Medullary Carcinoma

Living reference work entry
Part of the Endocrinology book series (ENDOCR)

Abstract

Medullary thyroid cancer (MTC) is a rare neuroendocrine tumor that can be either sporadic or familial. In both cases, the pathogenesis is due to constitutively activating mutations, somatic or germline, of RET oncogene. The familial form of MTC can be associated with other endocrine neoplasias such as pheochromocytoma (PHEO) and/or multiple adenomatosis of parathyroids (PTHAd). According to the phenotype, three different syndromes are distinguished: the multiple endocrine neoplasia (MEN) type 2A, characterized by the association of MTC, PHEO, and PTHAd; the MEN 2B in which MTC and PHEO are associated with other nonendocrine diseases such as multiple mucosal neuromas, marfanoid habitus, and megacolon; and the familial form of MTC (FMTC) with hereditary MTC not associated with other neoplasias. The familial form, but not the sporadic, can affect children, and the RET genetic screening is the only diagnostic tool able to identify gene carriers when the tumor is not yet developed. As all thyroid tumors, MTC clinical manifestation is represented by a thyroid nodule, either isolated or in the context of a multinodular goiter. The cytological diagnosis is not always straightforward and can be facilitated by the measurement of serum calcitonin (Ct) that when >100 pg/ml is the most specific and sensitive serum marker of MTC. An early diagnosis of MTC, when the tumor is still intrathyroid, is needed to definitively cure the patient with the first surgical treatment. The presence of distant metastases at diagnosis is, together with the presence of a somatic RET mutation in the tumor tissue, the most important prognostic factor for a poor outcome. If the first surgery will not be curative, other local or systemic therapies are currently available, and their use can have a positive impact on the progression-free survival of MTC patients. Since MTC is a rare tumor, with several peculiarities such as the possibility to be hereditary, the management of MTC patients should be performed in referral centers and by a multidisciplinary team.

Keywords

Medullary thyroid cancer Calcitonin RET Multiple endocrine neoplasia type 2 Vandetanib Cabozantinib 

References

  1. Abrahamsen B, Eiken P, et al. Subtrochanteric and diaphyseal femur fractures in patients treated with alendronate: a register-based national cohort study. J Bone Miner Res. 2009;24(6):1095–102.PubMedCrossRefGoogle Scholar
  2. Acar T, Ozbek SS, et al. Incidentally discovered thyroid nodules: frequency in an adult population during Doppler ultrasonographic evaluation of cervical vessels. Endocrine. 2014;45(1):73–8.PubMedCrossRefGoogle Scholar
  3. Alam MJ. Chronic refractory diarrhoea: a manifestation of endocrine disorders. Dig Dis. 1994;12(1):46–61.PubMedCrossRefGoogle Scholar
  4. Alevizaki M, Saltiki K. Primary hyperparathyroidism in MEN2 syndromes. Recent Results Cancer Res. 2015;204:179–86.PubMedCrossRefGoogle Scholar
  5. Barakat MT, Meeran K, et al. Neuroendocrine tumours. Endocr Relat Cancer. 2004;11(1):1–18.PubMedCrossRefGoogle Scholar
  6. Baudin E, Lumbroso J, et al. Comparison of octreotide scintigraphy and conventional imaging in medullary thyroid carcinoma. J Nucl Med. 1996;37(6):912–6.PubMedGoogle Scholar
  7. Baudin E, Bidart JM, et al. Impact of chromogranin A measurement in the work-up of neuroendocrine tumors. Ann Oncol. 2001;12(Suppl 2):S79–82.PubMedCrossRefGoogle Scholar
  8. Bible KC, Suman VJ, et al. A multicenter phase 2 trial of pazopanib in metastatic and progressive medullary thyroid carcinoma: MC057H. J Clin Endocrinol Metab. 2014;99(5):1687–93.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Biscolla RP, Ugolini C, et al. Medullary and papillary tumors are frequently associated in the same thyroid gland without evidence of reciprocal influence in their biologic behavior. Thyroid. 2004;14(11):946–52.PubMedCrossRefGoogle Scholar
  10. Bodei L, Handkiewicz-Junak D, et al. Receptor radionuclide therapy with 90Y-DOTATOC in patients with medullary thyroid carcinomas. Cancer Biother Radiopharm. 2004;19(1):65–71.PubMedCrossRefGoogle Scholar
  11. Boi F, Maurelli I, et al. Calcitonin measurement in wash-out fluid from fine needle aspiration of neck masses in patients with primary and metastatic medullary thyroid carcinoma. J Clin Endocrinol Metab. 2007;92(6):2115–8.PubMedCrossRefGoogle Scholar
  12. Brauckhoff M, Gimm O, et al. Multiple endocrine neoplasia 2B syndrome due to codon 918 mutation: clinical manifestation and course in early and late onset disease. World J Surg. 2004;28(12):1305–11.PubMedCrossRefGoogle Scholar
