Skip to main content

High-Frequency Dynamic Nuclear Polarization NMR for Solids: Part 1 – An Introduction

  • Living reference work entry
  • First Online:
Modern Magnetic Resonance

Abstract

Dynamic nuclear polarization (DNP) NMR spectroscopy, a high-polarization method, is rapidly changing the landscape of what is possible in solid-state nuclear magnetic resonance spectroscopy. To date, there have been over 200 publications discussing high-frequency DNP NMR of solids with more than half being released within the past few years. Below we provide for researchers that may be interested in this high-sensitivity technique an introduction to high-frequency DNP NMR spectroscopy, including instrumentation, mechanisms, polarizing agents, and sample preparation. While there are many applications utilizing high-frequency DNP NMR, Part II will deal with recent advances in method development and applications to biomolecular solids and materials science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Gullion T, Schaefer J. Rotational-echo double-resonance NMR. J Magn Reson. 1989;81:196.

    Google Scholar 

  2. Chan JC, Eckert H. Dipolar coupling information in multispin systems: application of a compensated REDOR NMR approach to inorganic phosphates rotational echo double resonance. J Magn Reson. 2000;147:170–8.

    Article  Google Scholar 

  3. Daviso E, Eddy MT, Andreas LB, Griffin RG, Herzfeld J. Efficient resonance assignment of proteins in MAS NMR by simultaneous intra- and inter-residue 3D correlation spectroscopy. J Biomol NMR. 2013;55:257–65.

    Article  Google Scholar 

  4. Weingarth M, Baldus M. Advances in biological solid-state NMR: proteins and membrane-active peptides. RSC; 2014. p. 1–17. Ch. 1.

    Google Scholar 

  5. Eckert H, Elbers S, Epping JD, Janssen M, Kalwei M, Strojek W, Voight U. Topics in current chemistry. Berlin/Heidelberg: Springer; 2004. p. 195–233.

    Google Scholar 

  6. MacKenzie KJD, Smith ME. Multinuclear solid-state NMR of inorganic materials. Pergamon; 2002.

    Google Scholar 

  7. Pretsch E, Bühlmann P, Badertscher M. Structure determination of organic compounds. Berlin/Heidelberg: Springer; 2009.

    Google Scholar 

  8. Wasylishen RE, Askbrook SE, Wimperis S. NMR of quadrupolar nuclei in solid materials. Wiley; 2012.

    Google Scholar 

  9. Kentgens APM. A practical guide to solid-state NMR of half-integer quadrupolar nuclei with some applications to disordered systems. Geoderma. 1997;80:271–306.

    Article  Google Scholar 

  10. Andrew ER, Bradbury A, Eades RG. Nuclear magnetic resonnace spectra from a crystal rotated at high speed. Nature. 1958;182:1659.

    Article  Google Scholar 

  11. Lowe IJ. Free induction decays of rotating solids. Phys Rev Lett. 1959;2:285–7.

    Article  Google Scholar 

  12. Pines A, Gibby MG, Waugh JS. Proton enhanced NMR of dilute spins in solids. Chem Phys Lett. 1972;15:373.

    Article  Google Scholar 

  13. Bascunan J, Hahn S, Park DK, Iwasa Y. A 1.3-GHz LTS/HTS NMR magnet-A Progress Report. IEEE Trans Appl Supercond. 2011;21:2092–5.

    Article  Google Scholar 

  14. Bruker Biospin Bruker announces five ultra-high field NMR orders from Europe and Brazil, http://ir.bruker.com/investors/press-releases/press-release-details/2015/Bruker-Announces-Five-Ultra-High-Field-NMR-Orders-from-Europe-and-Brazil/default.aspx. Accessed 1.

  15. Goldman M. Spin temperature and nuclear magnetic resonance in solids. Oxford: Clarendon Press; 1970.

    Google Scholar 

  16. Abragam A, Goldman M. Principles of dynamic nuclear polarization. Rep Prog Phys. 1976;41:395–467.

    Article  Google Scholar 

  17. Barnes AB, De Paepe G, Van der Wel PCA, Hu K-N, Joo C-G, Bajaj VS, Mak- Jurkauskas ML, Sirigiri JR, Herzfeld J, Temkin RJ, Griffin RG. High field dynamic nuclear polarization for solid and solution biological NMR. Appl Magn Reson. 2008;34:237–63.

    Article  Google Scholar 

  18. Ni QZ, Daviso E, Cana TV, Markhasin E, Jawla SK, Temkin RJ, Herzfeld J, Griffin RG. High frequency dynamic nuclear polarization. Acc Chem Res. 2013;46:1933–41.

    Article  Google Scholar 

  19. Maly T, Debelouchina GT, Bajaj VS, Hu KN, Joo CG, Mak-Jurkauskas ML, Sirigiri JR, Van der Wel PCA, Herzfeld J, Temkin RJ, Griffin RG. Dynamic nuclear polarization at high magnetic fields. J Chem Phys. 2008;128:052211.

    Article  Google Scholar 

  20. Rossini AJ, Zagdoun A, Lelli M, Lesage A, Copéret C, Emsley L. Dynamic nuclear polarization surface enhanced NMR spectroscopy. Acc Chem Res. 2013;46:1942–51.

