Advertisement

Neonatology pp 1185-1206 | Cite as

Treatment of Hyperbilirubinemia in Newborns

  • Jon F. Watchko
  • M. Jeffrey Maisels
Reference work entry

Abstract

The main aim of treating hyperbilirubinemia is to prevent kernicterus and/or neurodevelopmental impairment. Recommendations for treatment are based primarily on the total serum bilirubin (TSB) levels but also as a function of gestational age, birth weight, bilirubin/albumin ratios, and risk factors that increase the risk of bilirubin neurotoxicity. Setting thresholds for intervention in the premature neonate is more challenging than in term babies. Phototherapy is effective in lowering the circulating bilirubin or preventing it from rising further; its primary purpose is to prevent the need for an exchange transfusion. Phototherapy uses visible light energy to change the shape and structure of bilirubin, converting it to molecules that can be excreted even when normal conjugation is deficient. Exchange transfusion remains an important if infrequently required intervention. It is recommended in any infant who is jaundiced and manifests signs of intermediate to advanced stages of acute bilirubin encephalopathy even if the TSB is falling. Pharmacologic agents used in the management of hyperbilirubinemia can accelerate the normal metabolic pathways for bilirubin clearance, inhibit the enterohepatic circulation of bilirubin, and interfere with bilirubin formation by blocking the degradation of heme or inhibiting hemolysis. Currently, the only drug in clinical use is intravenous immunoglobulin.

References

  1. Ackerman BD, Dyer GY, Taylor PM (1971) Decline in serum bilirubin concentration coincident with clinical onset of kernicterus. Pediatrics 48:647–650PubMedGoogle Scholar
  2. Ahlfors CE (1994) Criteria for exchange transfusion in jaundiced newborns. Pediatrics 93:488–494PubMedGoogle Scholar
  3. American Academy of Pediatrics, Subcommittee on Hyperbilirubinemia (2004) Clinical practice guideline: management of hyperbilirubinemia in the newborn infant 35 or more weeks of gestation. Pediatrics 114:297–316CrossRefGoogle Scholar
  4. American Association of Blood Banks Technical Manual Committee (2002) Perinatal issues in transfusion practice. In: Brecher M (ed) Technical manual. American Association of Blood Banks, Bethesda, pp 497–515Google Scholar
  5. Amin SB, Ahlfors CE, Orlando MS et al (2001) Bilirubin and serial auditory brainstem responses in premature infants. Pediatrics 107:664–670PubMedCrossRefGoogle Scholar
  6. Arnold C, Tyson JE, Cuadrado ME et al (2015) Cycled phototherapy: a safer effective treatment for small premature infants. EPAS 1582.605Google Scholar
  7. Aycicek A, Erel O (2007) Total oxidant/antioxidant status in jaundiced newborns before and after phototherapy. J Pediatr (Rio J) 83:319–322Google Scholar
  8. Bender GJ, Cashore WJ, Oh W (2007) Ontogeny of bilirubin-binding capacity and the effect of clinical status in premature infants born at less than 1300 grams. Pediatrics 120:1067–1073PubMedCrossRefGoogle Scholar
  9. Benders MJNL, van Bel F, van de Bor M (1999) Haemodynamic consequences of phototherapy in term infants. Eur J Pediatr 158:323–328PubMedCrossRefGoogle Scholar
  10. Bratlid D, Nakstad B, Hansen TW (2011) National guidelines for treatment of jaundice in the newborn. Acta Paediatr 100:499–505PubMedCrossRefGoogle Scholar
  11. Brown AK, Kim MH, Wu PYK et al (1985) Efficacy of phototherapy in prevention and management of neonatal hyperbilirubinemia. Pediatrics 75:393–400PubMedGoogle Scholar
  12. Cashore WJ (1980) Free bilirubin concentrations and bilirubin-binding affinity in term and preterm infants. J Pediatr 96:521–527PubMedCrossRefGoogle Scholar