  13. Budiawan H, Salavati A, et al. Peptide receptor radionuclide therapy of treatment-refractory metastatic thyroid cancer using (90)Yttrium and (177)Lutetium labeled somatostatin analogs: toxicity, response and survival analysis. Am J Nucl Med Mol Imaging. 2013;4(1):39–52.PubMedPubMedCentralGoogle Scholar
  14. Busnardo B, Girelli ME, et al. Nonparallel patterns of calcitonin and carcinoembryonic antigen levels in the follow-up of medullary thyroid carcinoma. Cancer. 1984;53(2):278–85.PubMedCrossRefGoogle Scholar
  15. Ceccherini I, Romei C, et al. Identification of the Cys634→Tyr mutation of the RET proto-oncogene in a pedigree with multiple endocrine neoplasia type 2A and localized cutaneous lichen amyloidosis. J Endocrinol Investig. 1994;17(3):201–4.CrossRefGoogle Scholar
  16. Chen H, Roberts JR, et al. Effective long-term palliation of symptomatic, incurable metastatic medullary thyroid cancer by operative resection. Ann Surg. 1998;227(6):887–95.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Cheung K, Roman SA, et al. Calcitonin measurement in the evaluation of thyroid nodules in the United States: a cost-effectiveness and decision analysis. J Clin Endocrinol Metab. 2008;93:2173–80.PubMedCrossRefGoogle Scholar
  18. Chi MS, Yang KL, et al. Comparing the effectiveness of combined external beam radiation and hyperthermia versus external beam radiation alone in treating patients with painful bony metastases: a phase 3 prospective, randomized, controlled trial. Int J Radiat Oncol Biol Phys. 2018;100(1):78–87.PubMedCrossRefGoogle Scholar
  19. Ciampi R, Mian C, et al. Evidence of a low prevalence of RAS mutations in a large medullary thyroid cancer series. Thyroid. 2013;23(1):50–7.PubMedCrossRefGoogle Scholar
  20. Ciampi R, Romei C, et al. Classical point mutations of RET, BRAF and RAS oncogenes are not shared in papillary and medullary thyroid cancer occurring simultaneously in the same gland. J Endocrinol Investig. 2017;40(1):55–62.CrossRefGoogle Scholar
  21. Colombo C, Minna E, et al. The modifier role of RET-G691S polymorphism in hereditary medullary thyroid carcinoma: functional characterization and expression/penetrance studies. Orphanet J Rare Dis. 2015;10:25.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Cosci B, Vivaldi A, et al. In silico and in vitro analysis of rare germline allelic variants of RET oncogene associated with medullary thyroid cancer. Endocr Relat Cancer. 2011;18(5):603–12.PubMedCrossRefGoogle Scholar
  23. Costante G, Meringolo D, et al. Predictive value of serum calcitonin levels for preoperative diagnosis of medullary thyroid carcinoma in a cohort of 5817 consecutive patients with thyroid nodules. J Clin Endocrinol Metab. 2007;92(2):450–5.PubMedCrossRefGoogle Scholar
  24. Cunliffe WJ, Hudgson P, et al. A calcitonin-secreting medullary thyroid carcinoma associated with mucosal neuromas, marfanoid features, myopathy and pigmentation. Am J Med. 1970;48(1):120–6.PubMedCrossRefGoogle Scholar
  25. Deldycke A, Haenebalcke C, et al. Paraneoplastic Cushing syndrome, case-series and review of the literature. Acta Clin Belg. 2017; 1–7. http://www.tandfonline.com/loi/yacb20.
  26. Donis-Keller H, Dou S, et al. Mutations in the RET proto-oncogene are associated with MEN 2A and FMTC. Hum Mol Genet. 1993;2(7):851–6.PubMedCrossRefGoogle Scholar
  27. Eisele RM. Advances in local ablation of malignant liver lesions. World J Gastroenterol. 2016;22(15):3885–91.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Elisei R. Routine serum calcitonin measurement in the evaluation of thyroid nodules. Best Pract Res Clin Endocrinol Metab. 2008;22(6):941–53.PubMedCrossRefGoogle Scholar
  29. Elisei R, Bottici V, et al. Impact of routine measurement of serum calcitonin on the diagnosis and outcome of medullary thyroid cancer: experience in 10,864 patients with nodular thyroid disorders. J Clin Endocrinol Metab. 2004a;89(1):163–8.PubMedCrossRefGoogle Scholar
  30. Elisei R, Cosci B, et al. RET exon 11 (G691S) polymorphism is significantly more frequent in sporadic medullary thyroid carcinoma than in the general population. J Clin Endocrinol Metab. 2004b;89(7):3579–84.PubMedCrossRefGoogle Scholar
  31. Elisei R, Romei C, et al. RET genetic screening in patients with medullary thyroid cancer and their relatives: experience with 807 individuals at one center. J Clin Endocrinol Metab. 2007;92(12):4725–9.PubMedCrossRefGoogle Scholar
  32. Elisei R, Cosci B, et al. Prognostic significance of somatic RET oncogene mutations in sporadic medullary thyroid cancer: a 10-year follow-up study. J Clin Endocrinol Metab. 2008;93(3):682–7.PubMedCrossRefGoogle Scholar