    Article  Google Scholar 

  21. Wind RA, Duijvestijn MJ, Vanderlugt C, Manenschijn A, Vriend J. Applications of dynamic nuclear-polarization in C-13 NMR in solids. Prog Nucl Magn Reson Spectrosc. 1985;17:33–67.

    Article  Google Scholar 

  22. Su Y, Andreas L, Griffin RG. Magic angle spinning NMR of proteins: high-frequency dynamic nuclear polarization and 1H detection. Annu Rev Biochem. 2015;84:465–97.

    Article  Google Scholar 

  23. Michaelis VK, Ong T-C, Kiesewetter MK, Frantz DK, Walish JJ, Ravera E, Luchinat C, Swager TM, Griffin RG. Topical developments in high-field dynamic nuclear polarization. IsrJ Chem. 2014;54:207–21.

    Article  Google Scholar 

  24. Atsarkin VA. Dynamic polarization of nuclei in solid dielectrics. Spv Phys Usp. 1978;21:725.

    Article  Google Scholar 

  25. Abragam A, Goldman M. Nuclear magnetism: order and disorder. Oxford: Clarendon Press; 1982.

    Google Scholar 

  26. Mak-Jurkauskas ML, Griffin RG., High-frequency dynamic nuclear polarization. eMagRes. 2007.

    Google Scholar 

  27. Jeffries CD. Dynamic nuclear orientation. Interscience Publishers; 1963.

    Google Scholar 

  28. Ong TC, Verel R, Copéret C. In: Tranter GE, Koppenaal DW, editors. Encyclopedia of spectroscopy and spectrometry. 3rd ed. Oxford: Academic; 2017. p. 121–7.

    Chapter  Google Scholar 

  29. Bajaj VS, Hornstein MK, Kreischer KE, Sirigiri JR, Woskov PP, Mak-Jurkauskas ML, Herzfeld J, Temkin RJ, Griffin RG. 250 GHz CW gyrotron oscillator for dynamic nuclear polarization in biological solid state NMR. J Magn Reson. 2007;189:251–79.

    Article  Google Scholar 

  30. Gerfen GJ, Becerra LR, Hall DA, Griffin RG, Temkin RJ, Singel DJ. High-frequency (140 GHz) dynamic nuclear-polarization – polarization transfer to a solute in frozen aqueous- solution. J Chem Phys. 1995;102:9494–7.

    Article  Google Scholar 

  31. Jawla S, Nanni E, Shapiro M, Mastovsky I, Guss W, Temkin R, Griffin R. Design of a 527 GHz gyrotron for DNP-NMR spectroscopy. 36th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz); 2011.

    Google Scholar 

  32. Jawla S, Reese M, George C, Yang C, Shapiro M, Griffin R, Temkin R. 330 GHz/500 MHz dynamic nuclear polarization-NMR spectrometer. IEEE International Vacuum Electronics Conference; 2016.

    Book  Google Scholar 

  33. Torrezan AC, Han S-T, Mastovsky I, Shapiro MA, Sirigiri JR, Temkin RJ, Barnes AB, Griffin RG. Continuous-wave operation of a frequency tunable 460 GHz second-harmonic gyrotron for enhanced nuclear magnetic resonance. IEEE Trans Plasma Sci. 2010;38:1150–9.

    Article  Google Scholar 

  34. Idehara T, Tatematsu Y, Yamaguchi Y, Khutoryan EM, Kuleshov AN, Ueda K, Matsuki Y, Fujiwara T. The development of 460 GHz gyrotrons for 700 MHz DNP-NMR spectroscopy. J Infrared Millimeter Terahertz Waves. 2015;36:613–27.

    Article  Google Scholar 

  35. Matsuki Y, Idehara T, Fukazawa J, Fujiwara T. Advanced instrumentation for DNP-enhanced MAS NMR for higher magnetic fields and lower temperatures. J Magn Reson. 2016;264:107–15.

    Article  Google Scholar 

  36. Matsuki Y, Takahashi H, Ueda K, Idehara T, Ogawa I, Toda M, Akutsu H, Fujiwara T. Dynamic nuclear polarization experiments at 14.1 T for solid-state NMR. Phys Chem Chem Phys. 2010;12:5799–803.

    Article  Google Scholar 

  37. Barnes AB, Nanni EA, Herzfeld J, Griffin RG, Temkin RJ. A 250 GHz gyrotron with a 3 GHz tuning bandwidth for dynamic nuclear polarization. J Magn Reson. 2012;221:147–53.

    Article  Google Scholar 

  38. Jawla S, Ni QZ, Barnes A, Guss W, Daviso E, Herzfeld J, Griffin R, Temkin R. Continuously tunable 250 GHz gyrotron with a double disk window for DNP-NMR spectroscopy. Journal of Infrared, Millimeter, and Terahertz Waves. 2013;34:42–52.

    Article  Google Scholar 

  39. Torrezan AC, Shapiro MA, Sirigiri JR, Temkin RJ, Griffin RG. Operation of a continuously frequency-tunable second-harmonic CW 330-GHz gyrotron for dynamic nuclear polarization. IEEE Trans Electron Devices. 2011;58:2777–83.

