Recent Progress in Homonuclear Correlation Spectroscopy of Quadrupolar Nuclei

Reference work entry


We review the recent progress in homonuclear correlation NMR spectroscopy on half-integer spin quadrupolar nuclei undergoing magic-angle spinning (MAS). The most central component of such experimentation is a dipolar recoupling stage, during which the through-space interactions are reactivated and used for retrieving information about interatomic proximities and NMR interaction tensor parameters. Yet, while several homonuclear correlation techniques for half-integer spin applications exist and their usage has accelerated over the past few years, they are not as versatile and reliable as analogous spin-1/2 implementations. This stems mainly from the insufficient resolution and sensitivity of NMR spectra from quadrupolar nuclei, coupled with the challenges to achieve efficient dipolar recoupling by radio-frequency fields in the presence of MAS. Herein, we contrast various two/three-dimensional homonuclear correlation NMR protocols for establishing internuclear connectivities/proximities from the viewpoints of spectral resolution and sensitivity, with particular emphasis on experimentation involving two-spin double-quantum (2Q) coherences that has emerged as the most popular correlation technique. We discuss the relative merits of currently proposed 2Q-recoupling options for half-integer spins. The most promising recent methods for extracting structural information are reviewed, encompassing the estimation of internuclear distances and electric-field gradient tensor orientations, and the probing of cluster-sizes of (re)coupled quadrupolar nuclei. We also review recent advances in utilizing homonuclear J interactions among quadrupolar nuclei, which until recently was an essentially untapped area of solid-state NMR. The contents are organized to convey the current state-of-the-art techniques and their limitations, where we also identify the needs for further developments and suggest potentially fruitful future research directions.


Through-space dipolar interaction Through-bond J interaction Homonuclear recoupling Homonuclear correlation NMR Internuclear connectivities/proximities Internuclear distances Double-quantum coherence 2Q-recoupling Symmetry-based pulse sequences EFG tensor orientations NMR crystallography Probing spin-cluster sizes Magic-angle spinning Double rotation 