  33. Elisei R, Romei C, et al. The timing of total thyroidectomy in RET gene mutation carriers could be personalized and safely planned on the basis of serum calcitonin: 18 years experience at one single center. J Clin Endocrinol Metab. 2012;97(2):426–35.PubMedCrossRefGoogle Scholar
  34. Elisei R, Alevizaki M, et al. 2012 European thyroid association guidelines for genetic testing and its clinical consequences in medullary thyroid cancer. Eur Thyroid J. 2013a;1(4):216–31.PubMedCrossRefGoogle Scholar
  35. Elisei R, Schlumberger MJ, et al. Cabozantinib in progressive medullary thyroid cancer. J Clin Oncol. 2013b;31(29):3639–46.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Emmertsen KK, Nielsen HE, et al. Pentagastrin, calcium and whisky stimulated serum calcitonin in medullary carcinoma of the thyroid. Acta Radiol Oncol. 1980;19(2):85–9.PubMedCrossRefGoogle Scholar
  37. Eng C, Smith DP, et al. Point mutation within the tyrosine kinase domain of the RET proto-oncogene in multiple endocrine neoplasia type 2B and related sporadic tumours. Hum Mol Genet. 1994;3(2):237–41.PubMedCrossRefGoogle Scholar
  38. Eng C, Clayton D, et al. The relationship between specific RET proto-oncogene mutations and disease phenotype in multiple endocrine neoplasia type 2. International RET mutation consortium analysis. JAMA. 1996;276(19):1575–9.PubMedCrossRefGoogle Scholar
  39. Erdogan MF, Gulec B, et al. Multiple endocrine neoplasia 2B presenting with Pseudo-Hirschsprung’s disease. J Natl Med Assoc. 2006;98(5):783–6.PubMedPubMedCentralGoogle Scholar
  40. Essig Jr GF, Porter K, et al. Fine needle aspiration and medullary thyroid carcinoma: the risk of inadequate preoperative evaluation and initial surgery when relying upon FNAB cytology alone. Endocr Pract. 2013;19(6):920–7.PubMedCrossRefGoogle Scholar
  41. Essig Jr GF, Porter K, et al. Multifocality in sporadic medullary thyroid carcinoma: an international multicenter study. Thyroid. 2016;26(11):1563–72.PubMedCrossRefGoogle Scholar
  42. Farndon JR, Leight GS, et al. Familial medullary thyroid carcinoma without associated endocrinopathies: a distinct clinical entity. Br J Surg. 1986;73(4):278–81.PubMedCrossRefGoogle Scholar
  43. Forrest CH, Frost FA, et al. Medullary carcinoma of the thyroid: accuracy of diagnosis of fine-needle aspiration cytology. Cancer. 1998;84(5):295–302.PubMedCrossRefGoogle Scholar
  44. Fox E, Widemann BC, et al. Vandetanib in children and adolescents with multiple endocrine neoplasia type 2B associated medullary thyroid carcinoma. Clin Cancer Res. 2013;19(15):4239–48.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Franc S, Niccoli-Sire P, et al. Complete surgical lymph node resection does not prevent authentic recurrences of medullary thyroid carcinoma. Clin Endocrinol. 2001;55(3):403–9.CrossRefGoogle Scholar
  46. Frank-Raue K, Raue F. Hereditary medullary thyroid cancer genotype-phenotype correlation. Recent Results Cancer Res. 2015;204:139–56.PubMedCrossRefGoogle Scholar
  47. Fugazzola L. Stimulated calcitonin cut-offs by different tests. Eur Thyroid J. 2013;2(1):49–56.PubMedPubMedCentralGoogle Scholar
  48. Fugazzola L, Pinchera A, et al. Disappearance rate of serum calcitonin after total thyroidectomy for medullary thyroid carcinoma. Int J Biol Markers. 1994;9(1):21–4.PubMedGoogle Scholar
  49. Gawlik T, d’Amico A, et al. The prognostic value of tumor markers doubling times in medullary thyroid carcinoma – preliminary report. Thyroid Res. 2010;3(1):10.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Gharib H, Papini E, et al. American Association of Clinical Endocrinologists, American College of Endocrinology, and Associazione Medici Endocrinologi medical guidelines for clinical practice for the diagnosis and management of thyroid nodules – 2016 update. Endocr Pract. 2016;22(5):622–39.PubMedGoogle Scholar
  51. Gimm O, Ukkat J, et al. Determinative factors of biochemical cure after primary and reoperative surgery for sporadic medullary thyroid carcinoma. World J Surg. 1998;22(6):562–7. discussion 567–568.PubMedCrossRefGoogle Scholar
  52. Giovanella L, Crippa S, et al. Serum calcitonin-negative medullary thyroid carcinoma: role of CgA and CEA as complementary markers. Int J Biol Markers. 2008;23(2):129–31.PubMedCrossRefGoogle Scholar
  53. Giraudet AL, Taieb D. PET imaging for thyroid cancers: current status and future directions. Ann Endocrinol (Paris). 2017;78(1):38–42.CrossRefGoogle Scholar
