Skip to main content

Recent Progress in Homonuclear Correlation Spectroscopy of Quadrupolar Nuclei

  • Reference work entry
  • First Online:
Modern Magnetic Resonance

Abstract

We review the recent progress in homonuclear correlation NMR spectroscopy on half-integer spin quadrupolar nuclei undergoing magic-angle spinning (MAS). The most central component of such experimentation is a dipolar recoupling stage, during which the through-space interactions are reactivated and used for retrieving information about interatomic proximities and NMR interaction tensor parameters. Yet, while several homonuclear correlation techniques for half-integer spin applications exist and their usage has accelerated over the past few years, they are not as versatile and reliable as analogous spin-1/2 implementations. This stems mainly from the insufficient resolution and sensitivity of NMR spectra from quadrupolar nuclei, coupled with the challenges to achieve efficient dipolar recoupling by radio-frequency fields in the presence of MAS. Herein, we contrast various two/three-dimensional homonuclear correlation NMR protocols for establishing internuclear connectivities/proximities from the viewpoints of spectral resolution and sensitivity, with particular emphasis on experimentation involving two-spin double-quantum (2Q) coherences that has emerged as the most popular correlation technique. We discuss the relative merits of currently proposed 2Q-recoupling options for half-integer spins. The most promising recent methods for extracting structural information are reviewed, encompassing the estimation of internuclear distances and electric-field gradient tensor orientations, and the probing of cluster-sizes of (re)coupled quadrupolar nuclei. We also review recent advances in utilizing homonuclear J interactions among quadrupolar nuclei, which until recently was an essentially untapped area of solid-state NMR. The contents are organized to convey the current state-of-the-art techniques and their limitations, where we also identify the needs for further developments and suggest potentially fruitful future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,200.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dusold S, Sebald A. Dipolar recoupling under magic-angle-spinning conditions. Annu Rep NMR Spectrosc. 2000;41:185–264.

    Article  CAS  Google Scholar 

  2. Schnell I. Dipolar recoupling in fast-MAS solid-state NMR spectroscopy. Prog NMR Spectrosc. 2004;45:145–207.

    Article  CAS  Google Scholar 

  3. Edén M. Advances in symmetry-based pulse sequences in magic-angle spinning solid-state NMR. eMagRes. 2013;2:351–64.

    Google Scholar 

  4. Saalwächter K, Robust NMR. Approaches for the determination of homonuclear dipole-dipole coupling constants in studies of solid materials and biomolecules. ChemPhysChem. 2013;14:3000–14.

    Article  CAS  Google Scholar 

  5. Edén M. Homonuclear dipolar recoupling of half-integer spin quadrupolar nuclei: techniques and applications. Solid State Nucl Magn Reson. 2009;36:1–10.

    Article  CAS  Google Scholar 

  6. Fernandez C, Pruski M. Probing quadrupolar nuclei by solid-state NMR spectroscopy: recent advances. Top Curr Chem. 2012;306:119–88.

    Article  CAS  Google Scholar 

  7. Nielsen NC, Bildsøe H, Jakobsen HJ, Levitt MH. Double-quantum homonuclear rotary resonance: efficient dipolar recovery in magic-angle-spinning nuclear magnetic resonance. J Chem Phys. 1994;101:1805–12.

    Article  CAS  Google Scholar 

  8. Mali G, Fink G, Taulelle F. Double-quantum homonuclear correlation magic angle sample spinning nuclear magnetic resonance spectroscopy of dipolar-coupled quadrupolar nuclei. J Chem Phys. 2004;120:2835–45.

    Article  CAS  Google Scholar 

  9. Edén M, Lo AYH. Supercycled symmetry-based double-quantum dipolar recoupling of quadrupolar spins: I. Theory J Magn Reson. 2009;200:267–79.

    Article  CAS  Google Scholar 

  10. Edén M, Zhou D, Yu J. Improved double-quantum NMR correlation spectroscopy of dipolar-coupled quadrupolar spins. Chem Phys Lett. 2006;431:397–403.

    Article  CAS  Google Scholar 

  11. Lee D, Takahashi H, Thankamony ASL, Dacquin JP, Bardet M, Lafon O, et al. Enhanced solid-state NMR correlation spectroscopy of quadrupolar nuclei using dynamic nuclear polarization. J Am Chem Soc. 2012;134:11766–9.

    Google Scholar 

  12. Edén M, Two-Dimensional MAS NMR correlation protocols involving double-quantum filtering of quadrupolar spin-pairs. J Magn Reson. 2010;204:99–110.

    Article  CAS  Google Scholar 

  13. Lo AYH, Edén M. Efficient symmetry-based homonuclear dipolar recoupling of quadrupolar spins: double-quantum NMR correlations in amorphous solids. Phys Chem Chem Phys. 2008;10:6635–64.