    Article  Google Scholar 

  40. Ikeda R, Idehara T, Ogawa I, Tatematsu Y, Chang TH, Chen NC, Matsuki Y, Ueda K. Fujiwara T. Development of a continuously frequency tunable gyrotron operating at the fundamental resonance for 600 MHz DNP-NMR spectroscopy. 37th International Confernce on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz); 2012.

    Google Scholar 

  41. Thurber KR, Yau W-M, Tycko R. Low-temperature dynamic nuclear polarization at 9.4 T with a 30 mW microwave source. J Magn Reson. 2010;204:303–13.

    Article  Google Scholar 

  42. Allen PJ, Creuzet F, De Groot HJM, Griffin RG. Apparatus for low-temperature magic-angle spinning NMR. J Magn Reson (1969). 1991;92:614–7.

    Google Scholar 

  43. Bouleau E, Saint-Bonnet P, Mentink-Vigier F, Takahashi H, Jacquot JF, Bardet M, Aussenac F, Purea A, Engelke F, Hediger S, Lee D, De Paëpe G. Pushing NMR sensitivity limits using dynamic nuclear polarization with closed-loop cryogenic helium sample spinning. Chem Sci. 2015;6:6806–12.

    Article  Google Scholar 

  44. Thurber K, Tycko R. Low-temperature dynamic nuclear polarization with helium-cooled samples and nitrogen-driven magic-angle spinning. J Magn Reson. 2016;264:99–106.

    Article  Google Scholar 

  45. Tycko R. NMR at low and ultralow temperatures. Acc Chem Res. 2013;46:1923–32.

    Article  Google Scholar 

  46. Concistre M, Johannessen OG, Carignani E, Geppi M, Levitt MH. Magic-angle spinning NMR of cold samples. Acc Chem Res. 2013;46:1914–22.

    Article  Google Scholar 

  47. Barnes AB, Markhasin E, Daviso E, Michaelis VK, Nanni EA, Jawla SK, Mena EL, DeRocher R, Thakkar A, Woskov PP, Herzfeld J, Temkin RJ, Griffin RG. Dynamic nuclear polarization at 700 MHz/460 GHz. J Magn Reson. 2012;224:1–7.

    Article  Google Scholar 

  48. Rosay M, Blank M, Engelke F. Instrumentation for solid-state dynamic nuclear polarization with magic angle spinning NMR. J Magn Reson. 2016;264:88–98.

    Article  Google Scholar 

  49. Barnes AB, Mak-Jurkauskas ML, Matsuki Y, Bajaj VS, van der Wel PCA, DeRocher R, Bryant J, Sirigiri JR, Temkin RJ, Lugtenburg J, Herzfeld J, Griffin RG. Cryogenic sample exchange NMR probe for magic angle spinning dynamic nuclear polarization. J Magn Reson. 2009;198:261–70.

    Article  Google Scholar 

  50. Rosay M, Tometich L, Pawsey S, Bader R, Schauwecker R, Blank M, Borchard PM, Cauffman SR, Felch KL, Weber RT, Temkin RJ, Griffin RG, Maas WE. Solid-state dynamic nuclear polarization at 263 GHz: Spectrometer design and experimental results. Phys Chem Chem Phys. 2010;12:5850–60.

    Article  Google Scholar 

  51. Markhasin E, Hu J, Su Y, Herzfeld J, Griffin RG. Efficient, balanced, transmission line RF circuits by back propagation of common impedance nodes. J Magn Reson. 2013;231:32–8.

    Article  Google Scholar 

  52. Gor’kov PK, Brey WW, Long JR. Probe development for biosolids NMR spectroscopy. eMagRes. 2007.

    Google Scholar 

  53. J. Hu J, Herzfeld J. Baluns, a fine balance and impedance adjustment module, a multi-layer transmission line, and transmission line NMR probes using same. Patent 7936171 B2. 2011.

    Google Scholar 

  54. McKay RA. Probes for special purposes. eMagRes. 2007.

    Google Scholar 

  55. Schaefer J, McKay RA. Multi-tuned single coil transmission line probe for nuclear magnetic resonance spectrometer. Patent 5861748. 1999.

    Google Scholar 

  56. Grant CV, Wu CH, Opella SJ. Probes for high field solid-state NMR of lossy biological samples. J Magn Reson. 2010;204:180–8.

    Article  Google Scholar 

  57. Doty FD. Probe design and construction. eMagRes. 2007.

    Google Scholar 

  58. Paulson EK, Martin RW, Zilm KW. Cross polarization, radio frequency field homogeneity, and circuit balancing in high field solid state NMR probes. J Magn Reson. 2004;171:314–23.

    Article  Google Scholar 

  59. Becerra LR, Gerfen GJ, Bellew BF, Bryant JA, Hall DA, Inati SJ, Weber RT, Un S, Prisner TF, Mcdermott AE, Fishbein KW, Kreischer KE, Temkin RJ, Singel DJ, Griffin RG. A spectrometer for dynamic nuclear-polarization and electron-paramagnetic-resonance at high- frequencies. J Magn Reson Ser A. 1995;117:28–40.

    Article  Google Scholar 

  60. Bajaj VS, Farrar CT, Hornstein MK, Mastovsky I, Vieregg J, Bryant J, Eléna B, Kreischer KE, Temkin RJ, Griffin RG. Dynamic nuclear polarization at 9T using a novel 250 GHz gyrotron microwave source. J Magn Reson. 2003;160:85–90.