  13. Cashore WJ, Oh W (1982) Unbound bilirubin and kernicterus in low birthweight infants. Pediatrics 69:481–485PubMedGoogle Scholar
  14. Cashore WJ, Oh W, Brodersen R (1983) Reserve albumin and bilirubin toxicity index in infant serum. Acta Paediatr Scand 72:415–419PubMedCrossRefGoogle Scholar
  15. Cnattingius S, Zack MM, Ekbom A et al (1995) Prenatal and neonatal risk factors for childhood lymphatic leukemia. J Natl Cancer Inst 87:908–914PubMedCrossRefGoogle Scholar
  16. Cremer RJ, Perryman PW, Richards DH (1958) Influence of light on the hyperbilirubinemia of infants. Lancet 1:1094–1097PubMedCrossRefGoogle Scholar
  17. Csoma Z, Hencz P, Orvos H et al (2007) Neonatal blue-light phototherapy could increase the risk of dysplastic nevus development. Pediatrics 119:1036–1037PubMedCrossRefGoogle Scholar
  18. Dagoglu T, Ovali F, Samanci N et al (1995) High-dose intravenous immunoglobulin therapy for haemolytic disease. J Internat Med Res 23:264–271CrossRefGoogle Scholar
  19. Dahlquist G, Kallen B (2003) Indications that phototherapy is a risk factor for insulin-dependent diabetes. Diabetes Care 26:247–248PubMedCrossRefGoogle Scholar
  20. Daood MJ, McDonagh AF, Watchko JF (2009) Calculated free bilirubin levels and neurotoxicity. J Perinatol 29:S14–S19PubMedCrossRefGoogle Scholar
  21. Djokomuljanto S, Quah BS, Surini Y et al (2006) Efficacy of phototherapy for neonatal jaundice is increased by the use of low-cost white reflecting curtains. Arch Dis Child Fetal Neonatal Ed 91:F439–F442PubMedPubMedCentralCrossRefGoogle Scholar
  22. Dollberg S, Atherton HD, Hoath SB (1995) Effect of different phototherapy lights on incubator characteristics and dynamics under three modes of servocontrol. Am J Perinatol 12:55–60PubMedCrossRefGoogle Scholar
  23. Donneborg ML, Knudsen KB, Ebbesen F (2010) Effect of infants’ position on serum bilirubin level during conventional phototherapy. Acta Paediatr 99:1131–1134PubMedCrossRefGoogle Scholar
  24. Ebbesen F, Brodersen R (1982) Risk of bilirubin acid precipitation in preterm infants with respiratory distress syndrome: Considerations of blood/brain bilirubin transfer equilibrium. Early Hum Dev 6:341–355PubMedCrossRefGoogle Scholar
  25. Ebbesen F, Nyboe J (1983) Postnatal changes in the ability of plasma albumin to bind bilirubin. Acta Paediatr Scand 72:665–670PubMedCrossRefGoogle Scholar
  26. Esbjorner E (1991) Albumin binding properties in relation to bilirubin and albumin concentrations during the first week of life. Acta Paediatr Scand 80:400–405PubMedCrossRefGoogle Scholar
  27. Figueras-Aloy J, Rodriguez-Miguelez JM, Iriondo-Sanz M et al (2010) Intravenous immunoglobulin and necrotizing enterocolitis in newborns with hemolytic disease. Pediatrics 125:139–144PubMedCrossRefGoogle Scholar
  28. Funato M, Tamai H, Shimada S, Nakamura H (1994) Vigintiphobia, unbound bilirubin, and auditory brainstem responses. Pediatrics 93:50–53PubMedGoogle Scholar
  29. Gottstein R, Cooke R (2003) Systematic review of intravenous immunoglobulin in haemolytic disease of the newborn. Arch Dis Child Fetal Neonatol Ed 88:F6–F10CrossRefGoogle Scholar
  30. Govaert P, Lequin M, Swarte R et al (2003) Changes in globus pallidus with (pre) term kernicterus. Pediatrics 112:1256–1263PubMedCrossRefGoogle Scholar
  31. Haddock JH, Nadler HL (1970) Bilirubin toxicity in human cultivated fibroblasts and its modification by light treatment. Proc Soc Exp Biol Med 134:45–48PubMedCrossRefGoogle Scholar
  32. Hammerman C, Vreman HJ, Kaplan M et al (1996a) Intravenous immune globulin in neonatal immune hemolytic disease: does it reduce hemolysis? Acat Paediatr 85:1351–1353CrossRefGoogle Scholar