  54. Giraudet AL, Vanel D, et al. Imaging medullary thyroid carcinoma with persistent elevated calcitonin levels. J Clin Endocrinol Metab. 2007;92(11):4185–90.PubMedCrossRefGoogle Scholar
  55. Grozinsky-Glasberg S, Bloom AI, et al. The role of hepatic trans-arterial chemoembolization in metastatic medullary thyroid carcinoma: a specialist center experience and review of the literature. Eur J Endocrinol. 2017;176(4):461–8.PubMedCrossRefGoogle Scholar
  56. Hahm JR, Lee MS, et al. Routine measurement of serum calcitonin is useful for early detection of medullary thyroid carcinoma in patients with nodular thyroid diseases. Thyroid. 2001;11(1):73–80.PubMedCrossRefGoogle Scholar
  57. Hannah-Shmouni F, Stratakis CA, et al. Flushing in (neuro)endocrinology. Rev Endocr Metab Disord. 2016;17(3):373–80.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Hegedus L. Clinical practice. The thyroid nodule. N Engl J Med. 2004;351(17):1764–71.PubMedCrossRefGoogle Scholar
  59. Hegedus L, Bonnema SJ, et al. Management of simple nodular goiter: current status and future perspectives. Endocr Rev. 2003;24(1):102–32.PubMedCrossRefGoogle Scholar
  60. Heilmann AM, Subbiah V, et al. Comprehensive genomic profiling of clinically advanced medullary thyroid carcinoma. Oncology. 2016;90(6):339–46.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Jackson CE, Norum RA, et al. Clinical value of calcitonin and carcinoembryonic antigen doubling times in medullary thyroid carcinoma. Henry Ford Hosp Med J. 1987;35(2–3):120–1.PubMedGoogle Scholar
  62. Jaffe BM. Prostaglandins and serotonin: nonpeptide diarrheogenic hormones. World J Surg. 1979;3(5):565–78.PubMedCrossRefGoogle Scholar
  63. Johansson E, Andersson L, et al. Revising the embryonic origin of thyroid C cells in mice and humans. Development. 2015;142(20):3519–28.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Kaltsas G, Rockall A, et al. Recent advances in radiological and radionuclide imaging and therapy of neuroendocrine tumours. Eur J Endocrinol. 2004;151(1):15–27.PubMedCrossRefGoogle Scholar
  65. Kameda Y, Nishimaki T, et al. Expression of the epithelial marker E-cadherin by thyroid C cells and their precursors during murine development. J Histochem Cytochem. 2007;55(10):1075–88.PubMedCrossRefGoogle Scholar
  66. Kaserer K, Scheuba C, et al. C-cell hyperplasia and medullary thyroid carcinoma in patients routinely screened for serum calcitonin. Am J Surg Pathol. 1998;22(6):722–8.PubMedCrossRefGoogle Scholar
  67. Keiser HR, Beaven MA, et al. Sipple’s syndrome: medullary thyroid carcinoma, pheochromocytoma, and parathyroid disease. Studies in a large family. NIH conference. Ann Intern Med. 1973;78(4):561–79.PubMedCrossRefGoogle Scholar
  68. Khosla S, Burr D, et al. Bisphosphonate-associated osteonecrosis of the jaw: report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res. 2007;22(10):1479–91.PubMedCrossRefGoogle Scholar
  69. King J, Quinn R, et al. Radioembolization with selective internal radiation microspheres for neuroendocrine liver metastases. Cancer. 2008;113(5):921–9.PubMedCrossRefGoogle Scholar
  70. Kodama T, Fujino M, et al. Identification of carcinoembryonic antigen in the C-cell of the normal thyroid. Cancer. 1980;45(1):98–101.PubMedCrossRefGoogle Scholar
  71. Kraeber-Bodere F, Faivre-Chauvet A, et al. Pharmacokinetics and dosimetry studies for optimization of anti-carcinoembryonic antigen x anti-hapten bispecific antibody-mediated pretargeting of Iodine-131-labeled hapten in a phase I radioimmunotherapy trial. Clin Cancer Res. 2003;9(10 Pt 2):3973S–81S.PubMedGoogle Scholar
  72. Kraft IL, Akshintala S, et al. Outcomes of children and adolescents with advanced hereditary medullary thyroid carcinoma treated with vandetanib. Clin Cancer Res. 2018;24:753–765.Google Scholar
  73. Lam ET, Ringel MD, et al. Phase II clinical trial of sorafenib in metastatic medullary thyroid cancer. J Clin Oncol. 2010;28(14):2323–30.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Lebeault M, Pinson S, et al. Nationwide French study of RET variants detected from 2003 to 2013 suggests a possible influence of polymorphisms as modifiers. Thyroid. 2017;27(12):1511–22.PubMedCrossRefGoogle Scholar
  75. Lee S, Shin JH, et al. Medullary thyroid carcinoma: comparison with papillary thyroid carcinoma and application of current sonographic criteria. AJR Am J Roentgenol. 2010;194(4):1090–4.PubMedCrossRefGoogle Scholar
  76. Lencioni R, Crocetti L, et al. Response to radiofrequency ablation of pulmonary tumours: a prospective, intention-to-treat, multicentre clinical trial (the RAPTURE study). Lancet Oncol. 2008;9(7):621–8.PubMedCrossRefGoogle Scholar
