Advertisement

Neonatology pp 887-911 | Cite as

Bronchopulmonary Dysplasia/Chronic Lung Disease of the Newborn

  • Vineet Bhandari
Reference work entry

Abstract

Bronchopulmonary dysplasia (BPD) is a chronic lung disease associated with premature birth and characterized by early lung injury. Over the past four decades, there have been significant changes in the definition, pathology, and radiological findings of BPD. The clinical profile of infants with BPD has changed and it is uncommon in infants over 1,200 g birth weight and >30 weeks gestational age. Understanding of the basic biology of lung development and use of antenatal steroids, postnatal surfactant, new ventilatory strategies, and aggressive nutrition have resulted in major improvements in the clinical course and outcomes. Management of the early, evolving and established phases of BPD continues to improve. Despite many advances in care, however, infants with BPD have significant neurodevelopmental and pulmonary sequelae.

Abbreviations

α1P1

Alpha-1 proteinase inhibitor

BPD

Bronchopulmonary dysplasia

BW

Birth weight

CC10

Clara cell 10-kD protein

CCSP

Clara cell secretory protein

CMV

Conventional mechanical ventilation

CT

Computed tomography

CTGI

Continuous tracheal gas insufflation

ET-1

Endothelin-1

FGF-2

Fibroblast growth factor-2

GA

Gestational age

HFOV

High-frequency oscillatory ventilation

HGF

Hepatocyte growth factor

ICAM-1

Soluble intercellular adhesion molecule-1

ILs

Interleukins

IL-1RA

IL-1 receptor antagonist

iNO

Inhaled nitric oxide

KGF

Keratinocyte growth factor

LFA-1

Lymphocyte function-associated antigen 1

LPS

Lipopolysaccharide

MCP

Monocyte chemoattractant proteins

MIF

Macrophage migration inhibitory factor

MMPs

Matrix metalloproteinases

NAC

N-acetyl cysteine

NCPAP

Nasal continuous positive airway pressure

NF-kB

Nuclear factor-kappa B

NIPPV

Nasal intermittent positive pressure ventilation

PAI-1

Plasminogen activator inhibitor-1

PDA

Patent ductus arteriosus

PMA

Postmenstrual age

PTHrP

Parathyroid hormone-related protein

RCT

Randomized controlled trial

RDS

Respiratory distress syndrome

RSV

Respiratory syncytial virus

SOD

Superoxide dismutase

TA

Tracheal aspirates

TATI

Tumor-associated trypsin inhibitor

TGF-ß1

Transforming growth factor-ß1

TIMP

Tissue inhibitor of metalloproteinases

TNF

Tumor necrosis factor

TNF-α

Tumor necrosis factor-α

VEGF

Vascular endothelial growth factor

References

  1. Aghai ZH, Faqiri S, Saslow JG, Nakhla T, Farhath S, Kumar A et al (2008) Angiopoietin 2 concentrations in infants developing bronchopulmonary dysplasia: attenuation by dexamethasone. J Perinatol 28:149–155CrossRefGoogle Scholar
  2. Agrons A, Courtney S, Stocker J, Markowitz R (2005) From the archives of the AFIP: lung disease in premature neonates: radiologic-pathologic correlation. Radiographics 25(4):1047–1073CrossRefGoogle Scholar
  3. Ambalavanan N, Carlo WA (2006) Ventilatory strategies in the prevention and management of bronchopulmonary dysplasia. Semin Perinatol 30(4):192–199CrossRefGoogle Scholar
  4. Ambalavanan N, Mourani P (2014) Pulmonary hypertension in bronchopulmonary dysplasia. Birth Defects Res Part A Clin Mol Teratol 100(3):240–246.  https://doi.org/10.1002/bdra.23241CrossRefPubMedGoogle Scholar
  5. Ambalavanan N, Novak ZE (2003) Peptide growth factors in tracheal aspirates of mechanically ventilated preterm neonates. Pediatr Res 53(2):240–244CrossRefGoogle Scholar
  6. Anderson PJ, Doyle LW (2006) Neurodevelopmental outcome of bronchopulmonary dysplasia. Semin Perinatol 30(4):227–232CrossRefGoogle Scholar
  7. Baier RJ, Majid A, Parupia H, Loggins J, Kruger TE (2004) CC chemokine concentrations increase in respiratory distress syndrome and correlate with development of bronchopulmonary dysplasia. Pediatr Pulmonol 37(2):137–148CrossRefGoogle Scholar
  8. Balany J, Bhandari V (2015) Understanding the impact of infection, inflammation, and their persistence in the pathogenesis of bronchopulmonary dysplasia. Front Med (Lausanne) 2:90.  https://doi.org/10.3389/fmed.2015.00090CrossRefGoogle Scholar