  33. Hammerman C, Kaplan M, Vreman HJ et al (1996b) Intravenous immune globulin in neonatal ABO isoimmunization: Factors associated with clinical efficacy. Biol Neonate 170:69–74CrossRefGoogle Scholar
  34. Hansen TWR (1997) Acute management of extreme neonatal jaundice – the potential benefits of intensified phototherapy and interruption of enterohepatic bilirubin circulation. Acta Paediatr 86:843–846PubMedCrossRefGoogle Scholar
  35. Hansen TWR, Nietsch L, Norman E et al (2009) Reversibility of acute intermediate phase bilirubin encephalopathy. Acta Paediatr 98:1689–1694PubMedCrossRefGoogle Scholar
  36. Harris MC, Bernbaum JC, Polin JR et al (2001) Developmental follow-up of breastfed term and near-term infants with marked hyperbilirubinemia. Pediatrics 107:1075–1080PubMedCrossRefGoogle Scholar
  37. Hegyi T, Graff M, Zapanta V et al (1986) Transcutaneous bilirubinometry. III. Dermal bilirubin kinetics under green and blue light phototherapy. Am J Dis Child 140:994–997PubMedCrossRefGoogle Scholar
  38. Hintz SR, Stevenson DK, Wong R et al (2011) Is phototherapy exposure associated with better or worse outcomes in 501- to 1000-g-birth-weight infants? Acta Paediatr 100:960–965PubMedPubMedCentralCrossRefGoogle Scholar
  39. Hulzebos CV, Dijk PH, van Imhoff DE et al (2014) The bilirubin albumin ratio in the management of hyperbilirubinemia in preterm infants to improve neurodevelopmental outcome: a randomized controlled trial – the BARTrial. PLoS One 9, e99466PubMedPubMedCentralCrossRefGoogle Scholar
  40. Ip S, Glicken S, Kulig J et al (2003) Management of neonatal hyperbilirubinemia. AHRQ Publication, RockvilleGoogle Scholar
  41. Ip S, Chung M, Kulig J et al (2004) An evidence-based review of important issues concerning neonatal hyperbilirubinemia. Pediatrics 114:e130–e153PubMedCrossRefGoogle Scholar
  42. Jackson JC (1997) Adverse events associated with exchange transfusion in healthy and ill newborns. Pediatrics 99, e7PubMedCrossRefGoogle Scholar
  43. Jährig K, Jährig D, Meisel P (1982) Dependence of the efficiency of phototherapy on plasma bilirubin concentration. Acta Paediatr Scand 71:293–299PubMedCrossRefGoogle Scholar
  44. Kaplan M, Kaplan E, Hammerman C et al (2006) Post-phototherapy neonatal bilirubin rebound: a potential cause of significant hyperbilirubinaemia. Arch Dis Child 91:31–34PubMedCrossRefGoogle Scholar
  45. Kappas A (2004) A method for interdicting the development of severe jaundice in newborns by inhibiting the production of bilirubin. Pediatrics 113:119–123PubMedCrossRefGoogle Scholar
  46. Kappas A, Drummond GS, Munson DP, Marshall JR (2001) Sn-mesoporphyrin interdiction of severe hyperbilirubinemia in Jehovah’s Witness newborns as an alternative to exchange transfusion. Pediatrics 108:1374–1377PubMedCrossRefGoogle Scholar
  47. Kara S, Ulu-ozkan H, Yilmaz Y et al (2013) Necrotizing enterocolitis in a newborn following intravenous immunoglobulin treatment for haemolytic disease. J Coll Physicians Surg Pak 23:598–600PubMedGoogle Scholar
  48. Keenan WJ, Novak KK, Sutherland JM et al (1985) Morbidity and mortality associated with exchange transfusion. Pediatrics (Suppl) 75:417–421Google Scholar
  49. Kopelman AE, Brown RS, Odell GB (1972) The “bronze” baby syndrome: A complication of phototherapy. J Pediatr 81:466–472PubMedCrossRefGoogle Scholar
  50. Krishnan L, Pathare A (2011) Necrotizing enterocolitis in a term neonate following intravenous immunoglobin therapy. Indian J Pediatr 78:743–744PubMedCrossRefGoogle Scholar
  51. Krishnan L, Pathare A (2012) Author’s Reply. Correspondence in regard to necrotizing enterocolitis in a term neonate following intravenous immunoglobulin therapy. Indian J Pediatr 79:1677Google Scholar
