care 41(5):132–153PubMedCrossRefGoogle Scholar
  140. Waigt A, Górny M (1983) CSF antibodies to myelin basic protein and to myelin- associated glycoprotein in multiple sclerosis. Evidence of the intrathecal production of antibodies. Acta Neurol Scand 68:337–345CrossRefGoogle Scholar
  141. Weindling AM, Rochefort MJ, Calcert SA, Fok TF (1985) Developed of cerebral palsy after ultrasonographic detection of periventricular cysts in the newborn. Dev Med Child Neurol 27:800–806PubMedCrossRefGoogle Scholar
  142. van Wezel-Meijler G, Steggerda SJ, Leijser LM (2010) Cranial ultrasonography in neonates: role and limitations. Semin Perinatol 34:28–38PubMedCrossRefGoogle Scholar
  143. Widness JA, Teramo KA, Clemons GK et al (1986) Temporal response of immunoreactive erythropoietin to acute hypoxemia in fetal sheep. Pediatr Res 20:15–19PubMedCrossRefGoogle Scholar
  144. Wu YW, Colford JM Jr (2000) Chorioamnionitis as a risk factor for cerebral palsy: a meta-analysis. JAMA 284:1417–1424PubMedCrossRefGoogle Scholar
  145. Yager JY, Miller SP (2009) Controversies and advances in neonatal neurology: overview. Introduction. Pediatr Neurol 40:143–144PubMedCrossRefGoogle Scholar
  146. Yager JY, Armstrong EA, Miyashita H, Wirrell EC (2002) Prolonged neonatal seizures exacerbate hypoxic-ischemic brain damage: correlation with cerebral energy metabolism and excitatory amino acid release. Dev Neurosci 24:367–381PubMedCrossRefGoogle Scholar
  147. Yamamoto T, Shibata N, Maramatsu F et al (2002) Oxidative stress in the human fetal brain: an immunohistochemical study. Pediatr Neurol 26:116–122PubMedCrossRefGoogle Scholar
  148. Zacharia A, Zimine S, Lovblad KO et al (2006) Early assessment of brain maturation by MR imaging segmentation in neonates and premature infants. AJNR Am J Neuroradiol 27:972–977PubMedGoogle Scholar
  149. Zhang Y, Guo J (2012) MicroRNA and cerebral ischemic injury. Acta Acad Med Sci 34:418–421Google Scholar
  150. Zhang W, Su P, Kuang ZZ (2013) Application value – li in early identification of acute is- chemic cerebrovascular disease. Shandong Med J 53:15–17Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Molecular and Developmental MedicineUniversity Hospital of SienaSienaItaly
  2. 2.University of SienaSienaItaly

Personalised recommendations