  9. Ballard RA, Keller RL, Black DM, Ballard PL, Merrill JD, Eichenwald EC et al (2016) Randomized trial of late surfactant treatment in ventilated preterm infants receiving inhaled nitric oxide. J Pediatr 168:23–29.  https://doi.org/10.1016/j.jpeds.2015.09.031, e4CrossRefPubMedGoogle Scholar
  10. Baraldi E, Filippone M (2007) Chronic lung disease after premature birth. N Engl J Med 357(19):1946–1955CrossRefGoogle Scholar
  11. Barrington KJ, Finer NN (2007) Inhaled nitric oxide for preterm infants: a systematic review. Pediatrics 120(5):1088–1099CrossRefGoogle Scholar
  12. Bassler D, Plavka R, Shinwell ES, Hallman M, Jarreau PH, Carnielli V et al (2015) Early inhaled budesonide for the prevention of bronchopulmonary dysplasia. N Engl J Med 373(16):1497–1506.  https://doi.org/10.1056/NEJMoa1501917CrossRefPubMedGoogle Scholar
  13. Baveja R, Christou H (2006) Pharmacological strategies in the prevention and management of bronchopulmonary dysplasia. Semin Perinatol 30(4):209–218CrossRefGoogle Scholar
  14. Bell EF, Acarregui MJ (2008) Restricted versus liberal water intake for preventing morbidity and mortality in preterm infants. Cochrane Database Syst Rev 1, CD000503Google Scholar
  15. Berger J, Mehta P, Bucholz E, Dziura J, Bhandari V (2014) Impact of early extubation and reintubation on the incidence of bronchopulmonary dysplasia in neonates. Am J Perinatol 31(12):1063–1072.  https://doi.org/10.1055/s-0034-1371702CrossRefPubMedGoogle Scholar
  16. Bhandari V (2006) Non-invasive ventilation of the sick neonate: evidence-based recommendations. J Neonatol 20(3):214–221Google Scholar
  17. Bhandari V (2012) Genetic influences in lung development and injury. In: Bancalari E (ed) The newborn lung: questions and controversies, 2nd edn. Neonatology: questions and controversies. Saunders, Philadelphia, pp 29–55CrossRefGoogle Scholar
  18. Bhandari V (2013) The potential of non-invasive ventilation to decrease BPD. Semin Perinatol 37(2):108–114.  https://doi.org/10.1053/j.semperi.2013.01.007CrossRefPubMedGoogle Scholar
  19. Bhandari V (2014a) Postnatal inflammation in the pathogenesis of bronchopulmonary dysplasia. Birth Defects Res Part A Clin Mol Teratol 100(3):189–201.  https://doi.org/10.1002/bdra.23220CrossRefPubMedPubMedCentralGoogle Scholar
  20. Bhandari V (2014b) Drug therapy trials for the prevention of bronchopulmonary dysplasia: current and future targets. Front Pediatr 2:76.  https://doi.org/10.3389/fped.2014.00076CrossRefPubMedPubMedCentralGoogle Scholar
  21. Bhandari A, Bhandari V (2003) Pathogenesis, pathology and pathophysiology of pulmonary sequelae of bronchopulmonary dysplasia in premature infants. Front Biosci 8:e370–e380CrossRefGoogle Scholar
  22. Bhandari A, Bhandari V (2007) Bronchopulmonary dysplasia: an update. Indian J Pediatr 74(1):73–77CrossRefGoogle Scholar
  23. Bhandari A, Bhandari V (2009) Pitfalls, problems and progress in bronchopulmonary dysplasia. Pediatrics 123:1562–1573CrossRefGoogle Scholar
  24. Bhandari A, Bhandari V (2011) “New” bronchopulmonary dysplasia: a clinical review. Clin Pulm Med 18(3):137–143CrossRefGoogle Scholar
  25. Bhandari A, Bhandari V (2013) Biomarkers in bronchopulmonary dysplasia. Paediatr Respir Rev 14(3):173–179.  https://doi.org/10.1016/j.prrv.2013.02.008CrossRefPubMedGoogle Scholar
  26. Bhandari V, Elias JA (2006) Cytokines in tolerance to hyperoxia-induced injury in the developing and adult lung. Free Radic Biol Med 41(1):4–18CrossRefGoogle Scholar
  27. Bhandari V, Gruen JR (2006) The genetics of bronchopulmonary dysplasia. Semin Perinatol 30(4):185–191CrossRefGoogle Scholar
  28. Bhandari A, Panitch HB (2006) Pulmonary outcomes in bronchopulmonary dysplasia. Semin Perinatol 30(4):219–226.  https://doi.org/10.1053/j.semperi.2006.05.009CrossRefPubMedGoogle Scholar
  29. Bhandari V, Brodsky N, Porat R (2005) Improved outcome of extremely low birth weight infants with Tegaderm application to skin. J Perinatol 25(4):276–281CrossRefGoogle Scholar
