Advertisement

Neonatology pp 147-169 | Cite as

Intrauterine Growth Restriction: Obstetric and Neonatal Aspects. Intervention Strategies

  • Enrico Bertino
  • Giovanna Oggè
  • Paola Di Nicola
  • Francesca Giuliani
  • Alessandra Coscia
  • Tullia Todros
Reference work entry

Abstract

Normal fetal growth can be altered by several pathological processes, including genetic diseases, infections, congenital anomalies, maternal hypoxia, and inadequate placental exchanges. The impossibility to reach the fetal genetic growth potential because of placental malfunction is defined intrauterine growth restriction (IUGR). IUGR causes slowing fetal growth, so that fetal biometry shifts from a higher to a significantly lower percentile during gestation, and it progressively leads to fetal hypoxia, acidemia, multiorgan damage, and death. Indeed, IUGR is associated with an excess of perinatal mortality and short- and long-term morbidity as well as metabolic syndrome in the adulthood. Prenatal diagnosis and appropriate timing of delivery improve neonatal outcomes.

When a fetus is found to be small for gestational age (SGA) at prenatal ultrasound, every effort has to be made to differentiate IUGR from other causes of impaired fetal growth. In case of IUGR, the clinical management is critically dependent on gestational age at onset. In early onset IUGR, the timing of delivery has to take into account the risks of prolonged intrauterine hypoxia versus the complications associated with preterm birth. In late onset IUGR, early induction of labor is probably the most cost-efficient method to prevent perinatal mortality and morbidity. In intermediate-onset IUGR there is a lack of clear evidence about the best tool to identify the fetuses that would benefit of timely delivery.

At birth, neonatal weight, length, and head circumference are indicators of the quality and quantity of intrauterine growth. SGA newborns, both preterm and term, have increased perinatal mortality risk and short-term complications such as birth asphyxia, infections, hypothermia, hypoglycemia, feeding difficulties, respiratory distress syndrome, bronchopulmonary dysplasia, retinopathy of prematurity, and necrotizing enterocolitis.

Even if most term children born SGA experience catch-up growth and achieve a normal adult height, approximately 10% of them remain shorter than peers born appropriate for gestational age. Preterm SGA infants can take four or more years to achieve heights in a normal range and the majority of them show a postnatal growth deficit at the time of hospital discharge (Extra Uterine Growth Restriction, EUGR).

Being born SGA is associated with long-term unfavorable outcomes such as learning difficulties, behavior problems, and development of metabolic syndrome.

The recognition of intrauterine malnutrition and the monitoring of early postnatal growth are of utmost importance for optimum survival and long-term outcomes of SGA infants.

