Advertisement

Neonatology pp 1711-1725 | Cite as

Toxoplasmosis in the Fetus and Newborn

  • Wilma Buffolano
Reference work entry

Abstract

Globally, primary toxoplasmosis on gestation generates annually 190,100 new cases of congenital toxoplasmosis with a global burden of 1.20 million DALYs. Although Toxoplasma gondii infection is easily diagnosable and effectively treatable on the mother, out of prenatal screening setting, newborn diagnosis and early treatment might be problematic. In fact, the large majority of infected newborn display normal on clinical examination, with positive IgG of maternal origin and possibly negative IgA and IgM, with the consequence of late treatment on subclinical cases who are the ideal target of long-term pharmacological treatment. Moreover, toxoplasmosis is on the list of neglected disease of poverty. As consequence, the interest of manufacturers shows low, and standard of treatment continues to rely on a not curative and toxic medicine combination. Fortunately, research in progress on Toxoplasma gondii and host genetics and epigenetic machinery, including unusual histone variants and plantlike transcriptional and posttranscriptional motifs, could pave the way to potential new drugs and/or to channel the choice to treat or not to treat (and how long) subclinical onset forms. On the chapter, practical sustain on management at birth and on the long term of infant exposed to maternal Toxoplasma gondii infection or definitely congenitally infected (text, tables, and figure) is updated on the state of the art.