  77. Libansky P, Adamek S, et al. Measurement of intact parathormone during operation for primary hyperparathyroidism. Bratisl Lek Listy. 2017;118(5):255–7.PubMedGoogle Scholar
  78. LiVolsi VA. C cell hyperplasia/neoplasia. J Clin Endocrinol Metab. 1997;82(1):39–41.PubMedCrossRefGoogle Scholar
  79. Locati LD, Licitra L, et al. Treatment of advanced thyroid cancer with axitinib: phase 2 study with pharmacokinetic/pharmacodynamic and quality-of-life assessments. Cancer. 2014;120(17):2694–703.PubMedCrossRefGoogle Scholar
  80. Lupoli GA, Fonderico F, et al. The role of somatostatin analogs in the management of medullary thyroid carcinoma. J Endocrinol Investig. 2003;26(8 Suppl):72–4.Google Scholar
  81. Machens A, Dralle H. Biomarker-based risk stratification for previously untreated medullary thyroid cancer. J Clin Endocrinol Metab. 2010;95(6):2655–63.PubMedCrossRefGoogle Scholar
  82. Machens A, Dralle H. Surgical treatment of medullary thyroid cancer. Recent Results Cancer Res. 2015;204:187–205.PubMedCrossRefGoogle Scholar
  83. Machens A, Lorenz K, et al. Utility of serum procalcitonin for screening and risk stratification of medullary thyroid cancer. J Clin Endocrinol Metab. 2014;99(8):2986–94.PubMedCrossRefGoogle Scholar
  84. Maiza JC, Grunenwald S, et al. Use of 131 I-MIBG therapy in MIBG-positive metastatic medullary thyroid carcinoma. Thyroid. 2012;22(6):654–5.PubMedCrossRefGoogle Scholar
  85. Mathiesen JS, Habra MA, et al. Risk profile of the RET A883F germline mutation: an international collaborative study. J Clin Endocrinol Metab. 2017;102(6):2069–74.PubMedCrossRefGoogle Scholar
  86. Matias-Guiu X. Mixed medullary and follicular carcinoma of the thyroid. On the search for its histogenesis. Am J Pathol. 1999;155(5):1413–8.PubMedPubMedCentralCrossRefGoogle Scholar
  87. Matrone A, Valerio L, et al. Protein kinase inhibitors for the treatment of advanced and progressive radiorefractory thyroid tumors: from the clinical trials to the real life. Best Pract Res Clin Endocrinol Metab. 2017;31(3):319–34.PubMedCrossRefGoogle Scholar
  88. Meijer JA, le Cessie S, et al. Calcitonin and carcinoembryonic antigen doubling times as prognostic factors in medullary thyroid carcinoma: a structured meta-analysis. Clin Endocrinol. 2010;72(4):534–42.CrossRefGoogle Scholar
  89. Melvin KE, Tashjian Jr AH. The syndrome of excessive thyrocalcitonin produced by medullary carcinoma of the thyroid. Proc Natl Acad Sci U S A. 1968;59(4):1216–22.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Menko FH, van der Luijt RB, et al. Atypical MEN type 2B associated with two germline RET mutations on the same allele not involving codon 918. J Clin Endocrinol Metab. 2002;87(1):393–7.PubMedCrossRefGoogle Scholar
  91. Mian C, Pennelli G, et al. Combined RET and Ki-67 assessment in sporadic medullary thyroid carcinoma: a useful tool for patient risk stratification. Eur J Endocrinol. 2011;164(6):971–6.PubMedCrossRefGoogle Scholar
  92. Miccoli P, Minuto MN, et al. Clinically unpredictable prognostic factors in the outcome of medullary thyroid cancer. Endocr Relat Cancer. 2007;14(4):1099–105.PubMedCrossRefGoogle Scholar
  93. Moley JF, DeBenedetti MK. Patterns of nodal metastases in palpable medullary thyroid carcinoma: recommendations for extent of node dissection. Ann Surg. 1999;229(6):880–7. discussion 887–888.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Moley JF, Debenedetti MK, et al. Surgical management of patients with persistent or recurrent medullary thyroid cancer. J Intern Med. 1998;243(6):521–6.PubMedCrossRefGoogle Scholar
  95. Moura MM, Cavaco BM, et al. Correlation of RET somatic mutations with clinicopathological features in sporadic medullary thyroid carcinomas. Br J Cancer. 2009;100(11):1777–83.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Mucha L, Leidig-Bruckner G, et al. Phaeochromocytoma in multiple endocrine neoplasia type 2: RET codon-specific penetrance and changes in management during the last four decades. Clin Endocrinol. 2017;87(4):320–6.CrossRefGoogle Scholar
  97. Mulligan LM, Kwok JB, et al. Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A. Nature. 1993;363(6428):458–60.PubMedCrossRefGoogle Scholar
  98. Nashed C, Sakpal SV, et al. Medullary thyroid carcinoma metastatic to skin. J Cutan Pathol. 2010;37(12):1237–40.PubMedCrossRefGoogle Scholar
  99. Nella AA, Lodish MB, et al. Vandetanib successfully controls medullary thyroid cancer-related Cushing syndrome in an adolescent patient. J Clin Endocrinol Metab. 2014;99(9):3055–9.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Niccoli P, Wion-Barbot N, et al. Interest of routine measurement of serum calcitonin: study in a large series of thyroidectomized patients. The French Medullary Study Group. J Clin Endocrinol Metab. 1997;82(2):338–41.PubMedCrossRefGoogle Scholar