    Article  Google Scholar 

  61. Pike KJ, Kemp TF, Takahashi H, Day R, Howes AP, Kryukov EV, MacDonald JF, Collis AE, Bolton DR, Wylde RJ, Orwick M, Kosuga K, Clark AJ, Idehara T, Watts A, Smith GM, Newton ME, Dupree R, Smith ME. A spectrometer designed for 6.7 and 14.1 T DNP-enhanced solid-state MAS NMR using quasi-optical microwave transmission. J Magn Reson. 2012;215:1–9.

    Google Scholar 

  62. Saliba E, Sesti EL, Scott FJ, Albert BJ, Choi EJ, Alaniva N, Gao C, Barnes AB. Electron decoupling with dynamic nuclear polarization in rotating solids. J Am Chem Soc. 2017;139:6310–3.

    Article  Google Scholar 

  63. Hu KN, Bajaj VS, Rosay M, Griffin RG. High-frequency dynamic nuclear polarization using mixtures of TEMPO and trityl radicals. J Chem Phys. 2007;126:044512.

    Google Scholar 

  64. Corzilius B, Smith AA, Barnes AB, Luchinat C, Bertini L, Griffin RG. High-field dynamic nuclear polarization with high-spin transition metal ions. J Am Chem Soc. 2011;133:5648–51.

    Article  Google Scholar 

  65. Corzilius B, Smith AA, Griffin RG. Solid effect in magic angle spinning dynamic nuclear polarization. J Chem Phys. 2012;137:054201.

    Article  Google Scholar 

  66. Smith AA, Corzilius B, Barnes AB, Maly T, Griffin RG. Solid effect dynamic nuclear polarization and polarization pathways. J Chem Phys. 2012;136:015101.

    Article  Google Scholar 

  67. Can TV, Ni QZ, Griffin RG. Mechanisms of dynamic nuclear polarization in insulating solids. J Magn Reson. 2015;253:23–35.

    Article  Google Scholar 

  68. Lelli M, Chaudhari SR, Gajan D, Casano G, Rossini AJ, Ouari O, Tordo P, Lesage A, Emsley L. Solid-state dynamic nuclear polarization at 9.4 and 18.8 T from 100 K to room temperature. J Am Chem Soc. 2015;137:14558–61.

    Article  Google Scholar 

  69. Abragam A, Proctor WG. Une Nouvelle Methode De Polarisation Dynamique Des Noyaux Atomiques Dans Les Solides. Cr Hebd Acad Sci. 1958;246:2253–6.

    Google Scholar 

  70. Afeworki M, Schaefer J. Mechanism of DNP-enhanced polarization transfer across the interface of polycarbonate/polystyrene heterogeneous blends. Macromolecules. 1992;25:4092–6.

    Article  Google Scholar 

  71. Erb E, Motchane JL, Ubersfeld CR. Acad Sci. 1958;246:2253.

    Google Scholar 

  72. Hwang CF, Hill DA. Phenomenological model for new effect in dynamic polarization. Phys Rev Lett. 1967;19:1011.

    Article  Google Scholar 

  73. Hwang CF, Hill DA. New effect in dynamic polarization. Phys Rev Lett. 1967;18:110.

    Article  Google Scholar 

  74. Jeffries CD. Polarization of nuclei by resonance saturation in paramagnetic crystals. Phys Rev. 1957;106:164–5.

    Article  Google Scholar 

  75. Kessenikh AV, Lushchikov VI, Manenkov AA, Taran YV. Proton polarization in irradiated polyethylenes. Sov Phys-Sol State. 1963;5:321–9.

    Google Scholar 

  76. Kessenikh AV, Manenkov AA, Pyatnitskii GI. On explanation of experimental data on dynamic polarization of protons in irradiated polyethylenes. Sov Phys Solid State. 1964;6:641–3.

    Google Scholar 

  77. Overhauser AW. Polarization of nuclei in metals. Phys Rev. 1953;92:411–5.

    Article  Google Scholar 

  78. Wollan DS. Dynamic nuclear-polarization with an inhomogeneously broadened ESR Line. 1. Theory. Phys Rev B. 1976;13:3671–85.

    Article  Google Scholar 

  79. Hovav Y, Feintuch A, Vega S. Theoretical aspects of dynamic nuclear polarization in the solid state – the cross effect. J Magn Reson. 2012;214:29–41.

    Article  Google Scholar 

  80. Hovav Y, Levinkron O, Feintuch A, Vega S. Theoretical aspects of dynamic nuclear polarization in the solid state: the influence of high radical concentrations on the solid effect and cross effect mechanisms. Appl Magn Reson. 2012;43:21–41.

    Article  Google Scholar 

  81. Mentink-Vigier F, Akbey Ü, Hovav Y, Vega S, Oschkinat H, Feintuch A. Fast passage dynamic nuclear polarization on rotating solids. J Magn Reson. 2012;224:13–21.

    Article  Google Scholar 

  82. Shimon D, Hovav Y, Feintuch A, Goldfarb D, Vega S. Dynamic nuclear polarization in the solid state: a transition between the cross effect and the solid effect. Phys Chem Chem Phys. 2012;14:5729–43.