  1. 1.
    Dusold S, Sebald A. Dipolar recoupling under magic-angle-spinning conditions. Annu Rep NMR Spectrosc. 2000;41:185–264.CrossRefGoogle Scholar
  2. 2.
    Schnell I. Dipolar recoupling in fast-MAS solid-state NMR spectroscopy. Prog NMR Spectrosc. 2004;45:145–207.CrossRefGoogle Scholar
  3. 3.
    Edén M. Advances in symmetry-based pulse sequences in magic-angle spinning solid-state NMR. eMagRes. 2013;2:351–64.Google Scholar
  4. 4.
    Saalwächter K, Robust NMR. Approaches for the determination of homonuclear dipole-dipole coupling constants in studies of solid materials and biomolecules. ChemPhysChem. 2013;14:3000–14.CrossRefGoogle Scholar
  5. 5.
    Edén M. Homonuclear dipolar recoupling of half-integer spin quadrupolar nuclei: techniques and applications. Solid State Nucl Magn Reson. 2009;36:1–10.CrossRefGoogle Scholar
  6. 6.
    Fernandez C, Pruski M. Probing quadrupolar nuclei by solid-state NMR spectroscopy: recent advances. Top Curr Chem. 2012;306:119–88.CrossRefGoogle Scholar
  7. 7.
    Nielsen NC, Bildsøe H, Jakobsen HJ, Levitt MH. Double-quantum homonuclear rotary resonance: efficient dipolar recovery in magic-angle-spinning nuclear magnetic resonance. J Chem Phys. 1994;101:1805–12.CrossRefGoogle Scholar
  8. 8.
    Mali G, Fink G, Taulelle F. Double-quantum homonuclear correlation magic angle sample spinning nuclear magnetic resonance spectroscopy of dipolar-coupled quadrupolar nuclei. J Chem Phys. 2004;120:2835–45.CrossRefGoogle Scholar
  9. 9.
    Edén M, Lo AYH. Supercycled symmetry-based double-quantum dipolar recoupling of quadrupolar spins: I. Theory J Magn Reson. 2009;200:267–79.CrossRefGoogle Scholar
  10. 10.
    Edén M, Zhou D, Yu J. Improved double-quantum NMR correlation spectroscopy of dipolar-coupled quadrupolar spins. Chem Phys Lett. 2006;431:397–403.CrossRefGoogle Scholar
  11. 11.
    Lee D, Takahashi H, Thankamony ASL, Dacquin JP, Bardet M, Lafon O, et al. Enhanced solid-state NMR correlation spectroscopy of quadrupolar nuclei using dynamic nuclear polarization. J Am Chem Soc. 2012;134:11766–9.Google Scholar
  12. 12.
    Edén M, Two-Dimensional MAS NMR correlation protocols involving double-quantum filtering of quadrupolar spin-pairs. J Magn Reson. 2010;204:99–110.CrossRefGoogle Scholar
  13. 13.
    Lo AYH, Edén M. Efficient symmetry-based homonuclear dipolar recoupling of quadrupolar spins: double-quantum NMR correlations in amorphous solids. Phys Chem Chem Phys. 2008;10:6635–64.CrossRefGoogle Scholar
  14. 14.
    Mali G, Kaucic V, Taulelle F. Measuring distances between half-integer quadrupolar nuclei and detecting relative orientations of quadrupolar and dipolar tensors by double-quantum homonuclear recoupling nuclear magnetic resonance experiments. J Chem Phys. 2008;128:204503.CrossRefGoogle Scholar
  15. 15.
    Wang Q, Hu B, Lafon O, Trébosc J, Deng F, Amoureux JP. Double-quantum homonuclear NMR correlation spectroscopy of quadrupolar nuclei subjected to magic-angle spinning and high magnetic field. J Magn Reson. 2009;200:251–60.CrossRefGoogle Scholar
  16. 16.
    Yu Z, Zheng A, Wang Q, Chen L, Xu J, Amoureux JP, et al. Insights into the dealumination of zeolite HY revealed by sensitivity-enhanced 27Al DQ-MAS NMR spectroscopy at high field. Angew Chem Int Ed. 2010;49:8657–61.CrossRefGoogle Scholar
  17. 17.
    Brinkmann A, Edén M. Estimating internuclear distances between half-integer quadrupolar nuclei by central-transition double-quantum sideband NMR spectropscopy. Can J Chem. 2011;89:892–9.CrossRefGoogle Scholar
  18. 18.
    Brinkmann A, Edén M. Central-transition double-quantum sideband NMR spectroscopy of half-integer quadrupolar nuclei: estimating internuclear distances and probing clusters within multi-spin networks. Phys Chem Chem Phys. 2014;16:7037–50.CrossRefGoogle Scholar
  19. 19.
    Brus J, Czernek J, Urbanova M, Kobera L, Jegorov J. An efficient 11B-11B solid-state NMR spectroscopy strategy for monitoring covalent self-assembly of boronic acid-derived compounds: the transformation and unique architecture of bortezomib molecules in the solid state. Phys Chem Chem Phys. 2017;19:487–95.CrossRefGoogle Scholar
  20. 20.
    van Wüllen L, Sabarinathan V. Structure and high temperature behaviour of sodium aluminophosphate glasses. Phys Chem Glasses: Eur J Glass Sci Technol, Part B. 2016;57:173–82.Google Scholar
  21. 21.
    Jaworski A, Stevensson B, Pahari B, Okhotnikov K, Edén M. Local structures and Al/Si ordering in lanthanum aluminosilicate glasses explored by advanced 27Al NMR experiments and molecular dynamics simulations. Phys Chem Chem Phys. 2012;14:15866–78.CrossRefGoogle Scholar
  22. 22.
    Ren J, Zhang L, Eckert H. Medium-range order in sol–gel prepared Al2O3–SiO2 glasses: new results from solid-state NMR. J Phys Chem C. 2014;118:4906–17.CrossRefGoogle Scholar
  23. 23.
    Lee SK, Deschamps M, Hiet J, Massiot D, Park SY. Connectivity and proximity between quadrupolar nuclides in oxide glasses: insights from through-bond and through-space solid-state NMR. J Phys Chem B. 2009;113:5162–7.CrossRefGoogle Scholar
  24. 24.
    Tricot G, Saitoh A, Takebe H. Intermediate length scale organisation in tin borophosphate glasses: new insights from high field correlation NMR. Phys Chem Chem Phys. 2015;17:29531–40.CrossRefGoogle Scholar
  25. 25.
    Tricot G. The structure of Pyrex® glass investigated by correlation NMR spectroscopy. Phys Chem Chem Phys. 2016;18:26764–70.CrossRefGoogle Scholar
  26. 26.
    Baldus M, Rovnyak D, Griffin RG. Radio-frequency-mediated dipolar recoupling among half-integer quadrupolar spins. J Chem Phys. 2000;112:5902–9.CrossRefGoogle Scholar
  27. 27.
    Wi S, Logan JW, Sakellariou D, Walls JD, Pines A. Rotary resonance recoupling for half-integer quadrupolar nuclei in solid-state nuclear magnetic resonance. J Chem Phys. 2002;117:7024–33.CrossRefGoogle Scholar
  28. 28.
    Teymoori G, Pahari B, Stevensson B, Edén M. Low-power broadband homonuclear dipolar recoupling without decoupling: double-quantum 13C NMR correlations at very fast magic-angle spinning. Chem Phys Lett. 2012;547:103–9.CrossRefGoogle Scholar
  29. 29.
    Brinkmann A, Kentgens APM, Anupold T, Samoson A. Symmetry-based recoupling in double rotation solid-state NMR spectroscopy. J Chem Phys. 2008;129:174507.CrossRefGoogle Scholar
  30. 30.
    Perras FA, Bryce DL. Symmetry-amplified J splittings for quadrupolar spin pairs: a solid-state NMR probe of homoatomic covalent bonds. J Am Chem Soc. 2013;135:12596–9.CrossRefGoogle Scholar
  31. 31.
    Ding S, McDowell CA. Spectral spin diffusion of a spin-3/2 system in rotating solids. Mol Phys. 1995;85:283–98.CrossRefGoogle Scholar
  32. 32.
    Gan Z, Robyr P. Deuterium polarization transfer in rotating solids and its application in structural investigation. Mol Phys. 1998;95:1143–52.CrossRefGoogle Scholar
  33. 33.
    Dowell NG, Ashbrook SE, McManus J, Wimperis S. Relative orientation of quadrupole tensors from two-dimensional multiple-quantum MAS NMR. J Am Chem Soc. 2001;123:8135–6.CrossRefGoogle Scholar
  34. 34.
    Dowell NG, Ashbrook SE, Wimperis S. Relative orientation of quadrupole tensors from high-resolution NMR of powdered solids. J Phys Chem A. 2002;106:9470–8.CrossRefGoogle Scholar
  35. 35.
    Edén M, Annersten H, Zazzi Å. Pulse-assisted homonuclear dipolar recoupling of half-integer quadrupolar spins in magic-angle spinning NMR. Chem Phys Lett. 2005;410:24–30.CrossRefGoogle Scholar
  36. 36.
    Edén M, Frydman L. Homonuclear NMR correlations between half-integer quadrupolar nuclei undergoing magic-angle spinning. J Phys Chem B. 2003;107:14598–611.CrossRefGoogle Scholar
  37. 37.
    Edén M, Frydman L. Quadrupolar-driven recoupling of homonuclear dipolar interactions in the nuclear magnetic resonance of rotating solids. J Chem Phys. 2001;114:4116–23.CrossRefGoogle Scholar
  38. 38.
    Barrow NS, Yates JR, Feller SA, Holland D, Ashbrook SE, Hodgkinson P, et al. Towards homonuclear J solid-state NMR correlation experiments for half-integer quadrupolar nuclei: experimental and simulated 2Jbb coupling constants for lithium diborate. Phys Chem Chem Phys. 2011;13:5778–89.Google Scholar
  39. 39.
    Edén M, Grinshtein J, Frydman L. High resolution 3D exchange NMR spectroscopy and the mapping of connectivities between half-integer quadrupolar nuclei. J Am Chem Soc. 2002;124:9708–9.CrossRefGoogle Scholar
  40. 40.
    Wi S, Heise H, Pines A. Reintroducing anisotropic interactions in magic-angle spinning NMR of half-integer quadrupolar nuclei: 3D MQMAS. J Am Chem Soc. 2002;124:10652–3.CrossRefGoogle Scholar
  41. 41.
    Iuga D, Holland D, Dupree R. A 3D experiment that provides isotropic homonuclear correlations of half-integer quadrupolar nuclei. J Magn Reson. 2014;246:122–9.CrossRefGoogle Scholar
  42. 42.
    Mali G, Kaucic V. Enhancing sensitivity or resolution of homonuclear correlation experiment for half-integer quadrupolar nuclei. J Magn Reson. 2004;171:48–56.CrossRefGoogle Scholar
  43. 43.
    Painter AJ, Duer MJ. Double-quantum-filtered nuclear magnetic resonance spectroscopy applied to quadrupolar nuclei in solids. J Chem Phys. 2002;116:710–22.CrossRefGoogle Scholar
  44. 44.
    Edén M. Determination of absolute quadrupolar tensor orientations by double-quantum NMR on powders. Chem Phys Lett. 2009;470:318–24.CrossRefGoogle Scholar
  45. 45.
    Duer MJ, Painter AJ. Correlating quadrupolar nuclear spins: a multiple-quantum NMR approach. Chem Phys Lett. 1999;313:763–70.CrossRefGoogle Scholar
  46. 46.
    Hughes CE. Spin counting. Prog Nucl Magn Reson Spectrosc. 2004;45:301–13.CrossRefGoogle Scholar
  47. 47.
    Massiot D, Fayon F, Deschamps M, Cadars S, Florian P, Montouillout V, et al. Detection and use of small J couplings in solid state NMR experiments. Comptes Rendus Chim. 2010;13:117–29.CrossRefGoogle Scholar
  48. 48.
    Perras FA, Bryce DL. Measuring dipolar and J coupling between quadrupolar nuclei using double-rotation NMR. J Chem Phys. 2013;138:174202.CrossRefGoogle Scholar
  49. 49.
    Perras FA, Bryce DL. Boron-Boron J coupling constants are unique probes of electronic structure: a solid-state NMR and molecular orbital study. Chem Sci. 2014;5:2428–37.CrossRefGoogle Scholar
  50. 50.
    Perras FA, Bryce DL. Theoretical study of homonuclear J coupling between quadrupolar spins: single-crystal, DOR, and J-resolved solid-state NMR. J Magn Reson. 2014;242:23–32.CrossRefGoogle Scholar
  51. 51.
    Perras FA. Quantitative structure parameters from the NMR spectroscopy of quadrupolar nuclei. Pure Appl Chem. 2016;88:95–111.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Materials and Environmental ChemistryStockholm UniversityStockholmSweden

Personalised recommendations