  101. Niederle B, Roka R, et al. The transplantation of parathyroid tissue in man: development, indications, technique, and results. Endocr Rev. 1982;3(3):245–79.PubMedCrossRefGoogle Scholar
  102. Nieuwenhuijzen Kruseman AC, Bussemaker JK, et al. Radioiodine in the treatment of hereditary medullary carcinoma of the thyroid. J Clin Endocrinol Metab. 1984;59(3):491–4.PubMedCrossRefGoogle Scholar
  103. Nikiforov Y, Biddinger P, Thompson LDR, editors. Diagnostic pathology and molecular genetics of the thyroid: a comprehensive guide for practicing thyroid pathology. In: Wolters Kluwer/Lippincott Williams & Wilkins (eds.), 2nd ed. 2012. Philadelphia PA 19103.Google Scholar
  104. Nilsson M, Williams D. On the origin of cells and derivation of thyroid cancer: C cell story revisited. Eur Thyroid J. 2016;5(2):79–93.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Nocera M, Baudin E, et al. Treatment of advanced medullary thyroid cancer with an alternating combination of doxorubicin-streptozocin and 5 FU-dacarbazine. Groupe d’Etude des Tumeurs a Calcitonine (GETC). Br J Cancer. 2000;83(6):715–8.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Nour-Eldin NA, Exner S, et al. Ablation therapy of non-colorectal cancer lung metastases: retrospective analysis of tumour response post-laser-induced interstitial thermotherapy (LITT), radiofrequency ablation (RFA) and microwave ablation (MWA). Int J Hyperth. 2017;33(7):820–9.Google Scholar
  107. Nusynowitz ML, Pollard E, et al. Treatment of medullary carcinoma of the thyroid with I-131. J Nucl Med. 1982;23(2):143–6.PubMedGoogle Scholar
  108. Orita Y, Sugitani I, et al. Prospective evaluation of zoledronic acid in the treatment of bone metastases from differentiated thyroid carcinoma. Ann Surg Oncol. 2015;22(12):4008–13.PubMedCrossRefGoogle Scholar
  109. Orlandi F, Caraci P, et al. Treatment of medullary thyroid carcinoma: an update. Endocr Relat Cancer. 2001;8(2):135–47.PubMedCrossRefGoogle Scholar
  110. Ozgen AG, Hamulu F, et al. Evaluation of routine basal serum calcitonin measurement for early diagnosis of medullary thyroid carcinoma in seven hundred seventy-three patients with nodular goiter. Thyroid. 1999;9(6):579–82.PubMedCrossRefGoogle Scholar
  111. Pacini F, Basolo F, et al. Medullary thyroid cancer. An immunohistochemical and humoral study using six separate antigens. Am J Clin Pathol. 1991;95(3):300–8.PubMedCrossRefGoogle Scholar
  112. Pacini F, Fontanelli M, et al. Routine measurement of serum calcitonin in nodular thyroid diseases allows the preoperative diagnosis of unsuspected sporadic medullary thyroid carcinoma. J Clin Endocrinol Metab. 1994;78(4):826–9.PubMedGoogle Scholar
  113. Paepegaey AC, Cochand-Priollet B, et al. Long-term control of hypercortisolism by vandetanib in a case of medullary thyroid carcinoma with a somatic RET mutation. Thyroid. 2017;27(4):587–90.PubMedCrossRefGoogle Scholar
  114. Papotti M, Kumar U, et al. Immunohistochemical detection of somatostatin receptor types 1–5 in medullary carcinoma of the thyroid. Clin Endocrinol. 2001;54(5):641–9.CrossRefGoogle Scholar
  115. Pelizzo MR, Boschin IM, et al. Natural history, diagnosis, treatment and outcome of medullary thyroid cancer: 37 years experience on 157 patients. Eur J Surg Oncol. 2007;33(4):493–7.PubMedCrossRefGoogle Scholar
  116. Pellegriti G, Leboulleux S, et al. Long-term outcome of medullary thyroid carcinoma in patients with normal postoperative medical imaging. Br J Cancer. 2003;88(10):1537–42.PubMedPubMedCentralCrossRefGoogle Scholar
  117. Pitoia F, Bueno F, et al. Rapid response of hypercortisolism to vandetanib treatment in a patient with advanced medullary thyroid cancer and ectopic Cushing syndrome. Arch Endocrinol Metab. 2015;59(4):343–6.PubMedCrossRefGoogle Scholar
  118. Randle RW, Balentine CJ, et al. Trends in the presentation, treatment, and survival of patients with medullary thyroid cancer over the past 30 years. Surgery. 2017;161(1):137–46.PubMedCrossRefGoogle Scholar
  119. Raue F, Frank-Raue K. Genotype-phenotype relationship in multiple endocrine neoplasia type 2. Implications for clinical management. Hormones (Athens). 2009;8(1):23–8.CrossRefGoogle Scholar
  120. Raue F, Dralle H, et al. Long-term survivorship in multiple endocrine neoplasia type 2B diagnosed before and in the new millennium. J Clin Endocrinol Metab. 2018;103(1):235–43.PubMedCrossRefGoogle Scholar
