Advertisement

Neonatology pp 1919-1933 | Cite as

Pathophysiology of Fetal and Neonatal Kidneys

  • Farid Boubred
  • Umberto Simeoni
Reference work entry

Abstract

Fetal renal development is a complex phenomenon. The ureteric bud and metanephric mesenchyme interaction is essential for nephrogenesis which results from the expression of specific genes, the fetal environment, or the interaction of both factors. IUGR, maternal diabetes, maternal undernutrition, micronutrient deficiency, and fetal or neonatal exposure to drugs (NSAIDS, ACE-Is, glucocorticoids, aminoglycosides) or to toxic (alcohol) are known to affect nephrogenesis. After a brief review of fetal and neonatal renal physiology, pathologic situations including preterm birth, congenital anomalies of the kidney and urinary tract, kidney diseases, and kidney-pharmacology interactions will be developed. Renal maldevelopment and exposure to factors that can alter the fetal and neonatal renal functions and structure increase the risk of hypertension and chronic renal disease in adulthood. Long-term follow-up is thus required and early markers of nephron dosing and renal injury should be developed with the aim to implement preventive strategies.

References

  1. Bacchetta J, Harambat J, Dubourg L et al (2009) Both extrauterine and intrauterine growth restriction impair renal function in children born very preterm. Kidney Int 76(4):445–452CrossRefGoogle Scholar
  2. Boubred F, Vendemia M, Garcia-Meric P et al (2006) Effects of maternally administered drugs on the fetal and neonatal kidney. Drug Saf 29:397–419CrossRefGoogle Scholar
  3. Boubred F, Saint-Faust M, Buffat C et al (2013) Developmental origins of chronic renal disease: an integrative hypothesis. Int J Nephrol 2013:346067.  https://doi.org/10.1155/2013/346067CrossRefPubMedPubMedCentralGoogle Scholar
  4. Boubred F, Herlenius E, Bartocci M et al (2015) Extremely preterm infants who are small for gestational age have a high risk of early hypophosphatemia and hypokalemia. Acta Paediatr 104:1077–1083CrossRefGoogle Scholar
  5. Brenner BM, Garcia DL, Anderson S (1988) Glomeruli and blood pressure. Less of one, more the other. Am J Hypertens 1:335–347CrossRefGoogle Scholar
  6. Brophy PD, Robillard JE (2004) Functional development of the kidney in utero. In: Polin A, Fox W (eds) Fetal and neonatal physiology, 3rd edn. W.B. Saunders Company, Philadelphia, pp 1229–1239CrossRefGoogle Scholar
  7. Bueva A, Guignard JP (1994) Renal function in preterm neonates. Pediatr Res 36:572–577CrossRefGoogle Scholar
  8. Burrow CR (2000) Regulatory molecules in kidney development. Pediatr Nephrol 14:240–253CrossRefGoogle Scholar
  9. Catarelli D, Chirico G, Simoni U (2002) Renal effects of antenally and postnatally administered steroids. Pediatr Med Chir 24:157–162Google Scholar
  10. Chevalier RL (1996) Developmental renal physiology of the low birth weight preterm newborn. J Urol 156:714–719CrossRefGoogle Scholar
  11. Dinchuk JE, Car BD, Focht RJ et al (1995) Renal abnormalities and an altered inflammatory response in mice lacking cyclooxygenase 2. Nature 378:406–409CrossRefGoogle Scholar
  12. Filler G, Guerrero-Kanan R, Alvarez-Elías AC (2016) Assessment of glomerular filtration rate in the neonate: is creatinine the best tool? Curr Opin Pediatr 28(2):173–179CrossRefGoogle Scholar
  13. Gallini F, Maggio L, Romagnoli C et al (2000) Progression of renal function in preterm neonates with gestational age ≤32 weeks. Pediatr Nephrol 15:119–112CrossRefGoogle Scholar
  14. Giniger RP, Buffat C, Millet V et al (2007) Renal effects of ibuprofen for the treatment of patent ductus arteriosus in premature infants. J Matern Fetal Neonatal Med 20:275–283CrossRefGoogle Scholar
  15. Gubhaju L, Sutherland MR, Yoder BA et al (2009) Is nephrogenesis affected by preterm birth? Studies in a non-human primate model. Am J Physiol Renal Physiol 297:F1668–F1677CrossRefGoogle Scholar