List of Abbreviations

AGA

Appropriate for gestational age

BMI

Body mass index

BPD

Broncopulmonary displasia

EUGR

Extra uterine growth restriction

GA

Gestational age

GH

Growth hormone

INR

International mormalized ratio

IUGR

Intrauterine growth restriction

LGA

Large for gestational age

NEC

Necrotizing enterocolitis

PI

Ponderal index

PT

Protrombin time

RDS

Respiratory distress syndrome

ROP

Retinopathy of prematurity

SD

Standard deviation

SGA

Small for gestational age

References

  1. Agostoni C (2005) Small-for-gestational-age infants need dietary quality more than quantity for their development: the role of human milk. Acta Paediatr 94:827–829PubMedCrossRefGoogle Scholar
  2. Aucott SW, Donohue PK, Northington FJ (2004) Increased morbidity in severe early intrauterine growth restriction. J Perinatol 24:435–440PubMedCrossRefGoogle Scholar
  3. Bakalis S, Silva M, Akolekar R, Poon LC, Nicolaides KH (2015) Prediction of small-for-gestational-age neonates: screening by fetal biometry at 30–34 weeks. Ultrasound Obstet Gynecol 45:551–558PubMedCrossRefGoogle Scholar
  4. Bardien N, Whitehead CL, Tong S, Ugoni A, McDonald S, Walker SP (2016) Placental insufficiency in fetuses that slow in growth but are born appropriate for gestational age: a prospective longitudinal study. PLoS One 11:e0142788PubMedPubMedCentralCrossRefGoogle Scholar
  5. Barker DJP (2006) Adult consequences of fetal growth restriction. Clin Obstet Gynecol 49:270–283PubMedCrossRefGoogle Scholar
  6. Barker DJ, Hanson MA (2004) Altered regional blood flow in the fetus: the origins of cardiovascular disease? Acta Paediatr 93:1559–1560PubMedCrossRefGoogle Scholar
  7. Barker DJ, Osmond C (1986) Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet 1:1077–1081CrossRefPubMedGoogle Scholar
  8. Barker DJ, Osmond C, Forsén TJ, Kajantie E, Eriksson JG (2005) Trajectories of growth among children who have coronary events as adults. N Engl J Med 353:1802–1809PubMedCrossRefGoogle Scholar
  9. Bartels DB, Schwab F, Geffers C, Poets CF, Gastmeier P (2007) Nosocomial infection in small for gestational age newborns with birth weight <1500 g: a multicentre analysis. Arch Dis Child Fetal Neonatal Ed 92:F449–F453PubMedPubMedCentralCrossRefGoogle Scholar
  10. Baschat AA, Cosmi E, Bilardo CM, Wolf H, Berg C, Rigano S, Germer U, Moyano D, Turan S, Hartung J, Bhide A, Müller T, Bower S, Nicolaides KH, Thilaganathan B, Gembruch U, Ferrazzi E, Hecher K, Galan HL, Harman CR (2007) Predictors of neonatal outcome in early-onset placental dysfunction. Obstet Gynecol 109:253–261PubMedCrossRefGoogle Scholar
  11. Baschat AA, Viscardi RM, Hussey-Gardner B, Hashmi N, Harman C (2009) Infant neurodevelopment following fetal growth restriction: relationship with antepartum surveillance parameters. Ultrasound Obstet Gynecol 33:44–50PubMedCrossRefGoogle Scholar
  12. Baskett TF, Nagele F (2000) Naegele’s rule: a reappraisal. BJOG 107:1433–1435PubMedCrossRefGoogle Scholar
  13. Bernstein IM, Horbar JD, Badger GJ, Ohlsson A, Golan A (2000) Morbidity and mortality among very-low-birth-weight neonates with intrauterine growth restriction. The Vermont Oxford Network. Am J Obstet Gynecol 182:198e206CrossRefGoogle Scholar
  14. Bertino E, Di Battista E, Bossi A, Pagliano M, Fabris C, Aicardi G, Milani S (1996) Fetal growth velocity: kinetic, clinical, and biological aspects. Arch Dis Child 74:F10–F15CrossRefGoogle Scholar
  15. Bertino E, Milani S, Fabris C, De Curtis M (2007) Neonatal anthropometric charts: what they are, what they are not. Arch Dis Child Fetal Neonatal Ed 92:7–10CrossRefGoogle Scholar
  16. Bertino E, Coscia A, Boni L, Rossi C, Martano C, Giuliani F, Fabris C, Spada E, Zolin A, Milani S (2009) Weight growth velocity of very low birth weight infants: role of gender, gestational age and major morbidities. Early Hum Dev 85:339–347PubMedCrossRefGoogle Scholar
  17. Blaas HG, Eik-Nes SH, Bremnes JB (1998) The growth of the human embryo. A longitudinal biometric assessment from 7 to 12 weeks of gestation. Ultrasound Obstet Gynecol 12:346–354PubMedCrossRefGoogle Scholar
  18. Boers KE, Vijgen SM, Bijlenga D, van der Post JA, Bekedam DJ, Kwee A, van der Salm PC, van Pampus MG, Spaanderman ME, de Boer K, Duvekot JJ, Bremer HA, Hasaart TH, Delemarre FM, Bloemenkamp KW, van Meir CA, Willekes C, Wijnen EJ, Rijken M, le Cessie S, Roumen FJ, Thornton JG, van Lith JM, Mol BW, Scherjon SA, DIGITAT study group (2010) Induction versus expectant monitoring for intrauterine growth restriction at term: randomized equivalence trial (DIGITAT). BMJ 341:c7087PubMedPubMedCentralCrossRefGoogle Scholar