  121. Ravaud A, de la Fouchardiere C, et al. A multicenter phase II study of sunitinib in patients with locally advanced or metastatic differentiated, anaplastic or medullary thyroid carcinomas: mature data from the THYSU study. Eur J Cancer. 2017;76:110–7.PubMedCrossRefGoogle Scholar
  122. Rieu M, Lame MC, et al. Prevalence of sporadic medullary thyroid carcinoma: the importance of routine measurement of serum calcitonin in the diagnostic evaluation of thyroid nodules. Clin Endocrinol. 1995;42(5):453–60.CrossRefGoogle Scholar
  123. Ringe KI, Panzica M, et al. Thermoablation of bone tumors. RoFo. 2016;188(6):539–50.PubMedCrossRefGoogle Scholar
  124. Rohmer V, Vidal-Trecan G, et al. Prognostic factors of disease-free survival after thyroidectomy in 170 young patients with a RET germline mutation: a multicenter study of the Groupe Francais d’Etude des Tumeurs Endocrines. J Clin Endocrinol Metab. 2011;96(3):E509–18.PubMedCrossRefGoogle Scholar
  125. Romei C, Cosci B, et al. RET genetic screening of sporadic medullary thyroid cancer (MTC) allows the preclinical diagnosis of unsuspected gene carriers and the identification of a relevant percentage of hidden familial MTC (FMTC). Clin Endocrinol. 2011;74(2):241–7.CrossRefGoogle Scholar
  126. Romei C, Casella F, et al. New insights in the molecular signature of advanced medullary thyroid cancer: evidence of a bad outcome of cases with double RET mutations. J Med Genet 2016a;53:729–734.Google Scholar
  127. Romei C, Ciampi R, et al. A comprehensive overview of the role of the RET proto-oncogene in thyroid carcinoma. Nat Rev Endocrinol. 2016b;12(4):192–202.PubMedCrossRefGoogle Scholar
  128. Rougier P, Calmettes C, et al. The values of calcitonin and carcinoembryonic antigen in the treatment and management of nonfamilial medullary thyroid carcinoma. Cancer. 1983;51(5):855–62.PubMedCrossRefGoogle Scholar
  129. Salaun PY, Campion L, et al. Phase II trial of anticarcinoembryonic antigen pretargeted radioimmunotherapy in progressive metastatic medullary thyroid carcinoma: biomarker response and survival improvement. J Nucl Med. 2012;53(8):1185–92.PubMedCrossRefGoogle Scholar
  130. Santarpia L, El-Naggar AK, et al. Four patients with cutaneous metastases from medullary thyroid cancer. Thyroid. 2008;18(8):901–5.PubMedCrossRefGoogle Scholar
  131. Schlumberger MJ, Elisei R, et al. Phase II study of safety and efficacy of motesanib in patients with progressive or symptomatic, advanced or metastatic medullary thyroid cancer. J Clin Oncol. 2009;27(23):3794–801.PubMedCrossRefGoogle Scholar
  132. Schlumberger M, Bastholt L, et al. 2012 European thyroid association guidelines for metastatic medullary thyroid cancer. Eur Thyroid J. 2012a;1(1):5–14.PubMedPubMedCentralCrossRefGoogle Scholar
  133. Schlumberger M, Bastholt L, Dralle H, Jarzab B, Pacini F, Smit JWA, the European Task Force. 2012 European Thyroid Association Guidelines for metastatic medullary thyroid cancer. Eur Thyroid J. 2012b;1:5–14.PubMedPubMedCentralCrossRefGoogle Scholar
  134. Schlumberger M, Jarzab B, et al. A phase II trial of the multitargeted tyrosine kinase inhibitor lenvatinib (E7080) in advanced medullary thyroid cancer. Clin Cancer Res. 2016;22(1):44–53.PubMedCrossRefGoogle Scholar
  135. Schlumberger M, Elisei R, et al. Overall survival analysis of EXAM, a phase III trial of cabozantinib in patients with radiographically progressive medullary thyroid carcinoma. Ann Oncol. 2017;28(11):2813–9.PubMedCrossRefGoogle Scholar
  136. Schmid KW. Histopathology of C cells and medullary thyroid carcinoma. Recent Results Cancer Res. 2015;204:41–60.PubMedCrossRefGoogle Scholar
  137. Schuffenecker I, Ginet N, et al. Prevalence and parental origin of de novo RET mutations in multiple endocrine neoplasia type 2A and familial medullary thyroid carcinoma. Le Groupe d’Etude des Tumeurs a Calcitonine. Am J Hum Genet. 1997;60(1):233–7.PubMedPubMedCentralGoogle Scholar
  138. Schwartz DL, Rana V, et al. Postoperative radiotherapy for advanced medullary thyroid cancer – local disease control in the modern era. Head Neck. 2008;30(7):883–8.PubMedCrossRefGoogle Scholar
  139. Scollo C, Baudin E, et al. Rationale for central and bilateral lymph node dissection in sporadic and hereditary medullary thyroid cancer. J Clin Endocrinol Metab. 2003;88(5):2070–5.PubMedCrossRefGoogle Scholar
  140. Simbolo M, Mian C, et al. High-throughput mutation profiling improves diagnostic stratification of sporadic medullary thyroid carcinomas. Virchows Arch. 2014;465(1):73–8.PubMedCrossRefGoogle Scholar