  52. Lai YC, Yew YW 2015 Neonatal blue light phototherapy and melanocytic nevus count in children: a systemic review and meta-analysis of observational studies. Ped Dermatology  https://doi.org/10.1111/pde.12730. [Epub ahead of print]PubMedCrossRefGoogle Scholar
  53. Lamola AA, Eisinger J, Blumberg WE et al (1979) Fluorometric study of the partition of bilirubin among blood components: basis for rapidmicorassays of bilirubin and bilirubin binding capacity in whole blood. Anal Biochem 100:25–42PubMedCrossRefGoogle Scholar
  54. Lau SP, Fung KP (1984) Serum bilirubin kinetics in intermittent phototherapy of physiological jaundice. Arch Dis Child 59:892–894PubMedPubMedCentralCrossRefGoogle Scholar
  55. Lightner DA, McDonagh AF (1984) Molecular mechanisms of phototherapy for neonatal jaundice. Acc Chem Res 17:417–424CrossRefGoogle Scholar
  56. Lipsitz PJ, Gartner LM, Bryla DA (1985) Neonatal and infant mortality in relationship to phototherapy. Pediatrics 75(Suppl):422–441PubMedGoogle Scholar
  57. Louis D, More K, Oberoi S et al (2014) Intravenous immunoglobulin in isoimmune haemolytic disease of newborn: an updated systematic review and meta-analysis. Arch Dis Child Fetal Neonatal 99:F1–F7CrossRefGoogle Scholar
  58. Maayan-Metzger A, Yosipovitch G, Hadad E et al (2001) Transepidermal water loss and skin hydration in preterm infants during phototherapy. Am J Perinatol 18:393–396PubMedCrossRefGoogle Scholar
  59. Maisels MJ (1996) Why use homeopathic doses of phototherapy? Pediatrics 98:283–287PubMedGoogle Scholar
  60. Maisels MJ (2001) Phototherapy – traditional and nontraditional. J Perinatol 21:S93–S97PubMedCrossRefGoogle Scholar
  61. Maisels MJ, Kring E (2002) Rebound in serum bilirubin level following intensive phototherapy. Arch Pediatr Adolesc Med 156:669–672PubMedCrossRefGoogle Scholar
  62. Maisels MJ, Kring EA (2006a) Does intensive phototherapy produce hemolysis in newborns of 35 or more weeks gestation? J Perinatol 26:498–500PubMedCrossRefGoogle Scholar
  63. Maisels MJ, Kring E (2006b) The contribution of hemolysis to early jaundice in normal newborns. Pediatrics 118:276–279PubMedCrossRefGoogle Scholar
  64. Maisels MJ, McDonagh AF (2008) Phototherapy for neonatal jaundice. N Engl J Med 358:920–928PubMedCrossRefGoogle Scholar
  65. Maisels MJ, Watchko JF (2003) Treatment of jaundice in low birthweight infants. Arch Dis Child Fetal Neonatol Ed 88:F459–F463CrossRefGoogle Scholar
  66. Maisels MJ, Kring EA, DeRidder J (2007) Randomized controlled trial of light-emitting diode phototherapy. J Perinatol 27:565–567PubMedCrossRefGoogle Scholar
  67. Maisels MJ, Watchko JF, Bhutani VK, Stevenson DK (2012) An approach to the management of hyperbilirubinemiain the preterm infant less than 35 weeks of gestation. J Perinatol 32:660–664PubMedCrossRefGoogle Scholar
  68. Mallon E, Wojnarowska F, Hope P, Elder G (1995) Neonatal bullous eruption as a result of transient porphyrinemia in a premature infant with hemolytic disease of the newborn. J Am Acad Dermatol 33:333–336PubMedCrossRefGoogle Scholar
  69. Martinez JC, Maisels MJ, Otheguy L et al (1993) Hyperbilirubinemia in the breastfed newborn: a controlled trial of four interventions. Pediatrics 91:470–473PubMedPubMedCentralGoogle Scholar
  70. Maurer HM, Kirkpatrick BV, McWilliams NB et al (1985) Phototherapy for hyperbilirubinemia of hemolytic disease of the newborn. Pediatrics (Suppl) 75:407–412Google Scholar
  71. McDonagh AF (1990) Is bilirubin good for you? Clin Perinatol 17:359–369PubMedCrossRefGoogle Scholar
  72. McDonagh AF, Maisels MJ (2006) Bilirubin unbound: deja vu all over again? Pediatrics 117:523–525PubMedCrossRefGoogle Scholar