  19. Boers KE, van Wyk L, van der Post JA, Kwee A, van Pampus MG, Spaanderdam ME, Duvekot JJ, Bremer HA, Delemarre FM, Bloemenkamp KW, de Groot CJ, Willekes C, Rijken M, Roumen FJ, Thornton JG, van Lith JM, Mol BW, le Cessie S, Scherjon SA, DIGITAT Study Group (2012) Neonatal morbidity after induction vs expectant monitoring in intrauterine growth restriction at term: a subanalysis of the DIGITAT RCT. Am J Obstet Gynecol 206:344 e1–344 e7CrossRefGoogle Scholar
  20. Bora R, Mukhopadhyay K, Saxena AK, Jain V, Narang A (2009) Prediction of feed intolerance and necrotizing enterocolitis in neonates with absent end diastolic flow in umbilical artery and the correlation of feed intolerance with postnatal superior mesenteric artery flow. J Matern Fetal Neonatal Med 22:1092–1096PubMedCrossRefGoogle Scholar
  21. Boulet SL, Alexander GR, Salihu HM, Kirby RS, Carlo WA (2006) Fetal growth risk curves: defining levels of fetal growth restriction by neonatal death risk. Am J Obstet Gynecol 195:1571–1577PubMedCrossRefGoogle Scholar
  22. Bozzetti V, Tagliabue PE, Visser GH, van Bel F, Gazzolo D (2013) Feeding issues in IUGR preterm infants. Early Hum Dev 89(S2):S21–S23PubMedCrossRefGoogle Scholar
  23. Brar HS, Rutherford SE (1988) Classification of intrauterine growth retardation. Semin Perinatol 12:2–10PubMedGoogle Scholar
  24. Cameron N (2004) Measuring techniques and instruments. In: Nicoletti I, Benso L, Gilli G (eds) Physiological and pathological auxology. Edizioni Centro Studi Auxologici, Firenze, pp 117–159Google Scholar
  25. Campbell S, Thoms A (1977) Ultrasound measurement of the fetal head to abdomen circumference ratio in the assessment of growth retardation. Br J Obstet Gynaecol 84:165–174PubMedCrossRefGoogle Scholar
  26. Casey PH (2008) Growth of low birth weight preterm children. Semin Perinatol 32:20–27PubMedCrossRefGoogle Scholar
  27. Clausson B, Cnattingius S, Axelsson O (1998) Preterm and term births of small for gestational age infants: a population-based study of risk factors among nulliparous women. Br J Obstet Gynaecol 105(9):1011–1017PubMedCrossRefGoogle Scholar
  28. Clayton PE, Cianfarani S, Czernichow P, Johannsson G, Rapaport R, Rogol A (2007) Management of the child born small for gestational age through to adulthood: a consensus statement of the International Societies of Pediatric ndocrinology and the Growth Hormone Research Society. J Clin Endocrinol Metab 92:804–810PubMedCrossRefGoogle Scholar
  29. Cruz-Martinez R, Savchev S, Cruz-Lemini M, Mendez A, Gratacos E, Figueras F (2015) Clinical utility of third-trimester uterine artery Doppler in the prediction of brain hemodynamic deterioration and adverse perinatal outcome in small-for-gestational-age fetuses. Ultrasound Obstet Gynecol 45:273–278PubMedCrossRefGoogle Scholar
  30. David C, Gabrielli S, Pilu G, Bovicelli L (1995) The head-to-abdomen circumference ratio: a reappraisal. Ultrasound Obstet Gynecol 5:256–259PubMedCrossRefGoogle Scholar
  31. De Jong CL, Francis A, Van Geijn HP, Gardosi J (2000) Customized fetal weight limits for antenatal detection of fetal growth restriction. Ultrasound Obstet Gynecol 15:36–40PubMedCrossRefGoogle Scholar
  32. Dhaliwal CA, Fleck BW, Wright E, Graham C, McIntosh N (2009) Retinopathy of premature in small- for gestational age infants compared with those of appropriate size for gestational age. Arch Dis Child Fetal Neonatal Ed 94:F193–F195PubMedCrossRefGoogle Scholar
  33. Dijxhoorn MJ, Visser GH, Touwen BC, Huisjes HJ (1987) Apgar score, meconium and acidaemia at birth in small-for-gestational age infants born at term, and their relation to neonatal neurological morbidity. Br J Obstet Gynaecol 94:873–879PubMedCrossRefGoogle Scholar
  34. Dorling J, Kempley S, Leaf A (2005) Feeding growth restricted preterm infants with abnormal antenatal Doppler results. Arch Dis Child Fetal Neonatal Ed 90:F359–F363PubMedPubMedCentralCrossRefGoogle Scholar
  35. Eixarch E, Meler E, Iraola A, Illa M, Crispi F, Hernandez-Andrade E, Gratacos E, Figueras F (2008) Neurodevelopmental outcome in 2-year-old infants who were small-for-gestational-age term fetuses with cerebral blood flow redistribution. Ultrasound Obstet Gynecol 32:894–899PubMedCrossRefGoogle Scholar
  36. Engle WA (2011) Morbidity and mortality in late preterm and early term newborns: a continuum. Clin Perinatol 38:493–516PubMedCrossRefGoogle Scholar
