Advertisement

Chrysophyta

  • Jørgen Kristiansen
  • Pavel Škaloud
Reference work entry

Abstract

The chrysophytes (more than 1,200 described species) are unicellular or colonial algae characterized by heterokont flagella and chloroplasts with chlorophyll a and c, and by their endogenous silicified stomatocysts. They occur mainly as phytoplankton in temperate freshwaters, and their distribution is ecologically determined, mainly by temperature and pH.

Cells are naked or in many cases surrounded by an envelope, e.g., of species-specific silica scales manufactured from the chloroplast ER and Golgi vesicles and transported to the cell membrane and extruded. Photoreceptor systems include a swelling on the short flagellum and a corresponding stigma in one of the chloroplasts. Photosynthesis results in chrysolaminaran. But in many species, e.g., in colorless species, organic compounds can be taken up from the water or by phagocytosis. Life history includes mitotic divisions and encystment. In many species, sexuality – cell fusion followed by encystment of the zygote – has been observed. Classification was traditionally based on morphological criteria, including ultrastructure, but in recent years molecular methods have resulted in profound changes in our concepts of relationships and evolution.

Keywords

Occurrence Ecology Cell construction Life history Cultivation Classification Phylogeny 

References

  1. Aaronson, S., & Baker, H. (1959). A comparative biochemical study of two species of Ochromonas. Journal of Protozoology, 6, 282–284.CrossRefGoogle Scholar
  2. Aaronson, S, .de Angelis, B., Frank, O., Baker, H.: Secretion of vitamins and amino acids in the environment by Ochromonas danica. Journal of Phycology 7, 215–218 (1971).Google Scholar
  3. Adam, D. P., & Mahood, A. D. (1981). Chrysophyte cysts as potential environmental indicators. Geological Society of America Bulletin, 92, 839–844.CrossRefGoogle Scholar
  4. Allison, C. W., & Hilgert, J. W. (1986). Scale microfossils from the early Cambrian of Northwest Canada. Journal of Paleontology, 60, 973–1015.CrossRefGoogle Scholar
  5. Andersen, R. A. (1982). A light and electron microscopical investigation of Ochromonas sphaerocystis Matvienko (Chrysophyceae): The statospore, vegetative cell and its peripheral vesicles. Phycologia, 21, 390–398.CrossRefGoogle Scholar
  6. Andersen, R. A. (1987). Synurophyceae classis nov., a new class of algae. American Journal of Botany, 74, 337–353.CrossRefGoogle Scholar
  7. Andersen, R. A. (1989). Absolute orientation of the flagellar apparatus of Hibberdia magna comb. nov. (Chrysophyceae). Nordic Journal of Botany, 8, 653–669.CrossRefGoogle Scholar
  8. Andersen, R. A. (Ed.). (2005). Algal culturing techniques. Burlington/San Diego/London: Elsevier/Academic.Google Scholar
  9. Andersen, R. A. (2007). Molecular systematics of the Chrysophyceae and Synurophyceae. In J. Brodie & J. Lewis (Eds.), Unravelling the algae, The systematics association special volume series (Vol. 75, pp. 285–311). CRC.Google Scholar
  10. Andersen, R. A., & Mulkey, T. J. (1983). The occurrence of chlorophylls c 1 and c 2 in the Chrysophyceae. Journal of Phycology, 19, 289–294.CrossRefGoogle Scholar
  11. Andersen, R. A., & Wetherbee, R. (1992). Microtubules of the flagellar apparatus are active during prey capture in the chrysophycean alga Epipyxis pulchra. Protoplasma, 166, 8–20.CrossRefGoogle Scholar
  12. Andersen, R. A., Van de Peer, Y., Potter, D., Sexton, J. P., Kawachi, M., & LaJeunesse, T. (1999). Phylogenetic analysis of the SSU rRNA from members of the Chrysophyceae. Protist, 150, 71–84.PubMedCrossRefGoogle Scholar
  13. Asmund, B., & Kristiansen, J. (1986). The genus Mallomonas A taxonomic survey based on ultrastructure of scales and bristles. Opera Botanica, 85, 1–128.Google Scholar
