Advertisement

Neonatology pp 2165-2184 | Cite as

Clinical Aspects and Treatment of the Hypoxic-Ischemic Syndrome

  • Floris Groenendaal
  • Frank van Bel
Reference work entry

Abstract

In the Western world, perinatal asphyxia is still a relatively common phenomenon in perinatal care. Since differences in causes and patterns of brain injury following perinatal asphyxia exist between full-term and preterm neonates, this chapter will focus on full-term neonates.

References

  1. Adamson SJ, Alessandri LM, Badawi N, Burton PR, Pemberton PJ, Stanley F (1995) Predictors of neonatal encephalopathy in full-term infants. BMJ 311:598–602PubMedPubMedCentralCrossRefGoogle Scholar
  2. al Naqeeb N, Edwards AD, Cowan FM, Azzopardi D (1999) Assessment of neonatal encephalopathy by amplitude-integrated electroencephalography. Pediatrics 103:1263–1271PubMedCrossRefGoogle Scholar
  3. Alderliesten T, de Vries LS, Benders MJ, Koopman C, Groenendaal F (2011) MR imaging and outcome of term neonates with perinatal asphyxia: value of diffusion-weighted MR imaging and 1H MR spectroscopy. Radiology 261:235–242PubMedCrossRefGoogle Scholar
  4. Alderliesten T, Nikkels PG, Benders MJ, de Vries LS, Groenendaal F (2013) Antemortem cranial MRI compared with postmortem histopathologic examination of the brain in term infants with neonatal encephalopathy following perinatal asphyxia. Arch Dis Child Fetal Neonatal Ed 98:F304–F309PubMedCrossRefGoogle Scholar
  5. American College of Obstetricians and Gynecologists’ Task Force on Neonatal Encephalopathy (2014) Executive summary: neonatal encephalopathy and neurologic outcome, second edition. Report of the American College of Obstetricians and Gynecologists’ Task Force on Neonatal Encephalopathy. Obstet Gynecol 123:896–901CrossRefGoogle Scholar
  6. American Academy of Pediatrics, Committee on Fetus and Newborn, American College of Obstetricians and Gynecologists and Committee on Obstetric Practice (2006) The Apgar score. Pediatrics 117:1444–1447CrossRefGoogle Scholar
  7. Amer-Wahlin I, Hellsten C, Noren H et al (2001) Cardiotocography only versus cardiotocography plus ST analysis of fetal electrocardiogram for intrapartum fetal monitoring: a Swedish randomised controlled trial. Lancet 358:534–538PubMedCrossRefGoogle Scholar
  8. Andre M, Boutroy MJ, Dubruc C et al (1986) Clonazepam pharmacokinetics and therapeutic efficacy in neonatal seizures. Eur J Clin Pharmacol 30:585–589PubMedCrossRefGoogle Scholar
  9. Apgar V (1953) A proposal for a new method of evaluation of the newborn infant. Curr Res Anesth Analg 32:260–267CrossRefPubMedGoogle Scholar
  10. Arabin B, Ragosch V, Mohnhaupt A (1995) From biochemical to biophysical placental function tests in fetal surveillance. Am J Perinatol 12:168–171PubMedCrossRefGoogle Scholar
  11. Archbald F, Verma UL, Tejani NA, Handwerker SM (1984) Cerebral function monitor in the neonate. II: Birth asphyxia. Dev Med Child Neurol 26:162–168PubMedCrossRefGoogle Scholar
  12. Archer LN, Levene MI, Evans DH (1986) Cerebral artery Doppler ultrasonography for prediction of outcome after perinatal asphyxia. Lancet 2:1116–1118PubMedCrossRefGoogle Scholar
  13. Arduini D, Rizzo G, Romanini C, Mancuso S (1989) Are blood flow velocity waveforms related to umbilical cord acid- base status in the human fetus? Gynecol Obstet Invest 27:183–187PubMedCrossRefGoogle Scholar
  14. Azzopardi DV, Strohm B, Edwards AD et al (2009) Moderate hypothermia to treat perinatal asphyxial encephalopathy. N Engl J Med 361:1349–1358CrossRefPubMedGoogle Scholar
  15. Baenziger O, Martin E, Steinlin M et al (1993) Early pattern recognition in severe perinatal asphyxia: a prospective MRI study. Neuroradiology 35:437–442PubMedCrossRefGoogle Scholar
  16. Barkovich AJ, Westmark K, Partridge C, Sola A, Ferriero DM (1995) Perinatal asphyxia: MR findings in the first 10 days. AJNR Am J Neuroradiol 16:427–438PubMedGoogle Scholar
  17. Bednarek N, Mathur A, Inder T, Wilkinson J, Neil J, Shimony J (2012) Impact of therapeutic hypothermia on MRI diffusion changes in neonatal encephalopathy. Neurology 78:1420–1427PubMedPubMedCentralCrossRefGoogle Scholar