References

  1. Bahia-Oliveira LM, Jones JL, Azevedo-Silva J et al (2003) Highly endemic, waterborne toxoplasmosis in north Rio de Janeiro state, Brazil. Emerg Infect Dis 9(1):55–62CrossRefGoogle Scholar
  2. Belaz S, Gangneux JP, Dupretz P et al (2015) A 10-year retrospective comparison of two target sequences, REP-529 and B1, for Toxoplasma gondii detection by quantitative PCR. J Clin Microbiol 53:1294–1300CrossRefGoogle Scholar
  3. Blankenberg FG, Loh NN, Bracci P et al (2000) Sonography, CT, and MR imaging: a prospective comparison of neonates with suspected intracranial ischemia and hemorrhage. AJNR Am J Neuroradiol 21:213–218PubMedGoogle Scholar
  4. Bodaghi B, Touitou V, Fardeau C et al (2012) Toxoplasmosis: new challenges for an old disease. Eye (Lond) 26(2):241–244CrossRefGoogle Scholar
  5. Boughattas S, Abdallah RB, Siala E et al (2011) An atypical strain associated with congenital toxoplasmosis in Tunisia. New Microbiol 34:413–416PubMedGoogle Scholar
  6. Bowie WR, King AS, Werker DH et al (1997) Outbreak of toxoplasmosis associated with municipal drinking water: the BC Toxoplasma Investigation Team. Lancet 350:173–177CrossRefGoogle Scholar
  7. Boyer KM, Holfels E, Roizen N et al (2005) Risk factors for Toxoplasma gondii infection in mothers of infants with congenital toxoplasmosis: implications for prenatal management and screening. Am J Obstet Gynaecol 192:564–571CrossRefGoogle Scholar
  8. Capobiango JD, Mitsuka-Breganò R, Cabral-Monica T et al (2015) Acute toxoplasmosis in a breastfed infant with possible transmission by water. Rev Inst Med Trop Sao Paulo 57(6):523–526CrossRefGoogle Scholar
  9. Carme B, Demar M, Ajzenberg D, Dardé ML (2009) Severe acquired toxoplasmosis caused by wild cycle of Toxoplasma gondii, French Guiana. Emerg Infect Dis 15:656–658CrossRefGoogle Scholar
  10. Chapey E, Wallon M, L'Ollivier C et al (2015) Place of interferon-γ assay for diagnosis of congenital toxoplasmosis. Pediatr Infect Dis J 34(12):1407–1409CrossRefGoogle Scholar
  11. de Souza NE, Land Curi AL, Cavalcanti de Albuquerque M et al (2012) Genetic polymorphism for IFNγ +874 T/A in patients with acute toxoplasmosis. Rev Soc Bras Med Trop 45:757–760CrossRefGoogle Scholar
  12. Delhaes L, Ajzenberg D, Sicot B et al (2010) Severe congenital toxoplasmosis due to a Toxoplasma gondii strain with an atypical genotype: case report and review. Prenat Diagn 30:902–905CrossRefGoogle Scholar
  13. Dubey JP, Velmurugan GV, Rajendran C et al (2011) Genetic characterisation of Toxoplasma gondii in wildlife from North America revealed widespread and high prevalence of the fourth clonal type. Int J Parasitol 41:1139–1147CrossRefGoogle Scholar
  14. Dunn D, Wallon M, Peyron F et al (1999) Mother to child transmission of toxoplasmosis: risk estimates for clinical counselling. Lancet 353:1829–1833CrossRefGoogle Scholar
  15. Dutra MS, Béla ST, Peixoto-Rangel AL et al (2013) Association of a NOD2 gene polymorphism and T-helper 17 cells with presumed ocular toxoplasmosis. JID 207:152–163CrossRefGoogle Scholar
  16. Elbez-Rubinstein A, Ajzenberg D, Dardé ML et al (2009) Congenital toxoplasmosis and reinfection during pregnancy: case report, strain characterization, experimental model of reinfection, and review. J Infect Dis 199(2):280–285CrossRefGoogle Scholar
  17. EMSCOT- European Multicentre Study on Congenital Toxoplasmosis (2007) Screening for congenital toxoplasmosis: accuracy of immunoglobulin M and immunoglobulin A tests after birth. J Med Screen 14:8–13CrossRefGoogle Scholar
  18. European Multicentre Study on Congenital Toxoplasmosis- EMSCOT (2008) Predictors of retinochoroiditis in children with congenital toxoplasmosis: European, prospective cohort study. Pediatrics 121(5):e1215–e1222CrossRefGoogle Scholar
  19. Filisetti D, Odile Villard HI, Escande B et al (2015) Contribution of neonatal amniotic fluid testing to diagnosis of congenital toxoplasmosis. J Clin Microbiol 53:1719–1721CrossRefGoogle Scholar
  20. Fox BA, Rommereim LM, Guevara RB et al (2016) The Toxoplasma gondii rhoptry kinome is essential for chronic infection. MBio 78(3):e00193–e00116.  https://doi.org/10.1128/mBio.00193-16CrossRefGoogle Scholar
  21. Freeman K, Salt A, Prusa A et al (2005) Association between congenital toxoplasmosis and parent-reported developmental outcomes, concerns, and impairments, in 3 year old children. BMC Pediatr 5:23CrossRefGoogle Scholar