  37. Fadigas C, Saiid Y, Gonzalez R, Poon LC, Nicolaides KH (2015) Prediction of small-for-gestational-age neonates: screening by fetal biometry at 35–37 weeks. Ultrasound Obstet Gynecol 45:559–565PubMedCrossRefGoogle Scholar
  38. Figueras F, Gratacos E (2014) Stage-based approach to the management of fetal growth restriction. Prenat Diagn 34:655–659PubMedGoogle Scholar
  39. Garite TJ, Clark R, Thorp JA (2004) Intrauterine growth restriction increases morbidity and mortality among premature neonates. Am J Obstet Gynecol 191:481–487PubMedCrossRefGoogle Scholar
  40. Gibson AT, Carney S, Cavazzoni E, Wales JK (2000) Neonatal and postnatal growth. Horm Res 53:42–49PubMedGoogle Scholar
  41. Gortner L, Wauer RR, Stock GJ, Reiter HL, Reiss I, Jorch G, Hentschel R, Hieronimi G (1999) Neonatal outcome in small for gestational age infants: do they really better? J Perinat Med 27:484e9CrossRefGoogle Scholar
  42. Griffin IJ, Tancredi DJ, Bertino E, Lee HC, Profit J (2015) Postnatal growth failure in very low birthweight infants born between 2005 and 2012. Arch Dis Child Fetal Neonatal Ed 101:F1–F6Google Scholar
  43. Guellec I, Lapillonne A, Renolleau S, Charlaluk ML, Roze JC, Marret S, Vieux R, Monique K, Ancel PY, EPIPAGE Study Group (2011) Neurologic outcomes at school age in very preterm infants born with severe or mild growth restriction. Pediatrics 127:e883–e891PubMedCrossRefGoogle Scholar
  44. Halliday HL (2009) Neonatal management and long-term sequelae. Best Pract Res Clin Obstet Gynaecol 23:871–880PubMedCrossRefGoogle Scholar
  45. Hansen AK, Wisborg K, Uldbjerg N, Henriksen TB (2008) Risk of respiratory morbidity in term infants delivered by elective caesarean section: cohort study. BMJ 336:85–87PubMedCrossRefGoogle Scholar
  46. Hanson MA, Gluckman PD (2014) Early developmental conditioning of later health and disease: physiology or pathophysiology? Physiol Rev 94:1027–1076PubMedPubMedCentralCrossRefGoogle Scholar
  47. Hernández MI, Mericq V (2008) Impact of being born small for gestational age on onset and progression of puberty. Best Pract Res Clin Endocrinol Metab 22:463–476PubMedCrossRefGoogle Scholar
  48. Hofman PL, Regan F, Cutfield WS (2006) Prematurity-another example of perinatal metabolic programming? Horm Res 66:33–39PubMedGoogle Scholar
  49. Jarvis S, Glinianaia SV, Torrioli MG, Platt MJ, Miceli M, Jouk PS, Johnson A, Hutton J, Hemming K, Hagberg G, Dolk H, Chalmers J, Surveillance of Cerebral Palsy in Europe (SCPE) collaboration of European Cerebral Palsy Registers (2003) Cerebral palsy and intrauterine growth in single births: European collaborative study. Lancet 362:1106–1111PubMedCrossRefGoogle Scholar
  50. Kalish RB, Thaler HT, Chasen ST, Gupta M, Berman SJ, Rosenwaks Z, Chervenak FA (2004) First- and second-trimester ultrasound assessment of gestational age. Am J Obstet Gynecol 191:975–978PubMedCrossRefGoogle Scholar
  51. Kanaka-Gantenbein C (2010) Fetal origins of adult diabetes. Ann N Y Acad Sci 1205:99–105PubMedCrossRefGoogle Scholar
  52. Karsdorp VH, van Vugt JM, van Geijn HP, Kostense PJ, Arduini D, Montenegro N, Todros T (1994) Clinical significance of absent or reversed end-diastolic velocity waveforms in umbilical artery. Lancet 344:1664–1668PubMedCrossRefGoogle Scholar
  53. Kase BA, Carreno CA, Blackwell SC (2012) Customized estimated fetal weight: a novel antenatal tool to diagnose abnormal fetal growth. Am J Obstet Gynecol 207:218.e1–218.e5CrossRefGoogle Scholar
  54. Kinsella JP, Greenough A, Abman SH (2006) Bronchopulmonary dysplasia. Lancet 367:1421–1431PubMedCrossRefGoogle Scholar
  55. Koleganova N, Piecha G, Ritz E (2009) Prenatal causes of kidney disease. Blood Purif 27:48–52PubMedCrossRefGoogle Scholar
  56. Kramer MS, Mc Lean FH, Olivier M, Willis DM, Usher RH (1989) Body proportionality and head and length “sparing” in growth-retarded neonates: a critical reappraisal. Pediatrics 84:717–723PubMedGoogle Scholar
  57. Lal MK, Manktelow BN, Draper ES, Field DJ (2003) Chronic lung disease of prematurity and intrauterine growth retardation: a population-based study. Pediatrics 111:483–487PubMedCrossRefGoogle Scholar
  58. Lees C, Marlow N, Arabin B, Bilardo CM, Brezinka C, Derks JB, Duvekot J, Frusca T, Diemert A, Ferrazzi E, Ganzevoort W, Hecher K, Martinelli P, Ostermayer E, Papageorghiou AT, Schlembach D, Schneider KT, Thilaganathan B, Todros T, van Wassenaer-Leemhuis A, Valcamonico A, Visser GH, Wolf H, TRUFFLE Group (2013) Perinatal morbidity and mortality in early-onset fetal growth restriction: cohort outcomes of the trial of randomized umbilical and fetal flow in Europe (TRUFFLE). Ultrasound Obstet Gynecol 42:400–408PubMedCrossRefGoogle Scholar