  141. Simoes-Pereira J, Macedo D, et al. Clinical outcomes of a cohort of patients with central nervous system metastases from thyroid cancer. Endocr Connect. 2016;5(6):82–8.PubMedPubMedCentralCrossRefGoogle Scholar
  142. Skoura E. Depicting medullary thyroid cancer recurrence: the past and the future of nuclear medicine imaging. Int J Endocrinol Metab. 2013;11(4):e8156.PubMedPubMedCentralCrossRefGoogle Scholar
  143. Sletten K, Westermark P, et al. Characterization of amyloid fibril proteins from medullary carcinoma of the thyroid. J Exp Med. 1976;143(4):993–8.PubMedCrossRefGoogle Scholar
  144. Tisell LE, Hansson G, et al. Reoperation in the treatment of asymptomatic metastasizing medullary thyroid carcinoma. Surgery. 1986;99(1):60–6.PubMedGoogle Scholar
  145. Trimboli P, Giovanella L. Serum calcitonin negative medullary thyroid carcinoma: a systematic review of the literature. Clin Chem Lab Med. 2015;53(10):1507–14.PubMedCrossRefGoogle Scholar
  146. Ukkat J, Gimm O, et al. Single center experience in primary surgery for medullary thyroid carcinoma. World J Surg. 2004;28(12):1271–4.PubMedCrossRefGoogle Scholar
  147. van der Zee PA, de Boer A. Pheochromocytoma: a review on preoperative treatment with phenoxybenzamine or doxazosin. Neth J Med. 2014;72(4):190–201.PubMedGoogle Scholar
  148. Valle LA, Kloos RT. The prevalence of occult medullary thyroid carcinoma at autopsy. J Clin Endocrinol Metab. 2011;96(1):E109–13.PubMedCrossRefGoogle Scholar
  149. Verbeek HH, Meijer JA, et al. Fewer cancer reoperations for medullary thyroid cancer after initial surgery according to ATA guidelines. Ann Surg Oncol. 2015;22(4):1207–13.PubMedCrossRefGoogle Scholar
  150. Vierhapper H, Raber W, et al. Routine measurement of plasma calcitonin in nodular thyroid diseases. J Clin Endocrinol Metab. 1997;82(5):1589–93.PubMedCrossRefGoogle Scholar
  151. Viola D, Materazzi G, et al. Prophylactic central compartment lymph node dissection in papillary thyroid carcinoma: clinical implications derived from the first prospective randomized controlled single institution study. J Clin Endocrinol Metab. 2015;100(4):1316–24.PubMedCrossRefGoogle Scholar
  152. Vitale G, Fonderico F, et al. Pamidronate improves the quality of life and induces clinical remission of bone metastases in patients with thyroid cancer. Br J Cancer. 2001;84(12):1586–90.PubMedPubMedCentralCrossRefGoogle Scholar
  153. Weber T, Schilling T, et al. Impact of modified radical neck dissection on biochemical cure in medullary thyroid carcinomas. Surgery. 2001;130(6):1044–9.PubMedCrossRefGoogle Scholar
  154. Wells Jr SA, Robinson BG, et al. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial. J Clin Oncol. 2012;30(2):134–41.PubMedCrossRefGoogle Scholar
  155. Wells Jr SA, Pacini F, et al. Multiple endocrine neoplasia type 2 and familial medullary thyroid carcinoma: an update. J Clin Endocrinol Metab. 2013;98(8):3149–64.PubMedPubMedCentralCrossRefGoogle Scholar
  156. Wells Jr SA, Asa SL, et al. Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid. 2015;25(6):567–610.PubMedPubMedCentralCrossRefGoogle Scholar
  157. Wertenbroek MW, Links TP, et al. Radiofrequency ablation of hepatic metastases from thyroid carcinoma. Thyroid. 2008;18(10):1105–10.PubMedCrossRefGoogle Scholar
  158. Wilhelm SM, Wang TS, et al. The American Association of Endocrine Surgeons guidelines for definitive management of primary hyperparathyroidism. JAMA Surg. 2016;151(10):959–68.PubMedCrossRefGoogle Scholar
  159. Wong RL, Kazaure HS, et al. Simultaneous medullary and differentiated thyroid cancer: a population-level analysis of an increasingly common entity. Ann Surg Oncol. 2012;19(8):2635–42.PubMedCrossRefGoogle Scholar
  160. Wyon Y, Frisk J, et al. Postmenopausal women with vasomotor symptoms have increased urinary excretion of calcitonin gene-related peptide. Maturitas. 1998;30(3):289–94.PubMedCrossRefGoogle Scholar
  161. Xu JY, Murphy Jr WA, et al. Bone metastases and skeletal-related events in medullary thyroid carcinoma. J Clin Endocrinol Metab. 2016;101(12):4871–7.PubMedPubMedCentralCrossRefGoogle Scholar
  162. Zatelli MC, Tagliati F, et al. Somatostatin receptor subtype 1-selective activation reduces cell growth and calcitonin secretion in a human medullary thyroid carcinoma cell line. Biochem Biophys Res Commun. 2002;297(4):828–34.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Endocrine Unit, Department of Clinical and Experimental MedicineUniversity Hospital, University of PisaPisaItaly
  2. 2.Department of Nuclear Medicine and Endocrine OncologyMaria Sklodowska-Curie Memorial Institute – Cancer Center, Gliwice BranchGliwicePoland

Personalised recommendations