  18. Belai Y, Goodwin TM, Durand M, Greenspoon JS, Paul RH, Walther FJ (1998) Umbilical arteriovenous PO2 and PCO2 differences and neonatal morbidity in term infants with severe acidosis. Am J Obstet Gynecol 178:13–19PubMedCrossRefGoogle Scholar
  19. Bjerre I, Hellstro”m-Westas L, Rosen I, Svenningsen N (1983) Monitoring of cerebral function after severe asphyxia in infancy. Arch Dis Child 58:997–1002PubMedPubMedCentralCrossRefGoogle Scholar
  20. Blennow M, Savman K, Ilves P, Thoresen M, Rosengren L (2001) Brain-specific proteins in the cerebrospinal fluid of severely asphyxiated newborn infants. Acta Paediatr 90:1171–1175PubMedCrossRefGoogle Scholar
  21. Boenisch H, Saling E (1976) The reliability of pH values in fetal blood samples: a study of the second stage. J Perinat Med 4:45PubMedCrossRefGoogle Scholar
  22. Bonifacio SL, deVries LS, Groenendaal F (2015) Impact of hypothermia on predictors of poor outcome: how do we decide to redirect care? Semin Fetal Neonatal Med 20:122–127PubMedPubMedCentralCrossRefGoogle Scholar
  23. Brown JK, Purvis RJ, Forfar JO, Cockburn F (1974) Neurological aspects of perinatal asphyxia. Dev Med Child Neurol 16:567–580PubMedCrossRefGoogle Scholar
  24. Buonocore G, Zani S, Perrone S, Caciotti B, Bracci R (1998) Intraerythrocyte nonprotein-bound iron and plasma malondialdehyde in the hypoxic newborn. Free Radic Biol Med 25:766–770PubMedCrossRefGoogle Scholar
  25. Buonocore G, Perrone S, Gioia D et al (1999) Nucleated red blood cell count at birth as an index of perinatal brain damage. Am J Obstet Gynecol 181:1500–1505PubMedPubMedCentralCrossRefGoogle Scholar
  26. Buonocore G, Perrone S, Longini M et al (2003) Non protein bound iron as early predictive marker of neonatal brain damage. Brain 126:1224–1230PubMedCrossRefGoogle Scholar
  27. Caplan MS, Hedlund E, Adler L, Hsueh W (1994) Role of asphyxia and feeding in a neonatal rat model of necrotizing enterocolitis. Pediatr Pathol 14:1017–1028PubMedCrossRefGoogle Scholar
  28. Carter BS, McNabb F, Merenstein GB (1998) Prospective validation of a scoring system for predicting neonatal morbidity after acute perinatal asphyxia. J Pediatr 132:619–623PubMedPubMedCentralCrossRefGoogle Scholar
  29. Casey BM, McIntire DD, Leveno KJ (2001) The continuing value of the Apgar score for the assessment of newborn infants. N Engl J Med 344:467–471CrossRefPubMedGoogle Scholar
  30. Castle V, Andrew M, Kelton J, Giron D, Johnston M, Carter C (1986) Frequency and mechanism of neonatal thrombocytopenia. J Pediatr 108:749–755PubMedCrossRefGoogle Scholar
  31. Cataltepe O, Vannucci RC, Heitjan DF, Towfighi J (1995) Effect of status epilepticus on hypoxic-ischemic brain damage in the immature rat. Pediatr Res 38:251–257PubMedCrossRefGoogle Scholar
  32. Catlin EA, Carpenter MW, Brann BS, Mayfield SR, Shaul PW, Goldstein M (1986) The Apgar score revisited: influence of gestational age. J Pediatr 109:865–868PubMedCrossRefGoogle Scholar
  33. Chiesa C, Pellegrini G, Panero A et al (2003) Umbilical cord interleukin-6 levels are elevated in term neonates with perinatal asphyxia. Eur J Clin Invest 33:352–358PubMedCrossRefGoogle Scholar
  34. Chou YH, Tsou Yau KI, Wang PJ (1998) Clinical application of the measurement of cord plasma lactate and pyruvate in the assessment of high-risk neonates. Acta Paediatr 87:764–768PubMedCrossRefGoogle Scholar
  35. Connell J, Oozeer R, de Vries L, Dubowitz LM, Dubowitz V (1989) Clinical and EEG response to anticonvulsants in neonatal seizures. Arch Dis Child 64:459–464PubMedPubMedCentralCrossRefGoogle Scholar
  36. Cowan F, Rutherford M, Groenendaal F et al (2003) Origin and timing of brain lesions in term infants with neonatal encephalopathy. Lancet 361:736–742PubMedCrossRefGoogle Scholar
  37. Daniel SS, Adamsons K Jr, James LS (1966) Lactate and pyruvate as an index of prenatal oxygen deprivation. Pediatrics 37:942–953PubMedGoogle Scholar
  38. de Vries LS (1993) Somatosensory-evoked potentials in term neonates with postasphyxial encephalopathy. Clin Perinatol 20:463–482PubMedCrossRefGoogle Scholar