  22. Gangneux F, Dardè ML (2012) Epidemiology and diagnostic strategies for toxoplasmosis. Clin Microbiol Rev 25:264–296CrossRefGoogle Scholar
  23. Gilbert RE, Freeman K, Lago EG et al (2008) Ocular sequelae of congenital toxoplasmosis in Brazil compared with Europe. PLoS Negl Trop Dis 2(8):e277CrossRefGoogle Scholar
  24. Hintz SR, Slovis T, Bulas D et al (2007) Interobserver reliability and accuracy of cranial ultrasound scanning interpretation in premature infants. J Pediatr 150:592–596CrossRefGoogle Scholar
  25. Hutson SL, Wheeler KM, McLone D et al (2015) Patterns of hydrocephalus caused by congenital Toxoplasma gondii infection associate with parasite genetics. Clin Infect Dis 61(12):1831–1834CrossRefGoogle Scholar
  26. Jamieson SE, de Roubaix LA, Kuan Tan H et al (2008) COL2A1 and ABCA4 have epigenetically modified and associated with congenital toxoplasmosis. PLoS One 3(6):e2285.  https://doi.org/10.1371/journal.pone.0002285CrossRefPubMedPubMedCentralGoogle Scholar
  27. Jamieson SE, Peixoto-Rangel AL, Aubrey AC et al (2010) Evidence for associations between the purinergic receptor P2X7 (P2RX7) and toxoplasmosis. Genes Immun 11(5):374–383CrossRefGoogle Scholar
  28. Jones JL, Parise ME, Fiore AE (2014) Neglected parasitic infections in the United States: toxoplasmosis. Am J Trop Med Hyg 90(5):794–799CrossRefGoogle Scholar
  29. Knoblauch H, Tennstedt C, Brueck W et al (2003) Two brothers with findings resembling congenital intrauterine infection-like syndrome (pseudo-TORCH syndrome). Am J Med Genet 120A:261–265CrossRefGoogle Scholar
  30. L’Ollivier C, Wallon M, Faucher B et al (2012) Comparison of mother and child antibodies that target high-molecular-mass Toxoplasma gondii antigens by immunoblotting improves neonatal diagnosis of congenital toxoplasmosis. Clin Vaccine Immunol 19:1326–1328CrossRefGoogle Scholar
  31. Li XL, Wei HX, Zhang H et al (2014) A meta analysis on risks of adverse pregnancy outcomes in Toxoplasma gondii infection. PLOS One 9:e97775.  https://doi.org/10.1371/journal.pone.0097775CrossRefPubMedPubMedCentralGoogle Scholar
  32. Li X, Pomares C, Gonfrier G et al (2016) Multiplexed anti-toxoplasma IgG, IgM, and IgA assay on plasmonic gold chips: towards making mass screening possible with dye test precision. J Clin Microbiol 54:1726–1733CrossRefGoogle Scholar
  33. Liu L, Liu T, Yu L et al (2012) Rrop2(186-533): a novel peptide antigen for detection of IgM antibodies against Toxoplasma gondii. Foodborne Pathog Dis 9(1):7–12CrossRefGoogle Scholar
  34. Marangoni A, Capretti MG, De Angelis M et al (2014) Evaluation of a new protocol for retrospective diagnosis of congenital toxoplasmosis by use of Guthrie cards. J Clin Microbiol 52:2963–2970CrossRefGoogle Scholar
  35. McLeod R, Boyer K, Karrison T et al (2006) Outcome of treatment for congenital toxoplasmosis, 1981-2004: the National Collaborative Chicago-Based, Congenital Toxoplasmosis Study. Clin Infect Dis 42:1383–1394CrossRefGoogle Scholar
  36. McLeod R, Lykins J, Noble AG et al (2014) Management of congenital toxoplasmosis. Curr Pediatr Rep 2:166–194CrossRefGoogle Scholar
  37. Murat JB, Souvignet A, Fricker-Hidalgo H et al (2015) Assessment of the IgA immunosorbent agglutination assay for the diagnosis of congenital toxoplasmosis on a series of 145 toxoplasmic seroconversions. Clin Vaccine Immunol 22:456–458CrossRefGoogle Scholar
  38. Nguyen E, MacDonald WR, Trivedi T et al (2016) Neurons are the primary target cell for the brain- tropic intracellular parasite Toxoplasma gondii. PLoS Pathog 12(2):e1005447.  https://doi.org/10.1371/journal. ppat.1005447CrossRefPubMedPubMedCentralGoogle Scholar
  39. Noble AG, Latkany P, Kusmierczyk J et al (2010) Chorioretinal lesions in mothers of children with congenital toxoplasmosis in the National Collaborative Chicago- based Congenital Toxoplasmosis Study. Sci Med (Porto Alegre) 20:20–26Google Scholar
  40. Peyron F, Garweg JG, Wallon M et al (2011) Long-term impact of treated congenital toxoplasmosis on quality of life and visual performance. Pediatr Infect Dis J 30:597–600CrossRefGoogle Scholar
  41. Phan L, Kasza K, Jalbrzikowski J et al (2008a) Longitudinal study of new eye lesions in children with toxoplasmosis who were not treated during the first year of life. Am J Ophthalmol 146(3):375–384CrossRefGoogle Scholar
  42. Phan L, Kasza K, Jalbrzikowski J et al (2008b) Longitudinal study of new eye lesions in treated congenital toxoplasmosis. Ophthalmology 115(3):553–559CrossRefGoogle Scholar