    Article  CAS  Google Scholar 

  14. Mali G, Kaucic V, Taulelle F. Measuring distances between half-integer quadrupolar nuclei and detecting relative orientations of quadrupolar and dipolar tensors by double-quantum homonuclear recoupling nuclear magnetic resonance experiments. J Chem Phys. 2008;128:204503.

    Article  CAS  Google Scholar 

  15. Wang Q, Hu B, Lafon O, Trébosc J, Deng F, Amoureux JP. Double-quantum homonuclear NMR correlation spectroscopy of quadrupolar nuclei subjected to magic-angle spinning and high magnetic field. J Magn Reson. 2009;200:251–60.

    Article  CAS  Google Scholar 

  16. Yu Z, Zheng A, Wang Q, Chen L, Xu J, Amoureux JP, et al. Insights into the dealumination of zeolite HY revealed by sensitivity-enhanced 27Al DQ-MAS NMR spectroscopy at high field. Angew Chem Int Ed. 2010;49:8657–61.

    Article  CAS  Google Scholar 

  17. Brinkmann A, Edén M. Estimating internuclear distances between half-integer quadrupolar nuclei by central-transition double-quantum sideband NMR spectropscopy. Can J Chem. 2011;89:892–9.

    Article  CAS  Google Scholar 

  18. Brinkmann A, Edén M. Central-transition double-quantum sideband NMR spectroscopy of half-integer quadrupolar nuclei: estimating internuclear distances and probing clusters within multi-spin networks. Phys Chem Chem Phys. 2014;16:7037–50.

    Article  CAS  Google Scholar 

  19. Brus J, Czernek J, Urbanova M, Kobera L, Jegorov J. An efficient 11B-11B solid-state NMR spectroscopy strategy for monitoring covalent self-assembly of boronic acid-derived compounds: the transformation and unique architecture of bortezomib molecules in the solid state. Phys Chem Chem Phys. 2017;19:487–95.

    Article  CAS  Google Scholar 

  20. van Wüllen L, Sabarinathan V. Structure and high temperature behaviour of sodium aluminophosphate glasses. Phys Chem Glasses: Eur J Glass Sci Technol, Part B. 2016;57:173–82.

    Google Scholar 

  21. Jaworski A, Stevensson B, Pahari B, Okhotnikov K, Edén M. Local structures and Al/Si ordering in lanthanum aluminosilicate glasses explored by advanced 27Al NMR experiments and molecular dynamics simulations. Phys Chem Chem Phys. 2012;14:15866–78.

    Article  CAS  Google Scholar 

  22. Ren J, Zhang L, Eckert H. Medium-range order in sol–gel prepared Al2O3–SiO2 glasses: new results from solid-state NMR. J Phys Chem C. 2014;118:4906–17.

    Article  CAS  Google Scholar 

  23. Lee SK, Deschamps M, Hiet J, Massiot D, Park SY. Connectivity and proximity between quadrupolar nuclides in oxide glasses: insights from through-bond and through-space solid-state NMR. J Phys Chem B. 2009;113:5162–7.

    Article  CAS  Google Scholar 

  24. Tricot G, Saitoh A, Takebe H. Intermediate length scale organisation in tin borophosphate glasses: new insights from high field correlation NMR. Phys Chem Chem Phys. 2015;17:29531–40.

    Article  CAS  Google Scholar 

  25. Tricot G. The structure of Pyrex® glass investigated by correlation NMR spectroscopy. Phys Chem Chem Phys. 2016;18:26764–70.

    Article  CAS  Google Scholar 

  26. Baldus M, Rovnyak D, Griffin RG. Radio-frequency-mediated dipolar recoupling among half-integer quadrupolar spins. J Chem Phys. 2000;112:5902–9.

    Article  CAS  Google Scholar 

  27. Wi S, Logan JW, Sakellariou D, Walls JD, Pines A. Rotary resonance recoupling for half-integer quadrupolar nuclei in solid-state nuclear magnetic resonance. J Chem Phys. 2002;117:7024–33.

    Article  CAS  Google Scholar 

  28. Teymoori G, Pahari B, Stevensson B, Edén M. Low-power broadband homonuclear dipolar recoupling without decoupling: double-quantum 13C NMR correlations at very fast magic-angle spinning. Chem Phys Lett. 2012;547:103–9.

    Article  CAS  Google Scholar 

  29. Brinkmann A, Kentgens APM, Anupold T, Samoson A. Symmetry-based recoupling in double rotation solid-state NMR spectroscopy. J Chem Phys. 2008;129:174507.

    Article  CAS  Google Scholar 

  30. Perras FA, Bryce DL. Symmetry-amplified J splittings for quadrupolar spin pairs: a solid-state NMR probe of homoatomic covalent bonds. J Am Chem Soc. 2013;135:12596–9.

    Article  CAS  Google Scholar 

  31. Ding S, McDowell CA. Spectral spin diffusion of a spin-3/2 system in rotating solids. Mol Phys. 1995;85:283–98.

    Article  CAS  Google Scholar 

  32. Gan Z, Robyr P. Deuterium polarization transfer in rotating solids and its application in structural investigation. Mol Phys. 1998;95:1143–52.