  39. de Vries LS, Groenendaal F (2010) Patterns of neonatal hypoxic-ischaemic brain injury. Neuroradiology 52:555–566PubMedPubMedCentralCrossRefGoogle Scholar
  40. de Vries LS, Eken P, Groenendaal F, Rademaker KJ, Hoogervorst B, Bruinse HW (1998) Antenatal onset of haemorrhagic and/or ischaemic lesions in preterm infants: prevalence and associated obstetric variables. Arch Dis Child Fetal Neonatal Ed 78:F51–F56PubMedPubMedCentralCrossRefGoogle Scholar
  41. Eken P, Jansen GH, Groenendaal F, Rademaker KJ, de Vries LS (1994) Intracranial lesions in the fullterm infant with hypoxic ischaemic encephalopathy: ultrasound and autopsy correlation. Neuropediatrics 25:301–307PubMedCrossRefGoogle Scholar
  42. Eken P, Toet MC, Groenendaal F, de Vries LS (1995) Predictive value of early neuroimaging, pulsed Doppler and neurophysiology in full term infants with hypoxic-ischaemic encephalopathy. Arch Dis Child Fetal Neonatal Ed 73:F75–F80PubMedPubMedCentralCrossRefGoogle Scholar
  43. Ekert P, Perlman M, Steinlin M, Hao Y (1997) Predicting the outcome of postasphyxial hypoxic-ischemic encephalopathy within 4 hours of birth. J Pediatr 131:613–617PubMedCrossRefGoogle Scholar
  44. Fellman V, Raivio KO (1997) Reperfusion injury as the mechanism of brain damage after perinatal asphyxia. Pediatr Res 41:599–606PubMedCrossRefGoogle Scholar
  45. Fenichel GM (1983) Hypoxic-ischemic encephalopathy in the newborn. Arch Neurol 40:261–266PubMedCrossRefGoogle Scholar
  46. Filippi L, Fiorini P, Daniotti M et al (2012) Safety and efficacy of topiramate in neonates with hypoxic ischemic encephalopathy treated with hypothermia (NeoNATI). BMC Pediatr 12:144PubMedPubMedCentralCrossRefGoogle Scholar
  47. Foster-Barber A, Dickens B, Ferriero DM (2001) Human perinatal asphyxia: correlation of neonatal cytokines with MRI and outcome. Dev Neurosci 23:213–218PubMedCrossRefGoogle Scholar
  48. Fujikura T, Klionsky B (1975) The significance of meconium staining. Am J Obstet Gynecol 121:45–50PubMedCrossRefGoogle Scholar
  49. Gazzolo D, Marinoni E, Di Iorio R et al (2004) Urinary S100B protein measurements: a tool for the early identification of hypoxic-ischemic encephalopathy in asphyxiated full-term infants. Crit Care Med 32:131–136PubMedCrossRefGoogle Scholar
  50. Gibson NA, Graham M, Levene MI (1992) Somatosensory evoked potentials and outcome in perinatal asphyxia. Arch Dis Child 67:393–398PubMedPubMedCentralCrossRefGoogle Scholar
  51. Gluckman PD, Wyatt JS, Azzopardi D et al (2005) Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: multicentre randomised trial. Lancet 365:663–670CrossRefPubMedGoogle Scholar
  52. Goodwin TM, Belai I, Hernandez P, Durand M, Paul RH (1992) Asphyxial complications in the term newborn with severe umbilical acidemia. Am J Obstet Gynecol 167:1506–1512PubMedPubMedCentralCrossRefGoogle Scholar
  53. Grant A, O’Brien N, Joy MT, Hennessy E, MacDonald D (1989) Cerebral palsy among children born during the Dublin randomised trial of intrapartum monitoring. Lancet 2:1233–1236PubMedCrossRefGoogle Scholar
  54. Grigg-Damberger MM, Coker SB, Halsey CL, Anderson CL (1989) Neonatal burst suppression: its developmental significance. Pediatr Neurol 5:84–92PubMedCrossRefGoogle Scholar
  55. Groenendaal F, Brouwer AJ (2009) Clinical aspects of induced hypothermia in full term neonates with perinatal asphyxia. Early Hum Dev 85:73–76PubMedCrossRefGoogle Scholar
  56. Groenendaal F, Veenhoven RH, van der Grond J, Jansen GH, Witkamp TD, de Vries LS (1994) Cerebral lactate and N-acetyl-aspartate/choline ratios in asphyxiated full-term neonates demonstrated in vivo using proton magnetic resonance spectroscopy. Pediatr Res 35:148–151PubMedCrossRefGoogle Scholar
  57. Hagberg H, Edwards AD, Groenendaal F (2015) Perinatal brain damage: the term infant. Neurobiol DisGoogle Scholar
  58. Harteman JC, Groenendaal F, Toet MC et al (2013) Diffusion-weighted imaging changes in cerebral watershed distribution following neonatal encephalopathy are not invariably associated with an adverse outcome. Dev Med Child Neurol 55:642–653PubMedCrossRefGoogle Scholar