  14. Beech, P. L., Wetherbee, R., & Pickett-Heaps, J. D. (1990). Secretion and deployment of bristles in Mallomonas splendens (Synurophyceae). Journal of Phycology, 26, 112–122.CrossRefGoogle Scholar
  15. Belcher, J. H. (1969a). A morphological study of the phytoflagellate Chrysococcus rufescens Klebs in culture. British Phycological Journal, 4, 105–117.CrossRefGoogle Scholar
  16. Belcher, J. H. (1969b). Some remarks upon Mallomonas papillosa Harris et Bradley and M. calceolus Bradley. Nova Hedwigia, 18, 257–270.Google Scholar
  17. Belcher, J. H. (1969c). A re-examination of Phaeaster pascheri Scherffel in culture. British Phycological Journal, 4, 191–197.Google Scholar
  18. Belcher, J. H. (1976). Spumella elongata (Stokes) nov. comb., a colorless flagellate from soil. Archiv für Protistenkunde, 118, 215–220.Google Scholar
  19. Belcher, J. H., & Swale, E. M. F. (1967). Chromulina placentula sp. nov. (Chrysophyceae), a freshwater nanoplankton flagellate. British Phycological Bulletin, 3, 257–267.CrossRefGoogle Scholar
  20. Belcher, J. H., & Swale, E. M. F. (1972a). Some features of the microanatomy of Chrysococcus cordiformis Naumann. British Phycological Journal, 7, 53–59.CrossRefGoogle Scholar
  21. Belcher, H. J., & Swale, E. M. F. (1972b). The morphology and fine structure of the colourless colonial flagellate Anthophysa vegetans (O. F. Müller) Stein. British Phycological Journal, 7, 335–346.CrossRefGoogle Scholar
  22. Ben Ali, A., DeBacre, R., Van der Auwere, G., DeWachter, R., & Van der Peer, Y. (2002). Evolutionary relationsships among heterokont algae (the autotrophic stramenopiles) based upon combined analyses of small and large subunit ribosomal RNA. Protist, 153, 123–132.PubMedCrossRefGoogle Scholar
  23. Bold, H. C., & Wynne, M. J. (1978). Introduction to the algae. Englewood Cliffs: Prentice-Hall.Google Scholar
  24. Boo, S. M., Kim, H. S., Shin, W., Boo, G. H., Cho, S. M., Jo, B. Y., Kim, J.-H., Kim, J. H., Yang, E. C., Siver, P. A., Wolfe, A. P., Bhattacharya, D., Andersen, R. A., Yoon, H. S. (2010). Complex phylogeographic patterns in the freshwater alga Synura provide new insights into ubiquity vs. endemism in microbial eukaryotes. Molecular Ecology, 19, 4328–4338.Google Scholar
  25. Bouck, C. B. (1971). The structure, origin, isolation and composition of the tubular mastigonemes of the Ochromonas flagellum. Journal of Cell Biology, 50, 362–381.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Bouck, G. B., & Brown, D. L. (1973). Microtubule biogenesis and cell shape in Ochromonas I The distribution of cytoplasmic and mitotic microtubules. Journal of Cell Biology, 56, 340–359.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Bourrelly, P. (1954). Phylogenie et systematique des Chrysophycees. In: Rapports et Communications de l’Huitième Congrès International de Botanique [Paris], Sect. 17, pp. 117–118.Google Scholar
  28. Bourrelly, P. (1957). Recherches sur les Chrysophycées. Revue Algologique, Mémoire Hors Série, 1, 1–412.Google Scholar
  29. Bourrelly, P. (1965). La classification des Chrysophycées, ses problémes. Revue Algologique, 1, 56–60.Google Scholar
  30. Bradley, D. E. (1966). The ultrastructure of the flagella of three chrysomonads with particular reference to the mastigonemes. Experimental Cell Research, 41, 162–173.PubMedCrossRefGoogle Scholar
  31. Brown, J. W., & Sorhannus, U. (2010). A molecular genetic timescale for the diversification of autotrophic Stramenopiles (Ochrophyta): Substantive underestimation of putative fossil ages. PLoS One, 5, e12759.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Carney, H. J., & Sandgren, C. D. (1983). Chrysophycean cysts : Indicators of eutrophication in the recent sediments of Frains Lake, Michigan, U.S.A. Hydrobiologia, 101, 195–202.CrossRefGoogle Scholar