  30. Bhandari V, Bizzarro MJ, Shetty A, Zhong X, Page GP, Zhang H et al (2006a) Familial and genetic susceptibility to major neonatal morbidities in preterm twins. Pediatrics 117(6):1901–1906CrossRefGoogle Scholar
  31. Bhandari V, Choo-Wing R, Lee CG, Zhu Z, Nedrelow JH, Chupp GL et al (2006b) Hyperoxia causes angiopoietin 2-mediated acute lung injury and necrotic cell death. Nat Med 12(11):1286–1293CrossRefGoogle Scholar
  32. Bhandari V, Gavino RG, Nedrelow JH, Pallela P, Salvador A, Ehrenkranz RA et al (2007) A randomized controlled trial of synchronized nasal intermittent positive pressure ventilation in RDS. J Perinatol 27(11):697–703CrossRefGoogle Scholar
  33. Bhandari V, Choo-Wing R, Lee CG, Yusuf K, Nedrelow JH, Ambalavanan N et al (2008a) Developmental regulation of NO-mediated VEGF-induced effects in the lung. Am J Respir Cell Mol Biol 39(4):420–430CrossRefGoogle Scholar
  34. Bhandari A, Schramm CM, Kimble C, Pappagallo M, Hussain N (2008b) Effect of a short course of prednisolone in infants with oxygen-dependent bronchopulmonary dysplasia. Pediatrics 121(2):e344–e349CrossRefGoogle Scholar
  35. Bland RD, Xu L, Ertsey R, Rabinovitch M, Albertine KH, Wynn KA et al (2007) Dysregulation of pulmonary elastin synthesis and assembly in preterm lambs with chronic lung disease. Am J Physiol Lung Cell Mol Physiol 292(6):L1370–L1384.  https://doi.org/10.1152/ajplung.00367.2006CrossRefPubMedGoogle Scholar
  36. Bokodi G, Treszl A, Kovacs L, Tulassay T, Vasarhelyi B (2007) Dysplasia: a review. Pediatr Pulmonol 42:952–961CrossRefGoogle Scholar
  37. Brundage KL, Mohsini KG, Froese AB, Fisher JT (1990) Bronchodilator response to ipratropium bromide in infants with bronchopulmonary dysplasia. Am Rev Respir Dis 142(5):1137–1142CrossRefGoogle Scholar
  38. Bry K, Whitsett JA, Lappalainen U (2007) IL-1beta disrupts postnatal lung morphogenesis in the mouse. Am J Respir Cell Mol Biol 36(1):32–42CrossRefGoogle Scholar
  39. Cederqvist K, Sorsa T, Tervahartiala T, Maisi P, Reunanen K, Lassus P et al (2001) Matrix metalloproteinases-2, -8, and -9 and TIMP-2 in tracheal aspirates from preterm infants with respiratory distress. Pediatrics 108(3):686–692CrossRefGoogle Scholar
  40. Chang YS, Ahn SY, Yoo HS, Sung SI, Choi SJ, Oh WI et al (2014) Mesenchymal stem cells for bronchopulmonary dysplasia: phase 1 dose-escalation clinical trial. J Pediatr 164(5):966–972.  https://doi.org/10.1016/j.jpeds.2013.12.011, e6CrossRefPubMedGoogle Scholar
  41. Choo-Wing R, Nedrelow JH, Homer RJ, Elias JA, Bhandari V (2007) Developmental differences in the responses of IL-6 and IL-13 transgenic mice exposed to hyperoxia. Am J Physiol Lung Cell Mol Physiol 293(1):L142–L150CrossRefGoogle Scholar
  42. Choo-Wing R, Syed MA, Harijith A, Bowen B, Pryhuber G, Janer C et al (2013) Hyperoxia and interferon-gamma-induced injury in developing lungs occur via cyclooxygenase-2 and the endoplasmic reticulum stress-dependent pathway. Am J Respir Cell Mol Biol 48(6):749–757CrossRefGoogle Scholar
  43. Clyman RI (2013) The role of patent ductus arteriosus and its treatments in the development of bronchopulmonary dysplasia. Semin Perinatol 37(2):102–107.  https://doi.org/10.1053/j.semperi.2013.01.006CrossRefPubMedPubMedCentralGoogle Scholar
  44. Coalson JJ (2006) Pathology of bronchopulmonary dysplasia. Semin Perinatol 30(4):179–184CrossRefGoogle Scholar
  45. Cullen A, Van Marter LJ, Allred EN, Moore M, Parad RB, Sunday ME (2002) Urine bombesin-like peptide elevation precedes clinical evidence of bronchopulmonary dysplasia. Am J Respir Crit Care Med 165(8):1093–1097CrossRefGoogle Scholar
  46. Cuna A, Kandasamy J, Sims B (2014) B-type natriuretic peptide and mortality in extremely low birth weight infants with pulmonary hypertension: a retrospective cohort analysis. BMC Pediatr 14:68.  https://doi.org/10.1186/1471-2431-14-68CrossRefPubMedPubMedCentralGoogle Scholar
  47. Dargaville PA, Aiyappan A, De Paoli AG, Kuschel CA, Kamlin CO, Carlin JB et al (2013) Minimally-invasive surfactant therapy in preterm infants on continuous positive airway pressure. Arch Dis Child Fetal Neonatal Ed 98(2):F122–F126.  https://doi.org/10.1136/archdischild-2011-301314CrossRefPubMedPubMedCentralGoogle Scholar