  59. Hay WW Jr, Thilo E, Curlander JB (1991) Pulse oximetry in neonatal medicine. Clin Perinatol 18:441–472PubMedCrossRefGoogle Scholar
  60. Hellstrom-Westas L, Rosen I, Svenningsen NW (1995) Predictive value of early continuous amplitude integrated EEG recordings on outcome after severe birth asphyxia in full term infants. Arch Dis Child Fetal Neonatal Ed 72:F34–F38PubMedPubMedCentralCrossRefGoogle Scholar
  61. Herrmann U Jr, Durig P, Amato M, Sidiropoulos D, Schneider H (1989) Outcome of fetuses with abnormal biophysical profile. Gynecol Obstet Invest 27:122–125PubMedCrossRefGoogle Scholar
  62. Holden KR, Mellits ED, Freeman JM (1982) Neonatal seizures. I. Correlation of prenatal and perinatal events with outcomes. Pediatrics 70:165–176PubMedGoogle Scholar
  63. Holmes G, Rowe J, Hafford J, Schmidt R, Testa M, Zimmerman A (1982) Prognostic value of the electroencephalogram in neonatal asphyxia. Electroencephalogr Clin Neurophysiol 53:60–72PubMedCrossRefGoogle Scholar
  64. Hope PL, Costello AML, Cady EB et al (1984) Cerebral energy metabolism studied with phosphorous NMR spectroscopy in normal and birth asphyxiated infants. Lancet 8399:366–370CrossRefGoogle Scholar
  65. Huang CC, Wang ST, Chang YC, Lin KP, Wu PL (1999) Measurement of the urinary lactate: creatinine ratio for the early identification of newborn infants at risk for hypoxic-ischemic encephalopathy. N Engl J Med 341:328–335PubMedPubMedCentralCrossRefGoogle Scholar
  66. Hull J, Dodd KL (1992) Falling incidence of hypoxic-ischaemic encephalopathy in term infants. Br J Obstet Gynaecol 99:386–391PubMedCrossRefGoogle Scholar
  67. Jacobs SE, Berg M, Hunt R, Tarnow-Mordi WO, Inder TE, Davis PG (2013) Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database Syst Rev 1, CD003311Google Scholar
  68. Kaandorp JJ, van Bel F, Veen S et al (2012) Long-term neuroprotective effects of allopurinol after moderate perinatal asphyxia: follow-up of two randomised controlled trials. Arch Dis Child Fetal Neonatal Ed 97:F162–F166PubMedCrossRefGoogle Scholar
  69. King TA, Jackson GL, Josey AS et al (1998) The effect of profound umbilical artery acidemia in term neonates admitted to a newborn nursery. J Pediatr 132:624–629CrossRefPubMedGoogle Scholar
  70. Klinger G, Beyene J, Shah P, Perlman M (2005) Do hyperoxaemia and hypocapnia add to the risk of brain injury after intrapartum asphyxia? Arch Dis Child Fetal Neonatal Ed 90:F49–F52PubMedPubMedCentralCrossRefGoogle Scholar
  71. L’Abee C, de Vries LS, van der Grond J, Groenendaal F (2005) Early diffusion-weighted MRI and 1H-magnetic resonance spectroscopy in asphyxiated full-term neonates. Biol Neonate 88:306–312PubMedCrossRefGoogle Scholar
  72. Lavrijsen SW, Uiterwaal CSPM, Stigter RH, de Vries LS, Visser GHA, Groenendaal F (2005) Severe umbilical cord acidemia and neurological outcome in preterm and full-term neonates. Biol Neonate 88:27–34PubMedCrossRefGoogle Scholar
  73. Lemmers PM, Zwanenburg RJ, Benders MJ et al (2013) Cerebral oxygenation and brain activity after perinatal asphyxia: does hypothermia change their prognostic value? Pediatr Res 74:180–185PubMedCrossRefGoogle Scholar
  74. Levene MI, Kornberg J, Williams THC (1985) The incidence and severity of postasphyxial encephalopathy in full-term infants. Early Hum Dev 11:21–28PubMedPubMedCentralCrossRefGoogle Scholar
  75. Levene MI, Sands C, Grindulis H, Moore JR (1986) Comparison of two methods of predicting outcome in perinatal asphyxia. Lancet 1:67–69PubMedCrossRefGoogle Scholar
  76. Lorek A, Takei Y, Cady EB et al (1994) Delayed (“secondary”) cerebral energy failure after acute hypoxia-ischemia in the newborn piglet: continuous 48-hour studies by phosphorus magnetic resonance spectroscopy. Pediatr Res 36:699–706PubMedCrossRefGoogle Scholar
  77. Low JA, Galbraith RS, Muir DW, Killen HL, Pater EA, Karchmar EJ (1984) Factors associated with motor and cognitive deficits in children after intrapartum fetal hypoxia. Am J Obstet Gynecol 148:533–539PubMedCrossRefGoogle Scholar