  59. Lees C, Marlow N, van Wassenaer-Leemhuis A, Arabin B, Bilardo CM, Brezinka C, Calvert S, Derks JB, Diemert A, Duvekot JJ, Ferrazzi E, Frusca T, Ganzevoort W, Hecher K, Martinelli P, Ostermayer E, Papageorghiou AT, Schlembach D, Schneider KTM, Thilaganathan B, Todros T, Valcamonico A, Visser GHA, Wolf H, on behalf of the TRUFFLE Group (2015) The Trial of Randomized Umbilical and Fetal Flow in Europe (TRUFFLE) study: two year neurodevelopmental and intermediate perinatal outcomes. Lancet 385:2162–2172PubMedCrossRefGoogle Scholar
  60. Lesmes C, Gallo DM, Panaiotova J, Poon LC, Nicolaides KH (2015) Prediction of small-for-gestational-age neonates: screening by fetal biometry at 19–24 weeks. Ultrasound Obstet Gynecol 46:198–207PubMedCrossRefGoogle Scholar
  61. Levine TA, Grunau RE, McAuliffe FM, Pinnamaneni R, Foran A, Alderdice FA (2015) Early childhood neurodevelopment after intrauterine growth restriction: a systematic review. Pediatrics 135:126–141PubMedCrossRefGoogle Scholar
  62. Lindqvist PG, Molin J (2005) Does antenatal identification of small-for-gestational age fetuses significantly improve their outcome? Ultrasound Obstet Gynecol 25:258–264PubMedCrossRefGoogle Scholar
  63. Lundgren EM, Tuvemo T (2008) Effects of being born small for gestational age on long-term intellectual performance. Best Pract Res Clin Endocrinol Metab 22:477–488PubMedCrossRefGoogle Scholar
  64. Lundgren P, Kistner A, Andersson EM, Hansen Pupp I, Holmström G, Ley D, Niklasson A, Smith LE, Wu C, Hellström A, Löfqvist C (2014) Low birth weight is a risk factor for severe retinopathy of prematurity depending on gestational age. PLoS One 9:e109460PubMedPubMedCentralCrossRefGoogle Scholar
  65. Lyall F, Robson SC, Bulmer JN (2013) Spiral artery remodeling and trophoblast invasion in preeclampsia and fetal growth restriction: relationship to clinical outcome. Hypertension 62:1046–1054CrossRefPubMedGoogle Scholar
  66. Main KM, Jensen RB, Asklund C, Høi-Hansen CE, Skakkebaek NE (2006) Low birth weight and male reproductive function. Horm Res 65:116–122PubMedGoogle Scholar
  67. Maiorana A, Del Bianco C, Cianfarani S (2007) Adipose tissue: a metabolic regulator. Potential implications for the metabolic outcome of subjects born Small for Gestational Age (SGA). Rev Diabet Stud 4:134–146PubMedPubMedCentralCrossRefGoogle Scholar
  68. Mamopoulos A, Petousis S, Tsimpanakos J, Masouridou S, Kountourelli K, Margioula-Siarkou C, Papouli M, Rousso D (2015) Birth weight independently affects morbidity and mortality of extremely preterm neonates. J Clin Med Res 7:511–516PubMedPubMedCentralCrossRefGoogle Scholar
  69. Mari G, Hanif F, Treadwell MC, Kruger M (2007) Gestational age at delivery and Doppler waveforms in very preterm intrauterine growth-restricted fetuses as predictors of perinatal mortality. J Ultrasound Med 26:555–559PubMedCrossRefGoogle Scholar
  70. McCowan LM, Mullen BM, Ritchie K (1987) Umbilical artery flow velocity waveforms and the placental vascular bed. Am J Obstet Gynecol 157:900–902PubMedCrossRefGoogle Scholar
  71. McIntire DD, Bloom SL, Casey BM, Leveno KJ (1999) Birth weight in relation to morbidity and mortality among newborn infants. N Engl J Med 340:1234–1238PubMedCrossRefGoogle Scholar
  72. McMillen I, Adams M, Ross J, Coulter CL, Simonetta G, Owens JA, Robinson JS, Edwards LJ (2001) Fetal growth restriction: adaptation and consequences. Reproduction 122:195–204PubMedCrossRefGoogle Scholar
  73. Meher S, Hernandez-Andrade E, Basheer SN, Lees C (2015) Impact of cerebral redistribution on neurodevelopmental outcome in small for gestational age or growth restricted babies: a systematic review. Ultrasound Obstet Gynecol 46:398–404PubMedCrossRefGoogle Scholar
  74. Miller HC (1985) Prenatal factors affecting intrauterine growth retardation. Clin Perinatol 12:307–318PubMedCrossRefGoogle Scholar
  75. Mitsiakos G, Papaioannou G, Papadakis E, Chatziioannidis E, Giougi E, Karagianni P, Evdoridou J, Malindretos P, Athanasiou M, Athanassiadou F, Nikolaidis N (2009) Haemostatic profile of full-term, healthy, small for gestational age neonates. Thromb Res 124:288–291PubMedCrossRefGoogle Scholar