    Article  Google Scholar 

  83. Hu K-N. Polarizing agents and mechanisms for high-field dynamic nuclear polarization of frozen dielectric solids. Solid State Nucl Magn Reson. 2011;40:31–41.

    Article  Google Scholar 

  84. Hu KN, Debelouchina GT, Smith AA, Griffin RG. Quantum mechanical theory of dynamic nuclear polarization in solid dielectrics. J Chem Phys. 2011;134:125105.

    Google Scholar 

  85. Hu K-N, Bajaj VS, Rosay M, Griffin RG. High-frequency dynamic nuclear polarization using mixtures of TEMPO and trityl radicals. J Chem Phys. 2007;126:044512.

    Google Scholar 

  86. Song CS, Hu KN, Joo CG, Swager TM, Griffin RG. TOTAPOL: a biradical polarizing agent for dynamic nuclear polarization experiments in aqueous media. J Am Chem Soc. 2006;128:11385–90.

    Article  Google Scholar 

  87. Michaelis VK, Corzilius B, Smith AA, Griffin RG. Dynamic nuclear polarization of l7O: direct polarization. J Phys Chem B. 2013;117:14894–906.

    Google Scholar 

  88. Michaelis VK, Smith AA, Corzilius B, Haze O, Swager TM, Griffin RG. High-field 13C DNP with a radical mixture. J Am Chem Soc. 2013;135:2935–8.

    Article  Google Scholar 

  89. Thurber KR, Tycko R. Theory for cross effect dynamic nuclear polarization under magic-angle spinning in solid state nuclear magnetic resonance: the importance of level crossings. J Chem Phys. 2012;137:084508.

    Article  Google Scholar 

  90. Jeffries CD. Dynamic orientation of nuclei by forbidden transitions in paramagnetic Resonance. Phys Rev. 1960;117:1056–69.

    Article  Google Scholar 

  91. Smith AN, Long JR. Dynamic nuclear polarization as an enabling technology for solid state nuclear magnetic resonance spectroscopy. Anal Chem. 2016;88:122–32.

    Article  Google Scholar 

  92. Lafon O, Thankamony ASL, Rosay M, Aussenac F, Lu X, Trebosc J, Bout-Roumazeilles V, Vezin H, Amoureux J-P. Indirect and direct 29Si dynamic nuclear polarization of dispersed nanoparticles. Chem Commun. 2013;49:2864–6.

    Article  Google Scholar 

  93. Maly T, Andreas LB, Smith AA, Griffin RG. 2H-DNP-enhanced 2H-13C solid-state NMR correlation spectroscopy. Phys Chem Chem Phys. 2010;12:5872–8.

    Article  Google Scholar 

  94. Ardenkjær-Larsen JH, Fridlund B, Gram A, Hansson G, Hansson L, Lerche MH, Servin R, Thaning M, Golman K. Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR. Proc Natl Acad Sci. 2003;100:10158–63.

    Article  Google Scholar 

  95. Dementyev AE, Cory DG, Ramanathan C. High-field overhauser dynamic nuclear polarization in silicon below the metal–insulator transition. J Chem Phys. 2011;134:154511.

    Article  Google Scholar 

  96. Hu K-N, Song C, Yu H-h, Swager TM, Griffin RG. High-frequency dynamic nuclear polarization using biradicals: a multifrequency EPR lineshape analysis. J Chem Phys. 2008;128:052302.

    Google Scholar 

  97. Ardenkjaer-Larsen JH, Macholl S, Johannesson H. Dynamic nuclear polarization with trityls at 1.2 K. Appl Magn Reson. 2008;34:509–22.

    Article  Google Scholar 

  98. Reynolds S, Patel H. Monitoring the solid-state polarization of 13C, 5N, 2H, 29Si and 31P. Appl Magn Reson. 2008;34:495–508.

    Article  Google Scholar 

  99. Can TV, Caporini MA, Mentink-Vigier F, Corzilius B, Walish JJ, Rosay M, Maas WE, Baldus M, Vega S, Swager TM, Griffin RG. Overhauser effects in insulating solids. J Chem Phys. 2014;141:064202.

    Article  Google Scholar 

  100. Corzilius B, Andreas LB, Smith AA, Ni QZ, Griffin RG. Paramagnet induced signal quenching in MAS–DNP experiments in frozen homogeneous solutions. J Magn Reson. 2014;240:113–23.

    Article  Google Scholar 

  101. Mathies G, Caporini MA, Michaelis VK, Liu Y, Hu K-N, Mance D, Zweier JL, Rosay M, Baldus M, Griffin RG. Efficient dynamic nuclear polarization at 800 MHz/527 GHz with trityl- nitroxide biradicals. Angew Chem Int Ed. 2015;54:11770–4.

    Article  Google Scholar 

  102. Sauvée C, Casano G, Abel S, Rockenbauer A, Akhmetzyanov D, Karoui H, Siri D, Aussenac F, Maas W, Weber RT, Prisner T, Rosay M, Tordo P, Ouari O. Tailoring of polarizing agents in the bTurea series for cross-effect dynamic nuclear polarization in aqueous media. Chem Eur J. 2016;22:5598–606.