  78. Low JA, Galbraith RS, Muir DW, Killen HL, Pater EA, Karchmar EJ (1985) The relationship between perinatal hypoxia and newborn encephalopathy. Am J Obstet Gynecol 152:256–260PubMedCrossRefGoogle Scholar
  79. Low JA, Pickersgill H, Killen H, Derrick EJ (2001) The prediction and prevention of intrapartum fetal asphyxia in term pregnancies. Am J Obstet Gynecol 184:724–730PubMedCrossRefGoogle Scholar
  80. Luciano R, Gallini F, Romagnoli C, Papacci P, Tortorolo G (1998) Doppler evaluation of renal blood flow velocity as a predictive index of acute renal failure in perinatal asphyxia. Eur J Pediatr 157:656–660PubMedCrossRefGoogle Scholar
  81. Maeda K, Tatsumura M, Nakajima K (1991) Objective and quantitative evaluation of fetal movement with ultrasonic Doppler actocardiogram. Biol Neonate 60(Suppl 1):41–51PubMedCrossRefGoogle Scholar
  82. Martin-Ancel A, Garcia-Alix A, Pascual-Salcedo D, Cabanas F, Valcarce M, Quero J (1997) Interleukin-6 in the cerebrospinal fluid after perinatal asphyxia is related to early and late neurological manifestations. Pediatrics 100:789–794PubMedCrossRefGoogle Scholar
  83. Martinez-Biarge M, Diez-Sebastian J, Wusthoff CJ, Mercuri E, Cowan FM (2013) Antepartum and intrapartum factors preceding neonatal hypoxic-ischemic encephalopathy. Pediatrics 132:e952–e959PubMedCrossRefGoogle Scholar
  84. Mathew OP, Bland H, Boxerman SB, James E (1980) CSF lactate levels in high risk neonates with and without asphyxia. Pediatrics 66:224–227PubMedGoogle Scholar
  85. Meis PJ, Hall M III, Marshall JR, Hobel CJ (1978) Meconium passage: a new classification for risk assessment during labor. Am J Obstet Gynecol 131:509–513PubMedCrossRefGoogle Scholar
  86. Mellits ED, Holden KR, Freeman JM (1982) Neonatal seizures. II. A multivariate analysis of factors associated with outcome. Pediatrics 70:177–185PubMedGoogle Scholar
  87. Mercuri E, von Siebenthal K, Daniels H, Guzzetta F, Casaer P (1994) Multimodality evoked responses in the neurological assessment of the newborn. Eur J Pediatr 153:622–631PubMedCrossRefGoogle Scholar
  88. Monod N, Pajot N, Guidasci S (1972) The neonatal EEG: statistical studies and prognostic value in full-term and preterm babies. Electroencephalogr Clin Neurophysiol 32:529–544PubMedCrossRefGoogle Scholar
  89. Muttitt SC, Taylor MJ, Kobayashi JS, MacMillan L, Whyte HE (1991) Serial visual evoked potentials and outcome in term birth asphyxia. Pediatr Neurol 7:86–90PubMedCrossRefGoogle Scholar
  90. Myers RE (1975) Four patterns of perinatal brain damage and their conditions of occurrence in primates. Adv Neurol 10:223–234PubMedGoogle Scholar
  91. Myers RE (1977) Experimental models of perinatal brain damage: relevance to human pathology. In: Gluck L (ed) Intrauterine asphyxia and the developing fetal brain. Year Book Medical Publ, Chicago, pp 37–97Google Scholar
  92. Nagdyman N, Grimmer I, Scholz T, Muller C, Obladen M (2003) Predictive value of brain-specific proteins in serum for neurodevelopmental outcome after birth asphyxia. Pediatr Res 54:270–275PubMedCrossRefGoogle Scholar
  93. Nelson KB, Dambrosia JM, Ting TY, Grether JK (1996) Uncertain value of electronic fetal monitoring in predicting cerebral palsy. N Engl J Med 334:613–618PubMedCrossRefGoogle Scholar
  94. Niklinski W, Palynyczko Z, Jozwik M, Sledziewski A (1987) Cord blood serum creatine kinase isoenzymes with placental dysfunction. J Perinatol Med 15:350–354CrossRefGoogle Scholar
  95. Nylund L, Dahlin I, Lagercrantz H (1987) Fetal catecholamines and the Apgar score. J Perinat Med 15:340–344PubMedCrossRefGoogle Scholar
  96. Okereafor A, Allsop J, Counsell SJ et al (2008) Patterns of brain injury in neonates exposed to perinatal sentinel events. Pediatrics 121:906–914PubMedCrossRefGoogle Scholar
  97. Oygur N, Sonmez O, Saka O, Yegin O (1998) Predictive value of plasma and cerebrospinal fluid tumour necrosis factor-alpha and interleukin-1 beta concentrations on outcome of full term infants with hypoxic-ischaemic encephalopathy. Arch Dis Child Fetal Neonatal Ed 79:F190–F193PubMedPubMedCentralCrossRefGoogle Scholar