  73. Messner KH, Maisels MJ, Leure-DuPree AE (1978) Phototoxicity to the newborn primate retina. Invest Ophthalmol Vis Sci 17:178182Google Scholar
  74. Moll M, Goelz R, Naegele T, Wilke M, Poets CF (2011) Are recommended phototherapy thresholds safe enough for extremely low birth weight (ELBW) infants? A report on 2 ELBW infants with kernicterus despite only moderate hyperbilirubinemia. Neonatology 99:90–94PubMedCrossRefGoogle Scholar
  75. Morris BH, Oh W, Tyson JE et al (2008) Aggressive vs. conservative phototherapy for infants with extremely low birth weight. New Engl J Med 359:1885–1896PubMedCrossRefGoogle Scholar
  76. Mreihil K, McDonagh AF, Nakstad B et al (2010) Early isomerization of bilirubin in phototherapy of neonatal jaundice. Pediatr Res 67:656–659PubMedCrossRefGoogle Scholar
  77. Mreihil K, Madsen P, Nakstad B et al (2015) Early formation of bilirubin isomers during phototherapy for neonatal jaundice: effects of single vs. double flourescent lamps vs. photodiodes. Pediatr Res 78:56–62PubMedCrossRefGoogle Scholar
  78. Nakamura H, Yonetani M, Uetani Y et al (1992) Determination of serum unbound bilirubin for prediction of kernicterus in low birth weight infants. Acta Paediatr Jpn 54:642–647CrossRefGoogle Scholar
  79. National Institute for Health and Clinical Excellence (2010) Neonatal jaundice. www.nice.org.uk/CG98
  80. Navarro M, Negre S, Matoses ML et al (2009) Necrotizing enterocolitis following the use of intravenous immunoglobulin for haemolytic disease of the newborn. Acta Paediatr 98:1214–1217PubMedCrossRefGoogle Scholar
  81. Newman TB, Maisels MJ (1990) Does hyperbilirubinemia damage the brain of healthy full-term infants? Clin Perinatol 17:331–358PubMedCrossRefGoogle Scholar
  82. Newman TB, Liljestrand P, Jeremy RJ et al (2006) Outcomes among newborns with total serum bilirubin levels of 25 mg per deciliter or more. N Engl J Med 354:1889–1900PubMedCrossRefGoogle Scholar
  83. Newman TB, Kuzniewicz MW, Liljestrand P et al (2009) Numbers needed to treat with phototherapy according to American academy of pediatrics guidelines. Pediatrics 123:1352–1359PubMedPubMedCentralCrossRefGoogle Scholar
  84. Oh W, Tyson JE, Fanaroff AA et al (2003) Association between peak serum bilirubin and neurodevelopmental outcomes in extremely low birth weight infants. Pediatrics 112:773–779PubMedCrossRefGoogle Scholar
  85. Oh W, Stevenson DK, Tyson JE et al (2010) Influence of clinical status on the association between plasma total and unbound bilirubin and death or adverse neurodevelopmental outcomes in extremely low birth weight infants. Acta Paediatr 99:673–678PubMedPubMedCentralCrossRefGoogle Scholar
  86. Paller AS, Eramo LR, Farrell EE et al (1997) Purpuric phototherapy-induced eruption in transfused neonates: relation to transient porphyrinemia. Pediatrics 100:360–364PubMedCrossRefGoogle Scholar
  87. Patra K, Storfer-Isser A, Siner B (2004) Adverse events associated with neonatal exchange transfusion in the 1990s. J Pediatr 144:626–631PubMedCrossRefGoogle Scholar
  88. Procianoy RS, Silveira RC, Fonseca LT et al (2010) The influence of phototherapy on serum cytokine concentrations in newborn infants. Am J Perinatol 27:375–379PubMedCrossRefGoogle Scholar
  89. Rennie JM, Sehgal A, De A et al (2009) Range of UK practice regarding thresholds for phototherapy and exchange transfusion in neonatal hyperbilirubinaemia. Arch Dis Child Fetal Neonatol Ed 94:F323–F327CrossRefGoogle Scholar
  90. Robertson L, Harrild K (2010) Maternal and neonatal risk factors for childhood type 1 diabetes: a matched case–control study. BMC Public Health 10:281PubMedPubMedCentralCrossRefGoogle Scholar