    Article  Google Scholar 

  103. Kubicki DJ, Casano G, Schwarzwalder M, Abel S, Sauvee C, Ganesan K, Yulikov M, Rossini AJ, Jeschke G, Coperet C, Lesage A, Tordo P, Ouari O, Emsley L. Rational design of dinitroxide biradicals for efficient cross-effect dynamic nuclear polarization. Chem Sci. 2016;7:550–8.

    Article  Google Scholar 

  104. Matsuki Y, Maly T, Ouari O, Karoui H, Le Moigne F, Rizzato E, Lyubenova S, Herzfeld J, Prisner T, Tordo P, Griffin RG. Dynamic nuclear polarization with a rigid biradical. Angew Chem Int Ed. 2009;48:4996–5000.

    Article  Google Scholar 

  105. Sauvée C, Rosay M, Casano G, Aussenac F, Weber RT, Ouari O, Tordo P. Highly efficient, water-soluble polarizing agents for dynamic nuclear polarization at high frequency. Angew Chem Int Ed. 2013;52:10858–61.

    Article  Google Scholar 

  106. Zagdoun A, Casano G, Ouari O, Schwarzwälder M, Rossini AJ, Aussenac F, Yulikov M, Jeschke G, Copéret C, Lesage A, Tordo P, Emsley L. Large molecular weight nitroxide biradicals providing efficient dynamic nuclear polarization at temperatures up to 200 K. J Am Chem Soc. 2013;135:12790–7.

    Article  Google Scholar 

  107. Zagdoun A, Casano G, Ouari O, Lapadula G, Rossini AJ, Lelli M, Baffert M, Gajan D, Veyre L, Maas WE, Rosay M, Weber RT, Thieuleux C, Coperet C, Lesage A, Tordo P, Emsley L. A slowly relaxing rigid biradical for efficient dynamic nuclear polarization surface-enhanced NMR spectroscopy: expeditious characterization of functional group manipulation in hybrid materials. J Am Chem Soc. 2012;134:2284–91.

    Article  Google Scholar 

  108. Kiesewetter MK, Corzilius B, Smith AA, Griffin RG, Swager TM. Dynamic nuclear polarization with a water-soluble rigid biradical. J Am Chem Soc. 2012;134:4537–40.

    Article  Google Scholar 

  109. Ong TC, Mak-Jurkauskas ML, Walish JJ, Michaelis VK, Corzilius B, Smith AA, Clausen AM, Cheetham JC, Swager TM, Griffin RG. Solvent-free dynamic nuclear polarization of amorphous and crystalline ortho-terphenyl. J Phys Chem B. 2013;117:3040–6.

    Article  Google Scholar 

  110. Kiesewetter MK, Michaelis VK, Walish JJ, Griffin RG, Swager TM. High field dynamic nuclear polarization NMR with surfactant sheltered biradicals. J Phys Chem B. 2014;118:1825–30.

    Article  Google Scholar 

  111. Dane EL, Corzilius B, Rizzato E, Stocker P, Ouari O, Maly T, Smith AA, Griffin RG, Ouari O, Tordo P, Swager TM. Rigid orthogonal bis-TEMPO biradicals with improved solubility for dynamic nuclear polarization. J Org Chem. 2012;77:1789–97.

    Article  Google Scholar 

  112. Kaushik M, Bahrenberg T, Can TV, Caporini MA, Silvers R, Heiliger J, Smith AA, Schwalbe H, Griffin RG, Corzilius B. Gd(III) and Mn(II) complexes for dynamic nuclear polarization: small molecular chelate polarizing agents and applications with site-directed spin labeling of proteins. Phys Chem Chem Phys. 2016;18:27205–18.

    Article  Google Scholar 

  113. Corzilius B. Theory of solid effect and cross effect dynamic nuclear polarization with half-integer high- spin metal polarizing agents in rotating solids. Phys Chem Chem Phys. 2016;18:27190–204.

    Article  Google Scholar 

  114. Wenk P, Kaushik M, Richter D, Vogel M, Suess B, Corzilius B. Dynamic nuclear polarization of nucleic acid with endogenously bound manganese. J Biomol NMR. 2015;63:97–109.

    Article  Google Scholar 

  115. Corzilius B, Michaelis VK, Penzel S, Ravera E, Smith AA, Luchinat C, Griffin RG. Dynamic nuclear polarization of 1H, l3C, and 59Co in a Tris(ethylenediamine)cobalt(III) crystalline lattice doped with Cr(III). J Am Chem Soc. 2014;136:11716–27.

    Article  Google Scholar 

  116. Hall DA, Maus DC, Gerfen GJ, Inati SJ, Becerra LR, Dahlquist FW, Griffin RG. Polarized-enhanced NMR spectroscopy of biomolecules in frozen solution. Science. 1997;276:930–2.

    Article  Google Scholar 

  117. Eaton GR, Eaton SS, Barr DP, Weber RT. Quantitative EPR. New York: SpringerWien; 2010.

    Book  Google Scholar 

  118. Wada T, Yamanaka M, Fujihara T, Miyazato Y, Tanaka K. Experimental and theoretical evaluation of the charge distribution over the ruthenium and dioxolene framework of [Ru(OAc)(dioxolene)(terpy)] (terpy = 2,2‘:6‘,2“-terpyridine) depending on the substituents. Inorg Chem. 2006;45:8887–94.