  43. Pinon JM, Dumon H, Chemla C et al (2001) Strategy for diagnosis of congenital toxoplasmosis: evaluation of methods comparing mothers and newborns and standard methods for postnatal detection of immunoglobulin G, M, and A antibodies. J Clin Microbiol 39:2267–2271CrossRefGoogle Scholar
  44. Rajapakse S, Shivanthan MC, Samaranayake N et al (2013) Antibiotics for human toxoplasmosis: a systematic review of randomized trials. Pathog Glob Health 107:162–169CrossRefGoogle Scholar
  45. Rico-Torres CP, Vargas-Villavicencio JA, Correa D (2016) Is Toxoplasma gondii type related to clinical outcome in human congenital infection? Systematic and critical review. Eur J Clin Microbiol Infect Dis 35:1079–1088CrossRefGoogle Scholar
  46. Rilling V, Dietz K, Krczal D et al (2003) Evaluation of a commercial IgG/IgM Western blot assay for early postnatal diagnosis of congenital toxoplasmosis. Eur J Clin Microbiol Infect Dis 22(3):174–180PubMedGoogle Scholar
  47. Romand S, Chosson M, Franck J et al (2004) Usefulness of quantitative polymerase chain reaction in amniotic fluid as early prognostic marker of fetal infection with Toxoplasma gondii. Am J Obstet Gynecol 190(3):797–802CrossRefGoogle Scholar
  48. Saadatnia G, Golkar M (2012) Review on human toxoplasmosis. Scand J Infect Dis 44:805–814CrossRefGoogle Scholar
  49. Silveira C, Belfort R Jr, Muccioli C et al (2002) The effect of long-term intermittent trimethoprim/sulfamethoxazole treatment on recurrences of toxoplasmic retinochoroiditis. Am J Ophthalmol 134:41–46CrossRefGoogle Scholar
  50. Silveira C, Ferreira R, Muccioli C et al (2003) Toxoplasmosis transmitted to a newborn from the mother infected 20 years earlier. Am J Ophthalmol 136(2):370–371CrossRefGoogle Scholar
  51. Stagni L, Romano MA, Romano A et al (2009) Prenatal screening for congenital toxoplasmosis in Campania: preliminary report on activities and results. Mem Inst Oswaldo Cruz 104(2):374–377CrossRefGoogle Scholar
  52. Stramba-Badiale M, Nador F, Porta N et al (1997) QT interval prolongation and risk of life-threatening arrhythmias during toxoplasmosis prophylaxis with spiramycin in neonates. Am Heart J 133(1):108–111CrossRefGoogle Scholar
  53. Systematic Review on Congenital Toxoplasmosis Study Group (SYROCOT) (2007) Effectiveness of prenatal treatment for congenital toxoplasmosis: a meta-analysis of individual patients' data. Lancet 369:115–122CrossRefGoogle Scholar
  54. Torgerson PR, Mastroiacovo P (2013) The global burden of congenital toxoplasmosis: a systematic review. Bull World Health Organ 91(7):501–508CrossRefGoogle Scholar
  55. Torgerson PR, Devleesschauwer B, Praet N et al (2015) World Health Organization estimates of the global and regional disease burden of 11 foodborne parasitic diseases, 2010: a data synthesis. PLoS Med 12(12):e1001940.  https://doi.org/10.1371/journal.pmed.1001940CrossRefPubMedPubMedCentralGoogle Scholar
  56. Torres-Morales E, Taborda L, Cardona N et al (2014) Th1 and Th2 immune response to P30 and ROP18 peptides in human toxoplasmosis. Med Microbiol Immunol 203:315–322CrossRefGoogle Scholar
  57. Valentini P, Buonsenso D, Barone G et al (2015) Spiramycin/cotrimoxazole versus pyrimethamine/sulfonamide and spiramycin alone for the treatment of toxoplasmosis in pregnancy. J Perinatol 35(2):90–94CrossRefGoogle Scholar
  58. Villard O, Cimon B, L’Ollivier C et al (2016) Serological diagnosis of Toxoplasma gondii infection: Recommendations from the French National Reference Center for Toxoplasmosis. Diagn Microbiol Infect Dis 84:22–33CrossRefGoogle Scholar
  59. Wallon M, Peyron F, Cornu C et al (2013) Congenital toxoplasma infection: monthly prenatal screening decreases transmission rate and improves clinical outcome at age 3 years. Clin Infect Dis 56(9):1223–1231CrossRefGoogle Scholar
  60. Wallon M, Garweg JG, Abrahamowicz M et al (2014) Ophthalmic outcomes of congenital toxoplasmosis followed until adolescence. Pediatrics 133:e601CrossRefGoogle Scholar
  61. Wallon M, Kieffer F, Huissoudd C, Peyron F (2015) Cesarean delivery or induction of labor does not prevent vertical transmission of toxoplasmosis in late pregnancy. Int J Gynecol Obstet 129:169–177CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Heading Coordinating Centre for Perinatal Infection- Campania Region, Translational Medicine DepartmentFederico II Medical SchoolNaplesItaly

Personalised recommendations