  91. Rogerson AG, Grossman ER, Gruber HS et al (1986) 14 years of experience with home phototherapy. Clin Pediatr 25:296–299CrossRefGoogle Scholar
  92. Roman E, Ansell P, Bull D (1997) Leukaemia and non-Hodgkin’s lymphoma in children and young adults: are prenatal and neonatal factors important determinants of disease? Brit J Cancer 76:406–415PubMedCrossRefGoogle Scholar
  93. Rubaltelli FF, Jori G, Reddi E (1983) Bronze baby syndrome: A new porphyrin-related disorder. Pediatr Res 17:327–330PubMedCrossRefGoogle Scholar
  94. Rubaltelli FF, Guerrini P, Reddi E, Jori G (1989) Tin-protoporphyrin in the management of children with Crigler-Najjar disease. Pediatrics 84:728–731PubMedGoogle Scholar
  95. Rübo J, Albrecht K, Lasch P et al (1992) High-dose intravenous immune globulin therapy for hyperbilirubinemia caused by Rh hemolytic disease. J Pediatr 121:93–97PubMedCrossRefGoogle Scholar
  96. Santos MC, Sa CA, Gomes SC, Camacho LA et al (2013) High-dose intravenous immunoglobulin therapy for hyperbilirubinemia due to Rh hemolytic disease: a randomized clinical trial. Transfusion 53:777–782PubMedCrossRefGoogle Scholar
  97. Scheidt PC, Graubard BI, Nelson KB et al (1991) Intelligence at six years in relation to neonatal bilirubin level: follow-up of the National Institute of Child Health and Human Development Clinical Trial of Phototherapy. Pediatrics 87:797–805PubMedGoogle Scholar
  98. Schulz S, Wong RJ, Vreman HJ et al (2012) Metalloporphyrins – an update. Front Pharmacol 3:68PubMedPubMedCentralCrossRefGoogle Scholar
  99. Sedlak TW, Snyder SH (2004) Bilirubin benefits: cellular protection by a biliverdin reductase antioxidant cycle. Pediatrics 113:17761782CrossRefGoogle Scholar
  100. Seidman DS, Moise J, Ergaz Z et al (2003) A prospective randomized controlled study of phototherapy using blue and blue-green light-emitting devices, and conventional halogen-quartz phototherapy. J Perinatol 23:123–127PubMedCrossRefGoogle Scholar
  101. Shinwell ES, Sciaky Y, Karplus M (2002) Effect of position changing on bilirubin levels during phototherapy. J Perinatol 22:226–229PubMedCrossRefGoogle Scholar
  102. Silberberg DH, Johnson L, Schutta H et al (1970) Effects of photodegradation products of bilirubin on myelinating cerebellum cultures. J Pediatr 77:613–618PubMedCrossRefGoogle Scholar
  103. Sims ME (2011) Legal briefs: Kernicterus still preventable. NeoReviews 12:e727–e730CrossRefGoogle Scholar
  104. Sisson TR, Whalen LE, Telel A (1958) A comparison of effects of whole blood and sedimented erythrocytes in exchange transfusion. Pediatrics 21:81–89PubMedGoogle Scholar
  105. Slater L, Brewer MF (1984) Home versus hospital phototherapy for term infants with hyperbilirubinemia: a comparative study. Pediatrics 73:515–519PubMedGoogle Scholar
  106. Slusher TM, Vreman HJ, Olusanya BO et al (2014) Safety and efficacy of filtered sunlight in treatment of jaundice in African neonates. Pediatrics 133:e1568–e1574PubMedPubMedCentralCrossRefGoogle Scholar
  107. Slusher TM, Olusanya BO, Vreman HJ et al (2015) A randomized trial of phototherapy with filtered sunlight in African neonates. New Engl J Med 373:1115–1124PubMedCrossRefGoogle Scholar
  108. Smits-Wintjens VEHJ, Walther FJ et al (2011) Intravenous immunoglobulin in neonates with rhesus hemolytic disease: a randomized controlled trial. Pediatrics 127:680–686PubMedCrossRefGoogle Scholar
  109. Sproul A, Smith L (1964) Bilirubin equilibration during exchange transfusion in hemolytic disease of the newborn. J Pediatr 65:12–26PubMedCrossRefGoogle Scholar
  110. Strauss KA, Robinson DL, Vreman HJ et al (2006) Management of hyperbilirubinemia and prevention of kernicterus in 20 patients with Crigler-Najjar disease. Eur J Pediatr 165:306–319PubMedCrossRefGoogle Scholar