  98. Perlman JM, Risser R (1996) Can asphyxiated infants at risk for neonatal seizures be rapidly identified by current high-risk markers? Pediatrics 97:456–462PubMedPubMedCentralGoogle Scholar
  99. Perlman JM, Tack ED, Martin T, Shackelford G, Amon E (1989) Acute systemic organ injury in term infants after asphyxia. Am J Dis Child 143:617–620PubMedGoogle Scholar
  100. Portman RJ, Carter BS, Gaylord MS, Murphy MG, Thieme RE, Merenstein GB (1990) Predicting neonatal morbidity after perinatal asphyxia: a scoring system. Am J Obstet Gynecol 162:174–182PubMedCrossRefGoogle Scholar
  101. Pourcyrous M, Bada HS, Yang W et al (1999) Prognostic significance of cerebrospinal fluid cyclic adenosine monophosphate in neonatal asphyxia. J Pediatr 134:90–96PubMedCrossRefGoogle Scholar
  102. Pressler RM, Mangum B (2013) Newly emerging therapies for neonatal seizures. Semin Fetal Neonatal Med 18:216–223PubMedPubMedCentralCrossRefGoogle Scholar
  103. Ramantani G, Ikonomidou C, Walter B, Rating D, Dinger J (2011) Levetiracetam: safety and efficacy in neonatal seizures. Eur J Paediatr Neurol 15:1–7PubMedCrossRefGoogle Scholar
  104. Ranck JB, Windle WF (1959) Brain damage in the monkey, Macaca mulatta, by asphyxia neonatorum. Exp Neurol 1:130–154PubMedCrossRefGoogle Scholar
  105. Robertson NJ, Cowan FM, Cox IJ, Edwards AD (2002) Brain alkaline intracellular pH after neonatal encephalopathy. Ann Neurol 52:732–742PubMedCrossRefGoogle Scholar
  106. Robertson NJ, Tan S, Groenendaal F et al (2012) Which neuroprotective agents are ready for bench to bedside translation in the newborn infant? J Pediatr 160:544–552PubMedPubMedCentralCrossRefGoogle Scholar
  107. Roka A, Melinda KT, Vasarhelyi B, Machay T, Azzopardi D, Szabo M (2008) Elevated morphine concentrations in neonates treated with morphine and prolonged hypothermia for hypoxic ischemic encephalopathy. Pediatrics 121:e844–e849PubMedCrossRefGoogle Scholar
  108. Roth SC, Edwards AD, Cady EB et al (1992) Relation between cerebral oxidative metabolism following birth asphyxia, and neurodevelopmental outcome and brain growth at one year. Dev Med Child Neurol 34:285–295PubMedCrossRefGoogle Scholar
  109. Ruth VJ, Raivio KO (1988) Perinatal brain damage: predictive value of metabolic acidosis and the Apgar score. BMJ 297:24–27PubMedPubMedCentralCrossRefGoogle Scholar
  110. Ruth V, Fyhrquist F, Clemons G, Raivio KO (1988) Cord plasma vasopressin, erythropoietin, and hypoxanthine as indices of asphyxia at birth. Pediatr Res 24:490–494PubMedCrossRefGoogle Scholar
  111. Rutherford M, Pennock J, Schwieso J, Cowan F, Dubowitz L (1996) Hypoxic-ischaemic encephalopathy: early and late magnetic resonance imaging findings in relation to outcome. Arch Dis Child Fetal Neonatal Ed 75:F145–F151PubMedPubMedCentralCrossRefGoogle Scholar
  112. Rutherford MA, Pennock JM, Counsell SJ et al (1998) Abnormal magnetic resonance signal in the internal capsule predicts poor neurodevelopmental outcome in infants with hypoxic- ischemic encephalopathy. Pediatrics 102:323–328CrossRefPubMedGoogle Scholar
  113. Rutherford M, Counsell S, Allsop J et al (2004) Diffusion-weighted magnetic resonance imaging in term perinatal brain injury: a comparison with site of lesion and time from birth. Pediatrics 114:1004–1014PubMedCrossRefGoogle Scholar
  114. Sarnat HB, Sarnat MS (1976) Neonatal encephalopathy following fetal distress; a clinical and electroencephalographic study. Arch Neurol 33:696–705CrossRefPubMedGoogle Scholar
  115. Saugstad OD (1976) Hypoxanthine as a measurement of hypoxia. Pediatr Res 9:575CrossRefGoogle Scholar
  116. Saugstad OD (2003) Oxygen toxicity at birth: the pieces are put together. Pediatr Res 54:798CrossRefGoogle Scholar
  117. Savman K, Blennow M, Gustafson K, Tarkowski E, Hagberg H (1998) Cytokine response in cerebrospinal fluid after birth asphyxia. Pediatr Res 43:746–751PubMedPubMedCentralCrossRefGoogle Scholar
  118. Schifrin BS (1994) The ABCs of electronic fetal monitoring. J Perinatol 14:396–402PubMedGoogle Scholar
  119. Sehdev HM, Stamilio DM, Macones GA, Graham E, Morgan MA (1997) Predictive factors for neonatal morbidity in neonates with an umbilical arterial cord pH less than 7.00. Am J Obstet Gynecol 177:1030–1034PubMedCrossRefGoogle Scholar