    Article  CAS  Google Scholar 

  33. Dowell NG, Ashbrook SE, McManus J, Wimperis S. Relative orientation of quadrupole tensors from two-dimensional multiple-quantum MAS NMR. J Am Chem Soc. 2001;123:8135–6.

    Article  CAS  Google Scholar 

  34. Dowell NG, Ashbrook SE, Wimperis S. Relative orientation of quadrupole tensors from high-resolution NMR of powdered solids. J Phys Chem A. 2002;106:9470–8.

    Article  CAS  Google Scholar 

  35. Edén M, Annersten H, Zazzi Å. Pulse-assisted homonuclear dipolar recoupling of half-integer quadrupolar spins in magic-angle spinning NMR. Chem Phys Lett. 2005;410:24–30.

    Article  CAS  Google Scholar 

  36. Edén M, Frydman L. Homonuclear NMR correlations between half-integer quadrupolar nuclei undergoing magic-angle spinning. J Phys Chem B. 2003;107:14598–611.

    Article  CAS  Google Scholar 

  37. Edén M, Frydman L. Quadrupolar-driven recoupling of homonuclear dipolar interactions in the nuclear magnetic resonance of rotating solids. J Chem Phys. 2001;114:4116–23.

    Article  CAS  Google Scholar 

  38. Barrow NS, Yates JR, Feller SA, Holland D, Ashbrook SE, Hodgkinson P, et al. Towards homonuclear J solid-state NMR correlation experiments for half-integer quadrupolar nuclei: experimental and simulated 2Jbb coupling constants for lithium diborate. Phys Chem Chem Phys. 2011;13:5778–89.

    Google Scholar 

  39. Edén M, Grinshtein J, Frydman L. High resolution 3D exchange NMR spectroscopy and the mapping of connectivities between half-integer quadrupolar nuclei. J Am Chem Soc. 2002;124:9708–9.

    Article  CAS  Google Scholar 

  40. Wi S, Heise H, Pines A. Reintroducing anisotropic interactions in magic-angle spinning NMR of half-integer quadrupolar nuclei: 3D MQMAS. J Am Chem Soc. 2002;124:10652–3.

    Article  CAS  Google Scholar 

  41. Iuga D, Holland D, Dupree R. A 3D experiment that provides isotropic homonuclear correlations of half-integer quadrupolar nuclei. J Magn Reson. 2014;246:122–9.

    Article  CAS  Google Scholar 

  42. Mali G, Kaucic V. Enhancing sensitivity or resolution of homonuclear correlation experiment for half-integer quadrupolar nuclei. J Magn Reson. 2004;171:48–56.

    Article  CAS  Google Scholar 

  43. Painter AJ, Duer MJ. Double-quantum-filtered nuclear magnetic resonance spectroscopy applied to quadrupolar nuclei in solids. J Chem Phys. 2002;116:710–22.

    Article  CAS  Google Scholar 

  44. Edén M. Determination of absolute quadrupolar tensor orientations by double-quantum NMR on powders. Chem Phys Lett. 2009;470:318–24.

    Article  CAS  Google Scholar 

  45. Duer MJ, Painter AJ. Correlating quadrupolar nuclear spins: a multiple-quantum NMR approach. Chem Phys Lett. 1999;313:763–70.

    Article  CAS  Google Scholar 

  46. Hughes CE. Spin counting. Prog Nucl Magn Reson Spectrosc. 2004;45:301–13.

    Article  CAS  Google Scholar 

  47. Massiot D, Fayon F, Deschamps M, Cadars S, Florian P, Montouillout V, et al. Detection and use of small J couplings in solid state NMR experiments. Comptes Rendus Chim. 2010;13:117–29.

    Article  CAS  Google Scholar 

  48. Perras FA, Bryce DL. Measuring dipolar and J coupling between quadrupolar nuclei using double-rotation NMR. J Chem Phys. 2013;138:174202.

    Article  CAS  Google Scholar 

  49. Perras FA, Bryce DL. Boron-Boron J coupling constants are unique probes of electronic structure: a solid-state NMR and molecular orbital study. Chem Sci. 2014;5:2428–37.

    Article  CAS  Google Scholar 

  50. Perras FA, Bryce DL. Theoretical study of homonuclear J coupling between quadrupolar spins: single-crystal, DOR, and J-resolved solid-state NMR. J Magn Reson. 2014;242:23–32.

    Article  CAS  Google Scholar 

  51. Perras FA. Quantitative structure parameters from the NMR spectroscopy of quadrupolar nuclei. Pure Appl Chem. 2016;88:95–111.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mattias Edén .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Edén, M. (2018). Recent Progress in Homonuclear Correlation Spectroscopy of Quadrupolar Nuclei. In: Webb, G. (eds) Modern Magnetic Resonance. Springer, Cham. https://doi.org/10.1007/978-3-319-28388-3_104

Download citation

Publish with us

Policies and ethics