    Article  Google Scholar 

  119. Zagdoun A, Rossini AJ, Gajan D, Bourdolle A, Ouari O, Rosay M, Maas WE, Tordo P, Lelli M, Emsley L, Lesage A, Coperet C. Non-aqueous solvents for DNP surface enhanced NMR spectroscopy. Chem Commun. 2012;48:654–6.

    Article  Google Scholar 

  120. Liao SY, Lee M, Wang T, Sergeyev IV, Hong M. Efficient DNP NMR of membrane proteins: sample preparation protocols, sensitivity, and radical location. J Biomol NMR. 2016;64:223–37.

    Article  Google Scholar 

  121. Debelouchina GT, Bayro MJ, Van der Wel PCA, Caporini MA, Barnes AB, Rosay M, Maas WE, Griffin RG. Dynamic nuclear polarization-enhanced solid-state NMR spectroscopy of GNNQQNY nanocrystals and amyloid fibrils. Phys Chem Chem Phys. 2010;12:5911–9.

    Article  Google Scholar 

  122. Gunther WR, Michaelis VK, Caporini MA, Griffin RG, Román-Leshkov Y. Dynamic nuclear polarization NMR enables the analysis of Sn-beta zeolite prepared with natural abundance 119Sn precursors. J Am Chem Soc. 2014;136:6219–22.

    Article  Google Scholar 

  123. Van der Wel PCA, Hu KN, Lewandowski J, Griffin RG. Dynamic nuclear polarization of amyloidogenic peptide nanocrystals: GNNQQNY, a core segment of the yeast prion protein Sup35p. J Am Chem Soc. 2006;128:10840–6.

    Article  Google Scholar 

  124. Lange S, Linden AH, Akbey Ü, Trent Franks W, Loening NM, van Rossum B-J, Oschkinat H. The effect of biradical concentration on the performance of DNP-MAS-NMR. J Magn Reson. 2012;216:209–12.

    Article  Google Scholar 

  125. Rossini AJ, Zagdoun A, Hegner F, Schwarzwälder M, Gajan D, Copéret C, Lesage A, Emsley L. Dynamic nuclear polarization NMR spectroscopy of microcrystalline solids. J Am Chem Soc. 2012;134:16899–908.

    Article  Google Scholar 

  126. Rossini AJ, Zagdoun A, Lelli M, Canivet J, Aguado S, Ouari O, Tordo P, Rosay M, Maas WE, Copéret C, Farrusseng D, Emsley L, Lesage A. Dynamic nuclear polarization enhanced solid- state NMR spectroscopy of functionalized metal–organic frameworks. Angew Chem Int Ed. 2012;51:123–7.

    Article  Google Scholar 

  127. Mak-Jurkauskas ML, Bajaj VS, Hornstein MK, Belenky M, Griffin RG, Herzfeld J. Energy transformations early in the bacteriorhodopsin photocycle revealed by DNP-enhanced solid-state NMR. Proc Natl Acad Sci U S A. 2008;105:883–8.

    Article  Google Scholar 

  128. Bajaj VS, Mak-Jurkauskas ML, Belenky M, Herzfeld J, Griffin RG. Functional and shunt states of bacteriorhodopsin resolved by 250 GHz dynamic nuclear polarization-enhanced solid-state NMR. Proc Natl Acad Sci U S A. 2009;106:9244–9.

    Article  Google Scholar 

  129. Barnes AB, Corzilius B, Mak-Jurkauskas ML, Andreas LB, Bajaj VS, Matsuki Y, Belenky ML, Lugtenburg J, Sirigiri JR, Temkin RJ, Herzfeld J, Griffin RG. Resolution and polarization distribution in cryogenic DNP/MAS experiments. Phys Chem Chem Phys. 2010;12:5861–7.

    Article  Google Scholar 

  130. Voinov MA, Good DB, Ward ME, Milikisiyants S, Marek A, Caporini MA, Rosay M, Munro RA, Ljumovic M, Brown LS, Ladizhansky V, Smirnov AI. Cysteine-specific labeling of proteins with a nitroxide biradical for dynamic nuclear polarization NMR. J Phys Chem B. 2015;119:10180–90.

    Article  Google Scholar 

  131. Wylie BJ, Dzikovski BG, Pawsey S, Caporini M, Rosay M, Freed JH, McDermott AE. Dynamic nuclear polarization of membrane proteins: covalently bound spin-labels at protein–protein interfaces. J Biomol NMR. 2015;61:361–7.

    Article  Google Scholar 

  132. Andreas LB, Barnes AB, Corzilius B, Chou JJ, Miller EA, Caporini M, Rosay M, Griffin RG. Dynamic nuclear polarization study of inhibitor binding to the M2 proton transporter from influenza A. Biochemistry. 2013;52:2774–82.

    Article  Google Scholar 

  133. Bayro MJ, Debelouchina GT, Eddy MT, Birkett NR, MacPhee CE, Rosay M, Maas WE, Dobson CM, Griffin RG. Intermolecular structure determination of amyloid fibrils with magic-angle spinning, dynamic nuclear polarization NMR. J Am Chem Soc. 2011;133:13967–74.

    Article  Google Scholar 

  134. Bayro MJ, Maly T, Birkett N, MacPhee C, Dobson CM, Griffin RG. High-resolution MAS NMR analysis of PI3-SH3 amyloid fibrils: backbone conformation and implications for protofilament assembly and structure. Biochemistry. 2010;49:7474–88.