  120. Shankaran S, Woldt E, Koepke T, Bedard MP, Nandyal R (1991) Acute neonatal morbidity and long-term central nervous system sequelae of perinatal asphyxia in term infants. Early Hum Dev 25:135–148CrossRefPubMedGoogle Scholar
  121. Shankaran S, Laptook AR, Ehrenkranz RA et al (2005) Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N Engl J Med 353:1574–1584CrossRefPubMedGoogle Scholar
  122. Sie LT, van der Knaap MS, Oosting J, de Vries LS, Lafeber HN, Valk J (2000) MR patterns of hypoxic-ischemic brain damage after prenatal, perinatal or postnatal asphyxia. Neuropediatrics 31:128–136PubMedCrossRefGoogle Scholar
  123. Smith J, Wells L, Dodd K (2000) The continuing fall in incidence of hypoxic-ischaemic encephalopathy in term infants. BJOG 107:461–466PubMedCrossRefGoogle Scholar
  124. Sola A, Rogido MR, Deulofeut R (2007) Oxygen as a neonatal health hazard: call for detente in clinical practice. Acta Paediatr 96:801–812PubMedPubMedCentralCrossRefGoogle Scholar
  125. Squier W (2002) Acquired damage to the developing brain: timing and causation. Acquired damage to the developing brain: timing and causation. Oxford University Press, LondonGoogle Scholar
  126. Sykes GS, Molloy PM, Johnson P et al (1982) Do Apgar scores indicate asphyxia? Lancet 1:494–496PubMedCrossRefGoogle Scholar
  127. Taylor MJ, Murphy WJ, Whyte HE (1992) Prognostic reliability of somatosensory and visual evoked potentials of asphyxiated term infants. Dev Med Child Neurol 34:507–515PubMedCrossRefGoogle Scholar
  128. Thompson CM, Puterman AS, Linley LL et al (1997) The value of a scoring system for hypoxic ischaemic encephalopathy in predicting neurodevelopmental outcome. Acta Paediatr 86:757–761PubMedCrossRefGoogle Scholar
  129. Thornberg E, Thiringer K, Hagberg H, Kjellmer I (1995) Neuron specific enolase in asphyxiated newborns: association with encephalopathy and cerebral function monitor trace. Arch Dis Child Fetal Neonatal Ed 72:F39–F42PubMedPubMedCentralCrossRefGoogle Scholar
  130. Toet MC, Hellstrom-Westas L, Groenendaal F, Eken P, de Vries LS (1999) Amplitude integrated EEG at 3 and 6 hours after birth in full term neonates with hypoxic-ischaemic encephalopathy. Arch Dis Child Fetal Neonatal Ed 81:F19–F23PubMedPubMedCentralCrossRefGoogle Scholar
  131. Toet MC, van der Meij W, de Vries LS, Uiterwaal CS, van Huffelen KC (2002) Comparison between simultaneously recorded amplitude integrated electroencephalogram (cerebral function monitor) and standard electroencephalogram in neonates. Pediatrics 109:772–779PubMedCrossRefGoogle Scholar
  132. Toet MC, Lemmers PM, van Schelven LJ, Van Bel F (2006) Cerebral oxygenation and electrical activity after birth asphyxia: their relation to outcome. Pediatrics 117:333–339PubMedCrossRefGoogle Scholar
  133. Toet MC, Van Rooij LG, de Vries LS (2008) The use of amplitude integrated electroencephalography for assessing neonatal neurologic injury. Clin Perinatol 35:665–678, vPubMedCrossRefGoogle Scholar
  134. Torrance HL, Benders MJ, Derks JB et al (2009) Maternal allopurinol treatment during fetal hypoxia lowers cord blood levels of the brain injury marker protein S-100B. Pediatrics 124:350–357PubMedCrossRefGoogle Scholar
  135. Van Bel F, Walther FJ (1990) Myocardial dysfunction and cerebral blood flow velocity following birth asphyxia. Acta Paediatr Scand 79:756–762PubMedCrossRefGoogle Scholar
  136. Van Bel F, Van de Bor M, Stijnen T, Baan J, Ruys JH (1987) Cerebral blood flow velocity pattern in healthy and asphyxiated newborns: a controlled study. Eur J Pediatr 146:461–467PubMedCrossRefGoogle Scholar
  137. van den Berg PP, Nelen WL, Jongsma HW et al (1996) Neonatal complications in newborns with an umbilical artery pH < 7.00. Am J Obstet Gynecol 175:1152–1157PubMedCrossRefGoogle Scholar
  138. van den Broek MP, Groenendaal F, Egberts AC, Rademaker CM (2010) Effects of hypothermia on pharmacokinetics and pharmacodynamics: a systematic review of preclinical and clinical studies. Clin Pharmacokinet 49:277–294PubMedCrossRefGoogle Scholar