  111. Sugama S, Soeda A, Eto Y (2001) Magnetic resonance imaging in three children with kernicterus. Pediatr Neurol 25:328–331PubMedCrossRefGoogle Scholar
  112. Tan KL (1982) The pattern of bilirubin response to phototherapy for neonatal hyperbilirubinemia. Pediatr Res 16:670–674PubMedCrossRefGoogle Scholar
  113. Tatli MM, Minnet C, Kocyigit A et al (2008) Phototherapy increases DNA damage in lymphocytes of hyperbilirubinemic neonates. Mutat Res 654:93–95PubMedCrossRefGoogle Scholar
  114. Tonz O, Vogt J, Filippini L et al (1975) Severe light dermatosis following phototherapy in a newborn infant with congenital erythropoietic uroporphyria. Helv Paediatr Acta 30:47–56PubMedGoogle Scholar
  115. Tyson JE, Pedroza C, Langer J et al (2012) Does aggressive phototherapy increase mortality while decreasing profound impairment among the smallest and sickest newborns? J Perinatol 32:677–684PubMedPubMedCentralCrossRefGoogle Scholar
  116. Valaes T (1963) Bilirubin distribution and dynamics of bilirubin removal by exchange transfusion. Acta Paediatr 52(suppl 149):1–115Google Scholar
  117. Valaes T, Petmezaki S, Henschke C et al (1994) Control of jaundice in preterm newborns by an inhibitor of bilirubin production: studies with tin-mesoporphyrin. Pediatrics 93:1–11PubMedGoogle Scholar
  118. Vandborg PK, Hansen BM, Greisen G et al (2012) Dose–response relationship of phototherapy for hyperbilirubinemia. Pediatrics 130:e352–e357PubMedCrossRefGoogle Scholar
  119. Vogl TP, Hegyi T, Hiatt IM et al (1978) Intermittent phototherapy in the treatment of jaundice in the premature infant. J Pediatr 92:627–630PubMedCrossRefGoogle Scholar
  120. Voto LS, Sexer H, Ferreiro G et al (1995) Neonatal adminstration of high-dose intravenous immunoglobulin and rhesus hemolytic disease. J Perinat Med 23:443–451PubMedCrossRefGoogle Scholar
  121. Vreman HJ, Wong RJ, Stevenson DK (2004) Phototherapy: current methods and future directions. Semin Perinatol 28:326–333PubMedCrossRefGoogle Scholar
  122. Watchko JF (2000) Exchange transfusion in the management of neonatal hyperbilirubinemia. In: Maisels MJ, Watchko JF (eds) Neonatal Jaundice. Harwood Academic Publishers, London, pp 169–176Google Scholar
  123. Watchko JF (2014) Recent advances in the management of neonatal jaundice. Res Rep Neonatol 4:183–193Google Scholar
  124. Watchko JF (2016) Bilirubin-induced neurotoxicity in the preterm neonate. Clin Perinatol 43:297–311PubMedCrossRefGoogle Scholar
  125. Watchko JF, Maisels MJ (2014) The enigma of low bilirubin kernicterus in premature infants:why does it still occur, and is it preventable? Semin Perinatol 38:397–406PubMedCrossRefGoogle Scholar
  126. Watchko JF, Tiribelli C (2013) Bilirubin-induced neurologic damage – mechanisms and management approaches. N Engl J Med 369:2021–2030CrossRefPubMedGoogle Scholar
  127. Wennberg RP, Ahlfors CE, Bhutani V et al (2006) Toward understanding kernicterus: a challenge to improve the management of jaundiced newborns. Pediatrics 117:474–485PubMedCrossRefGoogle Scholar
  128. Yamauchi Y, Casa N, Yamanouchi I (1989) Is it necessary to change the babies’ position during phototherapy? Early Hum Dev 20:221–227PubMedCrossRefGoogle Scholar
  129. Yetman RJ, Parks DK, Huseby V et al (1998) Rebound bilirubin levels in infants receiving phototherapy. J Pediatr 133:705–707PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Newborn Medicine, Department of PediatricsUniversity of Pittsburgh School of MedicinePittsburghUSA
  2. 2.Department of PediatricsOakland University William Beaumont School of Medicine, Beaumont Children’s HospitalRoyal OakUSA

Personalised recommendations