  76. Morin I, Morin L, Zhang X, Platt RW, Blondel B, Bréart G, Usher R, Kramer MS (2005) Determinants and consequences of discrepancies in menstrual and ultrasonographic gestational age estimates. BJOG 112:145–152PubMedCrossRefGoogle Scholar
  77. Morley R, Fewtrell MS, Abbott RA, Stephenson T, MacFadyen U, Lucas A (2004) Neurodevelopment in children born small for gestational age: a randomized trial of nutrient-enriched versus standard formula and comparison with a reference breastfed group. Pediatrics 113:515–521PubMedCrossRefGoogle Scholar
  78. Morsing E, Asard M, Ley D, Stjernqvist K, Marsál K (2011) Cognitive function after intrauterine growth restriction and very preterm birth. Pediatrics 127:e874–e882PubMedCrossRefGoogle Scholar
  79. Murdoch EM, Sinha AK, Shanmugalingam ST, Smith GC, Kempley ST (2006) Doppler flow velocimetry in the superior mesenteric artery on the first day of life in preterm infants and the risk of neonatal necrotizing enterocolitis. Pediatrics 118:1999–2003PubMedCrossRefGoogle Scholar
  80. Nakling J, Buhaug H, Backe B (2005) The biologic error in gestational length related to the use of the first day of last menstrual period as a proxy for the start of pregnancy. Early Hum Dev 81:833–839PubMedCrossRefGoogle Scholar
  81. Nicolaides KH, Bilardo CM, Soothill PW, Campbell S (1988) Absence of end diastolic frequencies in umbilical artery: a sign of fetal hypoxia and acidosis. BMJ 297:1026PubMedPubMedCentralCrossRefGoogle Scholar
  82. Nobili V, Alisi A, Panera N, Agostoni C (2008) Low birth weight and catch-up-growth associated with metabolic syndrome: a ten year systematic review. Pediatr Endocrinol Rev 6:241–247PubMedGoogle Scholar
  83. Olofsson P, Laurini RN, Marsál K (1993) A high uterine artery pulsatility index reflects a defective development of placental bed spiral arteries in pregnancies complicated by hypertension and fetal growth retardation. Eur J Obstet Gynecol Reprod Biol 49:161–168PubMedCrossRefGoogle Scholar
  84. Oros D, Figueras F, Cruz-Martinez R, Meler E, Munmany M, Gratacos E (2011) Longitudinal changes in uterine, umbilical and fetal cerebral Doppler indices in late-onset small-for-gestational age fetuses. Ultrasound Obstet Gynecol 37:191–195PubMedCrossRefGoogle Scholar
  85. Pallotto EK, Kilbride HW (2006) Perinatal outcome and later implications of intrauterine growth restriction. Clin Obstet Gynecol 49:257–269PubMedCrossRefGoogle Scholar
  86. Pallotto EK, Woelnerhanssen B, Putt M (2004) Incidence and risk factors for prolonged hypoglycemia in small for gestational age infants. Abstract, Society for Pediatric and Perinatal EpidemiologyGoogle Scholar
  87. Papageorghiou AT, Ohuma EO, Altman DG, Todros T, Cheikh Ismail L, Lambert A, Jaffer YA, Bertino E, Gravett MG, Purwar M, Noble JA, Pang R, Victora CG, Barros FC, Carvalho M, Salomon LJ, Bhutta ZA, Kennedy SH, Villar J, International Fetal and Newborn Growth Consortium for the 21st Century (INTERGROWTH-21st) (2014) International standards for fetal growth based on serial ultrasound measurements: the Fetal Growth Longitudinal Study of the INTERGROWTH-21st Project. Lancet 384:869–879PubMedCrossRefGoogle Scholar
  88. Peacock JL, Lo JW, D’Costa W, Calvert S, Marlow N, Greenough A (2013) Respiratory morbidity at follow-up of small-for-gestational age infants born very prematurely. Pediatr Res 73:457–463PubMedCrossRefGoogle Scholar
  89. Piper JM, Xenakis EM, McFarland M, Elliott BD, Berkus MD, Langer O (1996) Do growth-retarded premature infants have different rates of perinatal morbidity and mortality than appropriately grown premature infants? Obstet Gynecol 87:169–174PubMedCrossRefGoogle Scholar
  90. Pulver LS, Guest-Warnick G, Stoddard GJ, Byington CL, Young PC (2009) Weight for gestational age affects the mortality of late preterm infants. Pediatrics 123:e1072–e1077PubMedCrossRefGoogle Scholar
  91. Rasmussen S, Kiserud T, Albrechtsen S (2006) Foetal size and body proportion at 17–19 weeks of gestation and neonatal size, proportion, and outcome. Early Hum Dev 82:683–690PubMedCrossRefGoogle Scholar
  92. Ree IM, Smits-Wintjens VE, Rijntjes-Jacobs EG, Pelsma IC, Steggerda SJ, Walther FJ, Lopriore E (2014) Necrotizing enterocolitis in small-for-gestational-age neonates: a matched case–control study. Neonatology 105:74–78PubMedCrossRefGoogle Scholar
  93. Regev RH, Lusky A, Dolfin T, Litmanovitz I, Arnon S, Reichman B, Network IN (2003) Excess mortality and morbidity among small-for-gestational-age premature infants: a population-based study. J Pediatr 143:186–191PubMedCrossRefGoogle Scholar