  48. Darlow BA, Graham PJ (2007) Vitamin A supplementation to prevent mortality and short and long-term morbidity in very low birthweight infants. Cochrane Database Syst Rev 4, CD000501Google Scholar
  49. Davis JM, Parad RB, Michele T, Allred E, Price A, Rosenfeld W (2003) Pulmonary outcome at 1 year corrected age in premature infants treated at birth with recombinant human CuZn superoxide dismutase. Pediatrics 111(3):469–476CrossRefGoogle Scholar
  50. Doyle LW, Faber B, Callanan C, Freezer N, Ford GW, Davis NM (2006) Bronchopulmonary dysplasia in very low birth weight subjects and lung function in late adolescence. Pediatrics 118(1):108–113CrossRefGoogle Scholar
  51. Ehrenkranz RA, Walsh MC, Vohr BR, Jobe AH, Wright LL, Fanaroff AA et al (2005) Validation of the National Institutes of Health consensus definition of bronchopulmonary dysplasia. Pediatrics 116(6):1353–1360CrossRefGoogle Scholar
  52. Ekekezie II, Thibeault DW, Simon SD, Norberg M, Merrill JD, Ballard RA et al (2004) Low levels of tissue inhibitors of metalloproteinases with a high matrix metalloproteinase-9/tissue inhibitor of metalloproteinase-1 ratio are present in tracheal aspirate fluids of infants who develop chronic lung disease. Pediatrics 113(6):1709–1714CrossRefGoogle Scholar
  53. Ericson JE, Laughon MM (2015) Chorioamnionitis: implications for the neonate. Clin Perinatol 42(1):155–165.  https://doi.org/10.1016/j.clp.2014.10.011, ixCrossRefPubMedPubMedCentralGoogle Scholar
  54. Fabiano A, Gavilanes AW, Zimmermann LJ, Kramer BW, Paolillo P, Livolti G et al (2015) The development of lung biochemical monitoring can play a key role in the early prediction of bronchopulmonary dysplasia. Acta Paediatr.  https://doi.org/10.1111/apa.13233CrossRefPubMedGoogle Scholar
  55. Frank L (2003) Protective effect of keratinocyte growth factor against lung abnormalities associated with hyperoxia in prematurely born rats. Biol Neonate 83(4):263–272CrossRefGoogle Scholar
  56. Greenough A (2007) How has research in the past 5 years changed my clinical practice. Arch Dis Child Fetal Neonatal Ed 92(5):F404–F407CrossRefGoogle Scholar
  57. Halliday HL, Ehrenkranz RA, Doyle LW (2003a) Delayed (>3 weeks) postnatal corticosteroids for chronic lung disease in preterm infants. Cochrane Database Syst Rev 1, CD001145Google Scholar
  58. Halliday HL, Ehrenkranz RA, Doyle LW (2003b) Moderately early (7–14 days) postnatal corticosteroids for preventing chronic lung disease in preterm infants. Cochrane Database Syst Rev 1, CD001144Google Scholar
  59. Halliday HL, Ehrenkranz RA, Doyle LW (2003c) Early postnatal (<96 hours) corticosteroids for preventing chronic lung disease in preterm infants. Cochrane Database Syst Rev 1, CD001146Google Scholar
  60. Harijith A, Choo-Wing R, Cataltepe S, Yasumatsu R, Aghai ZH, Janer J et al (2011) A role for matrix metalloproteinase 9 in IFNgamma-mediated injury in developing lungs: relevance to bronchopulmonary dysplasia. Am J Respir Cell Mol Biol 44(5):621–630CrossRefGoogle Scholar
  61. Henderson-Smart DJ, Davis PG (2003) Prophylactic methylxanthines for extubation in preterm infants. Cochrane Database Syst Rev 1, CD000139Google Scholar
  62. Hirakawa H, Pierce RA, Bingol-Karakoc G, Karaaslan C, Weng M, Shi GP et al (2007) Cathepsin S deficiency confers protection from neonatal hyperoxia-induced lung injury. Am J Respir Crit Care Med 176(8):778–785CrossRefGoogle Scholar
  63. Hofhuis W, Huysman MW, van der Wiel EC, Holland WP, Hop WC, Brinkhorst G et al (2002) Worsening of V’maxFRC in infants with chronic lung disease in the first year of life: a more favorable outcome after high-frequency oscillation ventilation. Am J Respir Crit Care Med 166(12 Pt 1):1539–1543CrossRefGoogle Scholar
  64. Howlett A, Ohlsson A (2003) Inositol for respiratory distress syndrome in preterm infants. Cochrane Database Syst Rev 4, CD000366Google Scholar
  65. Hyodynmaa E, Korhonen P, Ahonen S, Luukkaala T, Tammela O (2012) Frequency and clinical correlates of radiographic patterns of bronchopulmonary dysplasia in very low birth weight infants by term age. Eur J Pediatr 171(1):95–102.  https://doi.org/10.1007/s00431-011-1486-6CrossRefPubMedGoogle Scholar
  66. Jeng SF, Hsu CH, Tsao PN, Chou HC, Lee WT, Kao HA et al (2008) Bronchopulmonary dysplasia predicts adverse developmental and clinical outcomes in very-low-birthweight infants. Dev Med Child Neurol 50(1):51–57CrossRefGoogle Scholar
  67. Jensen EA, Schmidt B (2014) Epidemiology of bronchopulmonary dysplasia. Birth Defects Res Part A Clin Mol Teratol 100(3):145–157.  https://doi.org/10.1002/bdra.23235CrossRefPubMedGoogle Scholar
  68. Jensen EA, DeMauro SB, Kornhauser M, Aghai ZH, Greenspan JS, Dysart KC (2015) Effects of multiple ventilation courses and duration of mechanical ventilation on respiratory outcomes in extremely low-birth-weight infants. JAMA Pediatr 169(11):1011–1017.  https://doi.org/10.1001/jamapediatrics.2015.2401CrossRefPubMedPubMedCentralGoogle Scholar
  69. Kamlin CO, Davis PG (2004) Long versus short inspiratory times in neonates receiving mechanical ventilation. Cochrane Database Syst Rev 4, CD004503Google Scholar
  70. Keszler M, Sant’Anna G (2015) Mechanical ventilation and bronchopulmonary dysplasia. Clin Perinatol 42(4):781–796.  https://doi.org/10.1016/j.clp.2015.08.006CrossRefPubMedGoogle Scholar
  71. Kevill K, Bhandari V, Kettuman M, Leng L, Fan J, Mizue Y et al (2008) A role for macrophage migration inhibitory factor in the neonatal respiratory distress syndrome. J Immunol 180(1):601–608CrossRefGoogle Scholar
  72. Khemani E, McElhinney DB, Rhein L, Andrade O, Lacro RV, Thomas KC et al (2007) Pulmonary artery hypertension in formerly premature infants with bronchopulmonary dysplasia: clinical features and outcomes in the surfactant era. Pediatrics 120(6):1260–1269CrossRefGoogle Scholar
  73. Kirpalani H, Millar D, Lemyre B, Yoder BA, Chiu A, Roberts RS et al (2013) A trial comparing noninvasive ventilation strategies in preterm infants. N Engl J Med 369(7):611–620.  https://doi.org/10.1056/NEJMoa1214533CrossRefPubMedGoogle Scholar
  74. Kribs A, Roll C, Gopel W, Wieg C, Groneck P, Laux R et al (2015) Nonintubated surfactant application vs conventional therapy in extremely preterm infants: a randomized clinical trial. JAMA Pediatr 169(8):723–730.  https://doi.org/10.1001/jamapediatrics.2015.0504CrossRefPubMedPubMedCentralGoogle Scholar
  75. Kugelman A, Feferkorn I, Riskin A, Chistyakov I, Kaufman B, Bader D (2007) Nasal intermittent mandatory ventilation versus nasal continuous positive airway pressure for respiratory distress syndrome: a randomized, controlled, prospective study. J Pediatr 150(5):521–526CrossRefGoogle Scholar
  76. Lai NM, Rajadurai SV, Tan KH (2006) Increased energy intake for preterm infants with (or developing) bronchopulmonary dysplasia/chronic lung disease. Cochrane Database Syst Rev 3, CD005093Google Scholar
  77. Lakshminrusimha S, Manja V, Mathew B, Suresh GK (2015) Oxygen targeting in preterm infants: a physiological interpretation. J Perinatol 35(1):8–15.  https://doi.org/10.1038/jp.2014.199CrossRefPubMedPubMedCentralGoogle Scholar
  78. Lal CV, Ambalavanan N (2015) Biomarkers, early diagnosis, and clinical predictors of bronchopulmonary dysplasia. Clin Perinatol 42(4):739–754.  https://doi.org/10.1016/j.clp.2015.08.004CrossRefPubMedPubMedCentralGoogle Scholar
  79. Landry JS, Tremblay GM, Li PZ, Wong C, Benedetti A, Taivassalo T (2016) Lung function and bronchial hyperresponsiveness in adults born prematurely. A cohort study. Ann Am Thorac Soc 13(1):17–24.  https://doi.org/10.1513/AnnalsATS.201508-553OCCrossRefPubMedGoogle Scholar
  80. Lavoie PM, Pham C, Jang KL (2008) Heritability of bronchopulmonary dysplasia, defined according to the consensus statement of the national institutes of health. Pediatrics 122(3):479–485CrossRefGoogle Scholar
  81. Lodha A, Sauve R, Bhandari V, Tang S, Christianson H, Bhandari A et al (2014) Need for supplemental oxygen at discharge in infants with bronchopulmonary dysplasia is not associated with worse neurodevelopmental outcomes at 3 years corrected age. PLoS One 9(3), e90843.  https://doi.org/10.1371/journal.pone.0090843CrossRefPubMedPubMedCentralGoogle Scholar
  82. Manja V, Lakshminrusimha S, Cook DJ (2015) Oxygen saturation target range for extremely preterm infants: a systematic review and meta-analysis. JAMA Pediatr 169(4):332–340.  https://doi.org/10.1001/jamapediatrics.2014.3307CrossRefPubMedPubMedCentralGoogle Scholar
  83. Mello RR, Silva KS, Costa AM, Ramos JR (2015) Longitudinal assessment of the lung mechanics of very low birth weight preterm infants with and without bronchopulmonary dysplasia. Sao Paulo Med J 133(5):401–407.  https://doi.org/10.1590/1516-3180.2014.00101812CrossRefPubMedGoogle Scholar
  84. Miller JD, Carlo WA (2007) Safety and effectiveness of permissive hypercapnia in the preterm infant. Curr Opin Pediatr 19(2):142–144CrossRefGoogle Scholar
  85. Montgomery AM, Bazzy-Asaad A, Asnes JD, Bizzarro MJ, Ehrenkranz RA, Weismann CG (2016) Biochemical screening for pulmonary hypertension in preterm infants with bronchopulmonary dysplasia. Neonatology 109(3):190–194.  https://doi.org/10.1159/000442043CrossRefPubMedGoogle Scholar
  86. Morley CJ, Davis PG, Doyle LW, Brion LP, Hascoet JM, Carlin JB (2008) Nasal CPAP or intubation at birth for very preterm infants. N Engl J Med 358(7):700–708CrossRefGoogle Scholar
  87. Mourani PM, Abman SH (2015) Pulmonary hypertension and vascular abnormalities in bronchopulmonary dysplasia. Clin Perinatol 42(4):839–855.  https://doi.org/10.1016/j.clp.2015.08.010CrossRefPubMedPubMedCentralGoogle Scholar
  88. Network SSGotEKSNNR, Finer NN, Carlo WA, Walsh MC, Rich W, Gantz MG et al (2010) Early CPAP versus surfactant in extremely preterm infants. N Engl J Med 362(21):1970–1979.  https://doi.org/10.1056/NEJMoa0911783CrossRefGoogle Scholar
  89. Ng GY, da S, Ohlsson A (2001) Bronchodilators for the prevention and treatment of chronic lung disease in preterm infants. Cochrane Database Syst Rev 3, CD003214Google Scholar
  90. Niu JO, Munshi U, Siddiq M, Parton LA (1998) Early increase in endothelin-1 in tracheal aspirates of preterm infants: correlation with bronchopulmonary dysplasia. J Pediatr 132:965–970CrossRefGoogle Scholar
  91. Oh W, Poindexter BB, Perritt R, Lemons JA, Bauer CR, Ehrenkranz RA et al (2005) Association between fluid intake and weight loss during the first ten days of life and risk of bronchopulmonary dysplasia in extremely low birth weight infants. J Pediatr 147(6):786–790CrossRefGoogle Scholar
  92. Oncel MY, Arayici S, Uras N, Alyamac-Dizdar E, Sari FN, Karahan S et al (2015) Nasal continuous positive airway pressure versus nasal intermittent positive-pressure ventilation within the minimally invasive surfactant therapy approach in preterm infants: a randomised controlled trial. Arch Dis Child Fetal Neonatal Ed.  https://doi.org/10.1136/archdischild-2015-308204CrossRefPubMedGoogle Scholar
  93. Padela S, Cabacungan J, Shek S, Belcastro R, Yi M, Jankov RP et al (2005) Hepatocyte growth factor is required for alveologenesis in the neonatal rat. Am J Respir Crit Care Med 172(7):907–914CrossRefGoogle Scholar
  94. Pfister RH, Soll RF, Wiswell T (2007) Protein containing synthetic surfactant versus animal derived surfactant extract for the prevention and treatment of respiratory distress syndrome. Cochrane Database Syst Rev 4, CD006069Google Scholar
  95. Piersigilli F, Bhandari V (2016) Biomarkers in neonatology: the new “omics” of bronchopulmonary dysplasia. J Matern Fetal Neonatal Med 29:1758–1764.  https://doi.org/10.3109/14767058.2015.1061495CrossRefPubMedGoogle Scholar
  96. Plakkal N, Soraisham AS, Trevenen C, Freiheit EA, Sauve R (2013) Histological chorioamnionitis and bronchopulmonary dysplasia: a retrospective cohort study. J Perinatol 33(6):441–445.  https://doi.org/10.1038/jp.2012.154CrossRefPubMedGoogle Scholar
  97. Poindexter BB, Feng R, Schmidt B, Aschner JL, Ballard RA, Hamvas A et al (2015) Comparisons and limitations of current definitions of bronchopulmonary dysplasia for the prematurity and respiratory outcomes program. Ann Am Thorac Soc 12(12):1822–1830.  https://doi.org/10.1513/AnnalsATS.201504-218OCCrossRefPubMedPubMedCentralGoogle Scholar