  139. van den Broek MP, Huitema AD, van Hasselt JG et al (2011) Lidocaine (lignocaine) dosing regimen based upon a population pharmacokinetic model for preterm and term neonates with seizures. Clin Pharmacokinet 50:461–469PubMedCrossRefGoogle Scholar
  140. van den Broek MP, Groenendaal F, Toet MC et al (2012) Pharmacokinetics and clinical efficacy of phenobarbital in asphyxiated newborns treated with hypothermia: a thermopharmacological approach. Clin Pharmacokinet 51:671–679PubMedCrossRefGoogle Scholar
  141. van den Broek MP, Rademaker CM, van Straaten HL et al (2013) Anticonvulsant treatment of asphyxiated newborns under hypothermia with lidocaine: efficacy, safety and dosing. Arch Dis Child Fetal Neonatal Ed 98:F341–F345PubMedCrossRefGoogle Scholar
  142. van den Broek MP, van Straaten HL, Huitema AD et al (2015) Anticonvulsant effectiveness and hemodynamic safety of midazolam in full-term infants treated with hypothermia. Neonatology 107:150–156PubMedCrossRefGoogle Scholar
  143. van der Aa NE, Benders MJ, Groenendaal F, de Vries LS (2014) Neonatal stroke: a review of the current evidence on epidemiology, pathogenesis, diagnostics and therapeutic options. Acta Paediatr 103:356–364PubMedCrossRefGoogle Scholar
  144. van Laerhoven H, de Haan TR, Offringa M, Post B, van der Lee JH (2013) Prognostic tests in term neonates with hypoxic-ischemic encephalopathy: a systematic review. Pediatrics 131:88–98PubMedPubMedCentralCrossRefGoogle Scholar
  145. Van Rooij LG, Toet MC, Osredkar D, van Huffelen AC, Groenendaal F, de Vries LS (2005) Recovery of amplitude integrated electroencephalographic background patterns within 24 hours of perinatal asphyxia. Arch Dis Child Fetal Neonatal Ed 90:F245–F251PubMedPubMedCentralCrossRefGoogle Scholar
  146. Van Rooij LG, Toet MC, van Huffelen AC et al (2010) Effect of treatment of subclinical neonatal seizures detected with aEEG: randomized, controlled trial. Pediatrics 125:e358–e366PubMedCrossRefGoogle Scholar
  147. Vannucci RC, Towfighi J, Vannucci SJ (2004) Secondary energy failure after cerebral hypoxia-ischemia in the immature rat. J Cereb Blood Flow Metab 24:1090–1097PubMedCrossRefGoogle Scholar
  148. Vento M, Saugstad OD (2010) Resuscitation of the term and preterm infant. Semin Fetal Neonatal Med 15:216–222PubMedCrossRefGoogle Scholar
  149. Volpe JJ (2008) Neurology of the newborn. Saunders Book Company, PhiladelphiaGoogle Scholar
  150. Volpe JJ, Herscovitch P, Perlman JM, Kreusser KL, Raichle ME (1985) Positron emission tomography in the asphyxiated term newborn: parasagittal impairment of cerebral blood flow. Ann Neurol 17:287–296PubMedCrossRefGoogle Scholar
  151. Watanabe K, Miyazaki S, Hara K, Hakamada S (1980) Behavioral state cycles, background EEGs and prognosis of newborns with perinatal hypoxia. Electroencephalogr Clin Neurophysiol 49:618–625PubMedCrossRefGoogle Scholar
  152. Wayenberg JL, Vermeylen D, Bormans J, Magrez P, Muller MF, Pardou A (1994) Diagnosis of severe birth asphyxia and early prediction of neonatal neurological outcome in term asphyxiated newborns. J Perinat Med 22:129–136PubMedCrossRefGoogle Scholar
  153. Westerhuis ME, Porath MM, Becker JH et al (2012) Identification of cases with adverse neonatal outcome monitored by cardiotocography versus ST analysis: secondary analysis of a randomized trial. Acta Obstet Gynecol Scand 91:830–837PubMedCrossRefGoogle Scholar
  154. Winkler CL, Hauth JC, Tucker JM, Owen J, Brumfield CG (1991) Neonatal complications at term as related to the degree of umbilical artery acidemia. Am J Obstet Gynecol 164:637–641PubMedCrossRefGoogle Scholar
  155. Wyatt JS (1993) Near-infrared spectroscopy in asphyxial brain injury. Clin Perinatol 20:369–378PubMedCrossRefGoogle Scholar
  156. Xanthou M, Fotopoulos S, Mouchtouri A, Lipsou N, Zika I, Sarafidou J (2002) Inflammatory mediators in perinatal asphyxia and infection. Acta Paediatr Suppl 91:92–97PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of NeonatologyWilhelmina Children’s Hospital, University Medical Center UtrechtUtrechtThe Netherlands

Personalised recommendations