    Article  Google Scholar 

  135. Debelouchina GT, Platt GW, Bayro MJ, Radford SE, Griffin RG. Intermolecular alignment in β 2-microglobulin amyloid fibrils. J Am Chem Soc. 2010;132:17077–9.

    Article  Google Scholar 

  136. Rossini AJ, Zagdoun A, Hegner F, Schwarzwälder M, Gajan D, Coperet C, Lesage A, Emsley L. Dynamic nuclear polarization NMR spectroscopy of microcrystalline solids. J Amer Chem Soc. 2012;134:16899–908.

    Article  Google Scholar 

  137. Lesage A, Lelli M, Gajan D, Caporini MA, Vitzthum V, Mieville P, Alauzun J, Roussey A, Thieuleux C, Mehdi A, Bodenhausen G, Copéret C, Emsley L. Surface enhanced NMR spectroscopy by dynamic nuclear polarization. J Am Chem Soc. 2010;132:15459–61.

    Article  Google Scholar 

  138. Debelouchina GT, Bayro MJ, van der Wel PCA, Caporini MA, Barnes AB, Rosay M, Maas WE, Griffin RG. Dynamic nuclear polarization-enhanced solid-state NMR spectroscopy of GNNQQNY nanocrystals and amyloid fibrils. Phys Chem Chem Phys. 2010;12:5911–9.

    Article  Google Scholar 

  139. Lelli M, Gajan D, Lesage A, Caporini MA, Vitzthum V, Mieville P, Heroguel F, Rascon F, Roussey A, Thieuleux C, Boualleg M, Veyre L, Bodenhausen G, Copéret C, Emsley L. Fast characterization of functionalized silica materials by silicon-29 surface-enhanced NMR spectroscopy using dynamic nuclear polarization. J Am Chem Soc. 2011;133:2104–7.

    Article  Google Scholar 

  140. Frederick KK, Michaelis VK, Corzilius B, Ong T-C, Jacavone AC, Griffin RG, Lindquist S. Sensitivity-enhanced NMR reveals alterations in protein structure by cellular milieus. Cell. 2015;163:620–8.

    Article  Google Scholar 

  141. Lafon O, Thankamony ASL, Kobayashi T, Carnevale D, Vitzthum V, Slowing II, Kandel K, Vezin H, Amoureux J-P, Bodenhausen G, Pruski M. Mesoporous silica nanoparticles loaded with surfactant: low temperature magic angle spinning 13C and 29Si NMR enhanced by dynamic nuclear polarization. J Phys Chem C. 2013;117:1375–82.

    Article  Google Scholar 

  142. Lee D, Duong NT, Lafon O, De Paëpe G. Primostrato solid-state NMR enhanced by dynamic nuclear polarization: pentacoordinated Al3+ ions are only located at the surface of hydrated γ – alumina. J Phys Chem C. 2014;118:25065–76.

    Article  Google Scholar 

  143. Takahashi H, Ayala I, Bardet M, De Paëpe G, Simorre J-P, Hediger S. Solid-state NMR on bacterial cells: selective cell wall signal enhancement and resolution improvement using dynamic nuclear polarization. J Am Chem Soc. 2013;135:5105–10.

    Article  Google Scholar 

  144. Takahashi H, Hediger S, De Paëpe G. Matrix-free dynamic nuclear polarization enables solid-state NMR 13C- 13C correlation spectroscopy of proteins at natural isotopic abundance. Chem Commun. 2013;49:9479–81.

    Article  Google Scholar 

  145. Thankamony ASL, Lafon O, Lu X, Aussenac F, Rosay M, Trébosc J, Vezin H, Amoureux J-P. Solvent-free high-field dynamic nuclear polarization of mesoporous silica functionalized with TEMPO. Appl Magn Reson. 2012;43:237–50.

    Article  Google Scholar 

  146. Ravera E, Corzilius B, Michaelis VK, Rosa C, Griffin RG, Luchinat C, Bertini I. Dynamic nuclear polarization of sedimented solutes. J Am Chem Soc. 2013;134:1641–4.

    Article  Google Scholar 

  147. Ravera E, Corzilius B, Michaelis VK, Luchinat C, Griffin RG, Bertini I. DNP-enhanced MAS NMR of bovine serum albumin sediments and solutions. J Phys Chem B. 2014;118:1825–30.

    Article  Google Scholar 

  148. Smith AN, Caporini MA, Fanucci GE, Long JR. A method for dynamic nuclear polarization enhancement of membrane proteins. Angew Chem Int Ed. 2015;54:1542–6.

    Article  Google Scholar 

Download references

Acknowledgments

VKM acknowledges the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grants program and the University of Alberta for funding. MH is partially supported by the Government of Alberta Queen Elizabeth II Graduate Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir K. Michaelis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Ha, M., Michaelis, V.K. (2017). High-Frequency Dynamic Nuclear Polarization NMR for Solids: Part 1 – An Introduction. In: Webb, G. (eds) Modern Magnetic Resonance. Springer, Cham. https://doi.org/10.1007/978-3-319-28275-6_140-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28275-6_140-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28275-6

  • Online ISBN: 978-3-319-28275-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics