Advertisement

Neonatology pp 801-807 | Cite as

Molecular Structure of Surfactant: Biochemical Aspects in Newborns

  • Tore Curstedt
Reference work entry

Abstract

The surfactant-lining alveolar surface is a prerequisite for gas exchange in order to fulfill the energy needs of the living organism. Surfactant is composed of lipids, mainly phospholipids, and four surfactant-associated proteins. It facilitates alveolar increase during inspiration and prevents their collapse at end-expiration. Insufficient amounts of surfactant in premature babies can be successfully treated with surfactant preparations derived from animal lungs. Preliminary studies show that in a near future synthetic surfactants may replace or be an alternative to animal-derived preparations.

References

  1. Almlén A, Stichtenoth G, Linderholm B, Haegerstrand-Björkman M, Robertson B, Johansson J, Curstedt T (2008) Surfactant proteins B and C are both necessary for alveolar stability at end expiration in premature rabbits with respiratory distress syndrome. J Appl Physiol 104:1101–1108CrossRefGoogle Scholar
  2. Bastacky J, Lee CY, Goerke J et al (1995) Alveolar lining layer is thin and continuous: low-temperature scanning electron microscopy of rat lung. J Appl Physiol 79:1615–1628CrossRefGoogle Scholar
  3. Berggren P, Curstedt T, Grossmann G et al (1985) Physiological activity of pulmonary surfactant with low protein content: effect of enrichment with synthetic phospholipids. Exp Lung Res 8:29–51CrossRefGoogle Scholar
  4. Calkovska A, Linderholm B, Haegerstrand-Björkman M et al (2016) Phospholipid composition in synthetic surfactants is important for tidal volumes and alveolar stability in surfactant-treated preterm newborn rabbits. Neonatology 109:177–185CrossRefGoogle Scholar
  5. Curstedt T, Halliday HL, Speer CP (2015) A unique story in neonatal research: the development of a porcine surfactant. Neonatology 107:321–329CrossRefGoogle Scholar
  6. Haagsman HP, Hogenkamp A, van Eijk M, Veldhuizen EJA (2008) Surfactant collectins and innate immunity. Neonatology 93:288–294CrossRefGoogle Scholar
  7. Halliday HL (2006) Recent clinical trials of surfactant treatment for neonates. Biol Neonate 89:323–329CrossRefGoogle Scholar
  8. Hislop AA, Wigglesworth JS, Desai R (1986) Alveolar development in the human fetus and infant. Early Hum Dev 13:1–11CrossRefGoogle Scholar
  9. Jobe A, Ikegami M (1987) Surfactant for the treatment of respiratory distress syndrome. Am Rev Respir Dis 136:1256–1275CrossRefGoogle Scholar
  10. Johansson J, Curstedt T (1997) Molecular structures and interactions of pulmonary surfactant components. Eur J Biochem 244:675–693CrossRefGoogle Scholar
  11. Johansson J, Some M, Linderholm BM, Almlén A, Curstedt T, Robertson B (2003) A synthetic surfactant based on a poly-Leu SP-C analog and phospholipids: effects on tidal volumes and lung gas volumes in ventilated immature newborn rabbits. J Appl Physiol 95:2055–2063CrossRefGoogle Scholar
  12. Johansson H, Nordling K, Weaver TE, Johansson J (2006) The Brichos domain-containing C-terminal part of pro-surfactant protein C binds to an unfolded poly-val transmembrane segment. J Biol Chem 281:1032–1039CrossRefGoogle Scholar
  13. Parmigiani S, Solari E, Bevilacqua G (2005) Current concepts on the pulmonary surfactant in infants. J Matern Fetal Neonatal Med 18:369–380CrossRefGoogle Scholar
  14. Pérez-Gil J (2008) Structure of pulmonary surfactant membranes and films: the role of proteins and lipid-protein interactions. Biochim Biophys Acta 1778:1676–1695CrossRefGoogle Scholar
  15. Sato A, Ikegami M (2012) SP-B and SP-C containing new synthetic surfactant for treatment of extremely immature lamb lung. PLoS One 7(7), e39392CrossRefGoogle Scholar
  16. Schürch S, Green FHY, Bachofen H (1998) Formation and structure of surface films: captive bubble surfactometry. Biochim Biophys Acta 1408:180–202CrossRefGoogle Scholar
  17. Seehase M, Collins JJ, Kuypers E, Jellema RK, Ophelders DRMG, Ospina OL, Perez-Gil J, Bianco F, Garzia R, Razzetti R, Kramer BW (2012) New surfactant with SP-B and C analogs gives survival benefit after inactivation in preterm lambs. PLoS One 7(10), e47631CrossRefGoogle Scholar
  18. Spragg RG, Lewis JF, Wurst W, Häfner D, Baughman RP, Wewers MD, Marsh JJ (2003) Treatment of acute respiratory distress syndrome with recombinant surfactant protein C surfactant. Am J Respir Crit Care Med 167:1562–1566CrossRefGoogle Scholar
  19. Spragg RG, Taut FJH, Lewis JF, Schenk P, Ruppert C, Dean N, Krell K, Karabinis A, Günther A (2011) Recombinant surfactant protein C-based surfactant for patients with severe direct lung injury. Am J Respir Crit Care Med 183:1055–1061CrossRefGoogle Scholar
  20. Veldhuizen R, Nag K, Orgeig S, Possmayer F (1998) The role of lipids in pulmonary surfactant. Biochim Biophys Acta 1408:90–108CrossRefGoogle Scholar
  21. Wert SE, Whitsett JA, Nogee LM (2009) Genetic disorders of surfactant dysfunction. Pediatr Dev Pathol 12:253–274CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Molecular Medicine and SurgeryKarolinska Institutet, Karolinska University HospitalStockholmSweden

Personalised recommendations