  94. Reinehr T, Kleber M, Toschke AM (2009) Small for gestational age status is associated with metabolic syndrome in overweight children. Eur J Endocrinol 160:579–584PubMedCrossRefGoogle Scholar
  95. Rizzo G, Prefumo F, Ferrazzi E, Zanardini C, Di Martino D, Boito S, Aiello E, Ghi T, SIEOG working group on fetal biometric charts (2016) The effect of fetal sex on customized fetal growth charts. J Matern Fetal Neonatal Med 3:1–8Google Scholar
  96. Rosenberg A (2008) The IUGR newborn. Semin Perinatol 32:219–224PubMedCrossRefGoogle Scholar
  97. Rozance PJ (2014) Update on neonatal hypoglycemia. Curr Opin Endocrinol Diabetes Obes 21:45–50PubMedPubMedCentralCrossRefGoogle Scholar
  98. Sabel KG, Olegard R, Mellander M, Hildingsson K (1982) Interrelation between fatty acid oxidation and control of gluconeogenic substrates in small for gestational age (SGA) infants with hypoglycemia and with normoglycemia. Acta Paediatr Scand 71:53–61PubMedCrossRefGoogle Scholar
  99. Saenger P, Czernichow P, Hughes I, Reiter EO (2007) Small for gestational age: short stature and beyond. Endocr Rev 28:219–251PubMedCrossRefGoogle Scholar
  100. Sarkar S, Rosenkrantz TS (2008) Neonatal polycythemia and hyperviscosity. Semin Fetal Neonatal Med 13:248–255PubMedCrossRefGoogle Scholar
  101. Savchev S, Figueras F, Cruz-Martinez R, Illa M, Botet F, Gratacos E (2012) Estimated weight centile as a predictor of perinatal outcome in small-for-gestational-age pregnancies with normal fetal and maternal Doppler indices. Ultrasound Obstet Gynecol 39:299–303PubMedCrossRefGoogle Scholar
  102. Shand AW, Hornbuckle J, Nathan E, Dickinson JE, French NP (2009) Small for gestational age preterm infants and relationship of abnormal umbilical artery Doppler blood flow to perinatal mortality and neurodevelopmental outcomes. Aust N Z J Obstet Gynaecol 49:52–58PubMedCrossRefGoogle Scholar
  103. Shapiro-Mendoza CK, Tomashek KM, Kotelchuck M, Barfield W, Nannini A, Weiss J, Declercq E (2008) Effect of late-preterm birth and maternal medical conditions on newborn morbidity risk. Pediatrics 121:e223–e232PubMedCrossRefGoogle Scholar
  104. Sharma P, McKay K, Rosenkrantz TS, Hussain N (2004) Comparisons of mortality and pre-discharge respiratory outcomes in small-for-gestational-age and appropriate-for-gestational-age premature infants. BMC Pediatr 4:9PubMedPubMedCentralCrossRefGoogle Scholar
  105. Simon D, Léger J, Carel JC (2008) Optimal use of growth hormone therapy for maximizing adult height in children born small for gestational age. Best Pract Res Clin Endocrinol Metab 22:525–537PubMedCrossRefGoogle Scholar
  106. Singer DB, Sung CJ, Wigglesworth JS (1991) Fetal growth and maturation with standards for body and organ development. In: Wigglesworth JS, Singer DB (eds) Textbook of fetal and perinatal pathology. Blackwell, London, pp 11–47Google Scholar
  107. Skuse D, Pickles A, Wolke D, Reilly S (1994) Postnatal growth and mental development: evidence for a “sensitive period”. J Child Psychol Psychiatry 35:521–545PubMedCrossRefGoogle Scholar
  108. Smith LE (2005) IGF-1 and retinopathy of prematurity in the preterm infant. Biol Neonate 88:237–244PubMedCrossRefGoogle Scholar
  109. Snijders RJ, Abbas A, Melby O, Ireland RM, Nicolaides KH (1993) Fetal plasma erythropoietin concentration in severe growth retardation. Am J Obstet Gynecol 168:615–619PubMedCrossRefGoogle Scholar
  110. Soothill PW, Ajayi RA, Campbell S, Ross EM, Candy DC, Snijders RM, Nicolaides KH (1992) Relationship between fetal acidemia at cordocentesis and subsequent neurodevelopment. Ultrasound Obstet Gynecol 2:80–83PubMedCrossRefGoogle Scholar
  111. Soudée S, Vuillemin L, Alberti C, Mohamed D, Becquet O, Farnoux C, Biran V, Baud O (2014) Fetal growth restriction is worse than extreme prematurity for the developing lung. Neonatology 106:304–310PubMedCrossRefGoogle Scholar
  112. Sovio U, White IR, Dacey A, Pasupathy D, Smith GC (2015) Screening for fetal growth restriction with universal third trimester ultrasonography in nulliparous women in the Pregnancy Outcome Prediction (POP) study: a prospective cohort study. Lancet 386:2089–2097PubMedPubMedCentralCrossRefGoogle Scholar
  113. Tajik P, van Wyk L, Boers KE, le Cessie S, Zafarmand MH, Roumen F, van der Post JA, Porath M, van Pampus MG, Spaanderdam ME, Kwee A, Duvekot JJ, Bremer HA, Delemarre FM, Bloemenkamp KW, de Groot CJ, Willekes C, van Lith JM, Bossuyt PM, Mol BW, Scherjon SA, DIGITAT Study Group (2014) Which intrauterine growth restricted fetuses at term benefit from early labour induction? A secondary analysis of the DIGITAT randomised trial. Eur J Obstet Gynecol Reprod Biol 172:20–25PubMedCrossRefGoogle Scholar