  98. Prosnitz A, Gruen JR, Bhandari V (2013) The genetics of disorders affecting the premature newborn. In: Rimoin DL, Connor JM, Pyeritz RE, Korf BR (eds) Emery and Rimoin’s principles and practice of medical genetics, 6th edn. Elsevier, Philadelphia, pp 1–22Google Scholar
  99. Rehan V, Torday J (2006) Lower parathyroid hormone related protein content of tracheal aspirates in very low birth weight infants who develop bronchopulmonary dysplasia. Pediatr Res 60(2):216–220CrossRefGoogle Scholar
  100. Ryan RM, Ahmed Q, Lakshminrusimha S (2008) Inflammatory mediators in the immunobiology of bronchopulmonary dysplasia. Clin Rev Allergy Immunol 34(2):174–190CrossRefGoogle Scholar
  101. Saarenpaa HK, Tikanmaki M, Sipola-Leppanen M, Hovi P, Wehkalampi K, Siltanen M et al (2015) Lung function in very low birth weight adults. Pediatrics 136(4):642–650.  https://doi.org/10.1542/peds.2014-2651CrossRefPubMedGoogle Scholar
  102. Samiee-Zafarghandy S, Saugstad OD, Fusch C (2015) Do we have an answer when it comes to providing extremely preterm infants with optimal target oxygen saturation? Acta Paediatr 104(3):e130–e133.  https://doi.org/10.1111/apa.12840CrossRefPubMedPubMedCentralGoogle Scholar
  103. Sanchez-Solis M, Perez-Fernandez V, Bosch-Gimenez V, Quesada JJ, Garcia-Marcos L (2016) Lung function gain in preterm infants with and without bronchopulmonary dysplasia. Pediatr Pulmonol.  https://doi.org/10.1002/ppul.23393CrossRefPubMedGoogle Scholar
  104. Schena F, Francescato G, Cappelleri A, Picciolli I, Mayer A, Mosca F et al (2015) Association between hemodynamically significant patent ductus arteriosus and bronchopulmonary dysplasia. J Pediatr 166(6):1488–1492.  https://doi.org/10.1016/j.jpeds.2015.03.012CrossRefPubMedGoogle Scholar
  105. Schmidt B, Roberts RS, Davis P, Doyle LW, Barrington KJ, Ohlsson A et al (2006) Caffeine therapy for apnea of prematurity. N Engl J Med 354(20):2112–2121CrossRefGoogle Scholar
  106. Short EJ, Kirchner HL, Asaad GR, Fulton SE, Lewis BA, Klein N et al (2007) Developmental sequelae in preterm infants having a diagnosis of bronchopulmonary dysplasia: analysis using a severity-based classification system. Arch Pediatr Adolesc Med 161(11):1082–1087CrossRefGoogle Scholar
  107. Smith VC, Zupancic JA, McCormick MC, Croen LA, Greene J, Escobar GJ et al (2005) Trends in severe bronchopulmonary dysplasia rates between 1994 and 2002. J Pediatr 146(4):469–473.  https://doi.org/10.1016/j.jpeds.2004.12.023CrossRefPubMedGoogle Scholar
  108. Sohn MH, Kang MJ, Matsuura H, Bhandari V, Chen NY, Lee CG et al (2010) The chitinase-like proteins breast regression protein-39 and YKL-40 regulate hyperoxia-induced acute lung injury. Am J Respir Crit Care Med 182(7):918–928CrossRefGoogle Scholar
  109. Speer CP (2006) Inflammation and bronchopulmonary dysplasia: a continuing story. Semin Fetal Neonatal Med 11(5):354–362CrossRefGoogle Scholar
  110. Stevens TP, Harrington EW, Blennow M, Soll RF (2007) Early surfactant administration with brief ventilation vs. selective surfactant and continued mechanical ventilation for preterm infants with or at risk for respiratory distress syndrome. Cochrane Database Syst Rev 4, CD003063Google Scholar
  111. Stevens TP, Finer NN, Carlo WA, Szilagyi PG, Phelps DL, Walsh MC et al (2014) Respiratory outcomes of the surfactant positive pressure and oximetry randomized trial (SUPPORT). J Pediatr 165(2):240–249.  https://doi.org/10.1016/j.jpeds.2014.02.054, e4CrossRefPubMedPubMedCentralGoogle Scholar
  112. Subramaniam M, Bausch C, Twomey A, Andreeva S, Yoder BA, Chang L et al (2007) Bombesin-like peptides modulate alveolarization and angiogenesis in bronchopulmonary dysplasia. Am J Respir Crit Care Med 176(9):902–912.  https://doi.org/10.1164/rccm.200611-1734OCCrossRefPubMedPubMedCentralGoogle Scholar
  113. Thebaud B, Abman S (2007) Bronchopulmonary dysplasia- where have all the vessels gone? Role of angiogenic growth factors in chronic lung disease. Am J Respir Crit Care Med 175:978–985CrossRefGoogle Scholar