  16. Gubhaju L, Sutherland MR, Horne RS, Medhurst A, Kent AL, Ramsden A, Moore L, Singh G, Hoy WE, Black MJ (2014) Assessment of renal functional maturation and injury in preterm neonates during the first month of life. Am J Physiol Renal Physiol 307(2):F149–F158CrossRefGoogle Scholar
  17. Guignard JP (1975) Glomerular filtration rate in the first three weeks of life. J Pediatr 87:268–272CrossRefGoogle Scholar
  18. Guignard JP, Gruskin AB, Norman ME (eds) (1981) Pediatric nephrology. Martinus Nijhoff, The HagueGoogle Scholar
  19. Hoster M (2000) Embryonic epithelial membranes transporters. Am J Phys 279:F74–F52Google Scholar
  20. Keller G, Zimmer G, Gerhard M et al (2003) Nephron number in patients with primary hypertension. N Engl J Med 348:101–108CrossRefGoogle Scholar
  21. Kent AL, Koina ME, Gubhaju L et al (2014) Indomethacin administered early in the postnatal period results in reduced glomerular number in the adult rat. Am J Physiol Renal Physiol 307:F1105–F1110CrossRefGoogle Scholar
  22. Khan KNM, Stanfield KM, Dannenberg A et al (2001) Cyclooxygenase-2 expression in the developing human kidney. Pediatr Dev Pathol 4:461–466CrossRefGoogle Scholar
  23. McGrath-Morrow S, Choc C, Molls R et al (2006) VEGF receptor 2 blockade leads to renal cyst formation in mice. Kidney Int 69:1741–1748CrossRefGoogle Scholar
  24. Merlet-Benichou C, Gilbert T, Vilar J et al (1999) Nephron number: variability is the rule. Causes and consequences. Lab Investig 79:515–526PubMedGoogle Scholar
  25. Nicolaou N, Renkema KY, Bongers EM et al (2015) Genetic, environmental, and epigenetic factors involved in CAKUT. Nat Rev Nephrol 11:720–731CrossRefGoogle Scholar
  26. Nielsen S, Frokaier J, Marples D et al (2002) Aquaporins in the kidney: from molecule to medicine. Physiol Rev 82:205–244CrossRefGoogle Scholar
  27. Peters CA, Carr MC, Lais A et al (1992) The response of the fetal kidney to obstruction. J Urol 148:503–509CrossRefGoogle Scholar
  28. Pryde PG, Sedman AB, Nugent CE et al (1993) Angiotensin-converting enzyme inhibitor fetopathy. J Am Soc Nephrol 3:1575–1582PubMedGoogle Scholar
  29. Rodriguez MM, Gomez AH, Abitbol CL (2004) Histomorphometric analysis of postnatal glomerulogenesis on extremely preterm infants. Pediatr Dev Pathol 7:17–25CrossRefGoogle Scholar
  30. Rodriguez-Soriano J (2000) New insight into the pathogenesis of renal tubular acidosis-from functional to molecular studies. Pediatr Nephrol 14:1121–1136CrossRefGoogle Scholar
  31. Saxen L (1987) Organogenesis of the kidney. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  32. Solbaug MJ, Jose PA (2004) Postnatal maturation of renal blood flow. In: Polin A, Fox W (eds) Fetal and neonatal physiology, 3rd edn. W.B. Saunders Company, Philadelphia, pp 1243–1249Google Scholar
  33. Stelloh C, Allen KP, Mattson DL et al (2012) Prematurity in mice leads to reduction in nephron number, hypertension, and proteinuria. Transl Res 159:80–89CrossRefGoogle Scholar
  34. Sutherland MR, Gubhaju L, Moore L, Kent AL, Dahlstrom JE, Horne RS, Hoy WE, Bertram JF, Black MJ (2011) Accelerated maturation and abnormal morphology in the preterm neonatal kidney. J Am Soc Nephrol 22(7):1365–1374CrossRefGoogle Scholar
  35. Sweet D, the working group on prematurity (2007) European consensus guidelines on the management of neonatal respiratory distress syndrome. J Perinat Med 35:175–186CrossRefGoogle Scholar
  36. Vieux R, Fresson J, Guillemin F et al (2011) Perinatal drug exposure and renal function in very preterm infants. Arch Dis Child Fetal Neonatal Ed 96:F290–F295CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of NeonatologyLa Conception HospitalMarseilleFrance
  2. 2.Division of PediatricsCHUV and UNILLausanneSwitzerland

Personalised recommendations