  114. Tanner JM (1989) Foetus into man, 2nd edn. Castlemead Publication, Welwyn Garden CityGoogle Scholar
  115. The American Academy of Pediatrics and the American College of Obstetricians and Gynecologist (2007) Standard terminology for reporting of reproductive health statistics in the United States. In: Guideline for prenatal care. American Academy of Pediatrics, Elk Grove VillageGoogle Scholar
  116. Thorsell M, Kaijser M, Almström H, Andolf E (2008) Expected day of delivery from ultrasound dating versus last menstrual period–obstetric outcome when dates mismatch. BJOG 115:585–589PubMedCrossRefGoogle Scholar
  117. Todros T, Plazzotta C, Pastorin L (1996) Body proportionality of the small-for-date fetus: is it related to aetiological factors? Early Hum Dev 45:1–9PubMedCrossRefGoogle Scholar
  118. Todros T, Sciarrone A, Piccoli E, Guiot C, Kaufmann P, Kingdom J (1999) Umbilical Doppler waveforms and placental villous angiogenesis in pregnancies complicated by fetal growth restriction. Obstet Gynecol 93:499–503PubMedGoogle Scholar
  119. Torrance HL, Bloemen MC, Mulder EJ, Nikkels PG, Derks JB, de Vries LS, Visser GH (2010) Predictors of outcome at 2 years of age after early intrauterine growth restriction. Ultrasound Obstet Gynecol 36:171–177PubMedCrossRefGoogle Scholar
  120. Tyrrell S, Obaid AH, Lilford RJ (1989) Umbilical artery Doppler velocimetry as a predictor of fetal hypoxia and acidosis at birth. Obstet Gynecol 74:332–337PubMedGoogle Scholar
  121. van Wyk L, Boers KE, van der Post JA, van Pampus MG, van Wassenaer AG, van Baar AL, Spaanderdam ME, Becker JH, Kwee A, Duvekot JJ, Bremer HA, Delemarre FM, Bloemenkamp KW, de Groot CJ, Willekes C, Roumen FJ, van Lith JM, Mol BW, le Cessie S, Scherjon SA, DIGITAT Study Group (2012) Effects on (neuro developmental and behavioral outcome at 2 years of age of induced labor compared with expectant management in intrauterine growth-restricted infants: long-term outcomes of the DIGITAT trial. Am J Obstet Gynecol 206:406 e1–406 e7CrossRefGoogle Scholar
  122. Varda NM, Gregoric A (2009) Metabolic syndrome in the pediatric population: a short overview. Pediatric Rev 1:e1Google Scholar
  123. Varella MH, Moss WJ (2015) Early growth patterns are associated with intelligence quotient scores in children born small-for-gestational age. Early Hum Dev 91:491–497PubMedCrossRefGoogle Scholar
  124. Vashevnik S, Walker S, Permezel M (2007) Stillbirths and neonatal deaths in appropriate, small and large birthweight for gestational age fetuses. Aust N Z J Obstet Gynaecol 47:302–306PubMedCrossRefGoogle Scholar
  125. Victora CG (2015) Anthropometric characterization of impaired fetal growth. Risk factors for and prognosis of newborns with stunting or wasting. JAMA Pediatr 169(7):e151431PubMedCrossRefGoogle Scholar
  126. Vrachnis N, Botsis D, Iliodromiti Z (2006) The fetus that is small for gestationel age. N Y Acad Sci 1092:304–309CrossRefGoogle Scholar
  127. Walker DM, Marlow N (2008) Neurocognitive outcome following fetal growth restriction. Arch Dis Child Fetal Neonatal Ed 93:F322–F325PubMedCrossRefGoogle Scholar
  128. Wirbelauer J, Thomas W, Rieger L, Speer CP (2010) Intrauterine growth retardation in preterm infants ≤32 weeks of gestation is associated with low white blood cell counts. Am J Perinatol 27(10):819–824PubMedCrossRefGoogle Scholar
  129. Wit JM, Finken MJ, Rijken M, de Zegher F (2006) Preterm growth restraint: a paradigm that unifies intrauterine growth retardation and preterm extrauterine growth retardation and has implications for the small-for-gestational-age indication in growth hormone therapy. Pediatrics 117:e793–e795PubMedCrossRefGoogle Scholar
  130. Yeung MY (2006) Postnatal growth, neurodevelopment and altered adiposity after preterm birth–from a clinical nutrition perspective. Acta Paediatr 95:909–917PubMedCrossRefGoogle Scholar
  131. Yu V, Upadhyay A (2004) Neonatal management of the growth-restricted infant. Semin Fetal Neonatal Med 9:403–409PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Enrico Bertino
    • 1
  • Giovanna Oggè
    • 2
  • Paola Di Nicola
    • 1
  • Francesca Giuliani
    • 1
  • Alessandra Coscia
    • 1
  • Tullia Todros
    • 2
  1. 1.Neonatal UnitUniversity of TurinTurinItaly
  2. 2.Maternal-Fetal Medicine UnitUniversity of TurinTurinItaly

Personalised recommendations