  114. Thebaud B, Ladha F, Michelakis ED, Sawicka M, Thurston G, Eaton F et al (2005) Vascular endothelial growth factor gene therapy increases survival, promotes lung angiogenesis, and prevents alveolar damage in hyperoxia-induced lung injury: evidence that angiogenesis participates in alveolarization. Circulation 112(16):2477–2486CrossRefGoogle Scholar
  115. Thomas W, Speer CP (2014) Chorioamnionitis is essential in the evolution of bronchopulmonary dysplasia – the case in favour. Paediatr Respir Rev 15(1):49–52.  https://doi.org/10.1016/j.prrv.2013.09.004CrossRefPubMedGoogle Scholar
  116. Thomson A, Bhandari V (2008) Pulmonary biomarkers of bronchopulmonary dysplasia. Biomark Insights 3:361–373Google Scholar
  117. Trembath A, Laughon MM (2012) Predictors of bronchopulmonary dysplasia. Clin Perinatol 39(3):585–601.  https://doi.org/10.1016/j.clp.2012.06.014CrossRefPubMedPubMedCentralGoogle Scholar
  118. Tyson JE, Wright LL, Oh W, Kennedy KA, Mele L, Ehrenkranz RA et al (1999) Vitamin A supplementation for extremely-low-birth-weight infants. National Institute of Child Health and Human Development Neonatal Research Network. N Engl J Med 340(25):1962–1968CrossRefGoogle Scholar
  119. Van Marter LJ, Dammann O, Allred EN, Leviton A, Pagano M, Moore M et al (2002) Chorioamnionitis, mechanical ventilation, and postnatal sepsis as modulators of chronic lung disease in preterm infants. J Pediatr 140(2):171–176CrossRefGoogle Scholar
  120. Vaucher YE, Peralta-Carcelen M, Finer NN, Carlo WA, Gantz MG, Walsh MC et al (2012) Neurodevelopmental outcomes in the early CPAP and pulse oximetry trial. N Engl J Med 367(26):2495–2504.  https://doi.org/10.1056/NEJMoa1208506CrossRefPubMedPubMedCentralGoogle Scholar
  121. Vento G, Capoluongo E, Matassa PG, Concolino P, Vendettuoli V, Vaccarella C et al (2006) Serum levels of seven cytokines in premature, ventilated newborns, correlation with old and new forms of bronchopulmonary dysplasia. Intensive Care Med 32:723–730CrossRefGoogle Scholar
  122. Vicencio AG, Lee CG, Cho SJ, Eickelberg O, Chuu Y, Haddad GG et al (2004) Conditional overexpression of bioactive transforming growth factor-beta1 in neonatal mouse lung: a new model for bronchopulmonary dysplasia? Am J Respir Cell Mol Biol 31(6):650–656CrossRefGoogle Scholar
  123. Vozzelli MA, Mason SN, Whorton MH, Auten RL Jr (2004) Antimacrophage chemokine treatment prevents neutrophil and macrophage influx in hyperoxia-exposed newborn rat lung. Am J Physiol Lung Cell Mol Physiol 286(3):L488–L493CrossRefGoogle Scholar
  124. Walkup LL, Woods JC (2015) Newer imaging techniques for bronchopulmonary dysplasia. Clin Perinatol 42(4):871–887.  https://doi.org/10.1016/j.clp.2015.08.012CrossRefPubMedGoogle Scholar
  125. Walsh MC, Yao Q, Gettner P, Hale E, Collins M, Hensman A et al (2004) Impact of a physiologic definition on bronchopulmonary dysplasia rates. Pediatrics 114(5):1305–1311CrossRefGoogle Scholar
  126. Walsh MC, Szefler S, Davis J, Allen M, Van Marter L, Abman S et al (2006) Summary proceedings from the bronchopulmonary dysplasia group. Pediatrics 117(3 Pt 2):S52–S56CrossRefGoogle Scholar
  127. Watterberg KL, Gerdes JS, Cole CH, Aucott SW, Thilo EH, Mammel MC et al (2004) Prophylaxis of early adrenal insufficiency to prevent bronchopulmonary dysplasia: a multicenter trial. Pediatrics 114(6):1649–1657CrossRefGoogle Scholar
  128. Yeh TF, Chen CM, Wu SY, Husan Z, Li TC, Hsieh WS et al (2016) Intratracheal administration of budesonide/surfactant to prevent bronchopulmonary dysplasia. Am J Respir Crit Care Med 193(1):86–95.  https://doi.org/10.1164/rccm.201505-0861OCCrossRefPubMedGoogle Scholar
  129. Yost CC, Soll RF (2000) Early versus delayed selective surfactant treatment for neonatal respiratory distress syndrome. Cochrane Database Syst Rev 2, CD001456Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Neonatology/PediatricsSt. Christopher’s Hospital for Children/Drexel University College of MedicinePhiladelphiaUSA
  2. 2.Drexel UniversityPhiladelphiaUSA

Personalised recommendations