  33. Caron, D. A., et al. (1999). Molecular genetic analysis of the heterotrophic chrysophyte genus Paraphysomonas with design of rRNA-targeted oligonucleotide probes for two species. Journal of Phycology, 35, 824–837.CrossRefGoogle Scholar
  34. Cole, G. T., & Wynne, M. J. (1974). Endocytosis of Microcystis aeruginosa by Ochromonas danica. Journal of Phycology, 10, 397–410.Google Scholar
  35. Collins, R. P., & Kalnins, K. (1972). An analysis of the free amino acids in Synura petersenii. Phyton, 29, 89–94.Google Scholar
  36. Cronberg, G. (1986). Chrysophycean cysts and scales in lake sediments. A review. In J. Kristiansen & R. A. Andersen (Eds.), Chrysophytes – Aspects and problems (pp. 281–315). Cambridge/New York: Cambridge University Press.Google Scholar
  37. Cronberg., G., & Sandgren, C. D. (1986). A proposal for the development of standardized nomenclature and terminology for chrysophycean statospores. In J. Kristiansen & R. A. Andersen (Eds.), Chrysophytes. Aspects and Problems (pp. 317–328).Google Scholar
  38. Del Campo, J., & Massana, R. (2011). Emerging diversity within Chrysophytes Choanoflagellates and Bicosoecids based on molecular surveys. Protist, 162, 435–448.PubMedCrossRefGoogle Scholar
  39. Doflein, F. (1922). Untersuchungen über Chrysomonadinen I-II. Archiv Für Protistenkunde, 44, 149–213.Google Scholar
  40. Duff, K. B., Zeeb, B. A., & Smol, J. P. (1995). Atlas of Chrysophycean Cysts (Developments in hydrobiology, Vol. 99, pp. 1–189). Dordrecht/Boston/London: Kluwer Academic Publishers.Google Scholar
  41. Ehrenberg, C. G.: Infusionsthierchen als vollkommene Organismen. Leipzig: Leopold Voss (1838).Google Scholar
  42. Findenig, B. M., Chatzinotas, A., & Boenigk, J. (2010). Taxonomic and ecological characterization of stomatocysts of Spumella-like flagellates (Chrysophyceae). Journal of Phycology, 46, 868–881.CrossRefGoogle Scholar
  43. Finlay, B. J., & Clarke, K. J. (1999). Ubiquitous dispersal of microbial species. Nature, 400, 828.CrossRefGoogle Scholar
  44. Fott, B. (1959). Zur Frage der Sexualität bei den Chrysomonaden. Nova Hedwigia, 1, 115–129.Google Scholar
  45. Franke, W. W., & Herth, W. (1973). Cell and lorica fine structure of the chrysomonad alga Dinobryon sertularia Ehr. (Chrysophyceae). Archiv für Mikrobiologie, 91, 323–344.CrossRefGoogle Scholar
  46. Frølund, A. (1977). The seasonal variation of the neuston of a small pond. Botanisk Tidsskrift, 72, 45–56.Google Scholar
  47. Gibbs, S. P. (1962). Nuclear envelope-chloroplast relationships in algae. Journal of Cell Biology, 14, 433–444.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Gibbs, S. P. (1979). The route of entry of cytoplasmatically synthesized proteins into chloroplasts of algae possessing chloroplast ER. Journal of Cell Science, 35, 253–266.PubMedGoogle Scholar
  49. Grossmann, L., Bock, C., Schweikert, M., & Boenigk, J. (2016). Small but manifold – Hidden diversity in ‘Spumella-like Flagellates’. Journal of Eukaryotic Microbiology, 63, 419–439.Google Scholar
  50. Harwood, D. M., & Gersonde, R. (1990). Lower Cretaceous diatoms from ODP Leg 113, Site 693 (Weddell Sea). Part2: Resting spores, chrysophycean cysts, endoskeletal dinoflagellates, and notes on the origin of diatoms. Proceedings of the Ocean Drilling Program, Scientific Results, 113, 403–426.Google Scholar
  51. Herth, W. (1979). Behaviour of the chrysophyta alga Dinobryon divergens during lorica formation. Protoplasma, 100, 345–351.CrossRefGoogle Scholar
  52. Herth, W., Kuppel, A., & Schnepf, E. (1977). Chitinous fibrils in the lorica of the flagellate chrysophyte Poteriochromonas stipitata (syn. Ochromonas malhamensis). Journal of Cell Biology, 73, 311–321.PubMedCrossRefGoogle Scholar
  53. Hibberd, D. J. (1973). Observations on the ultrastructure of flagellar scales in Synura (Chrysophyceae). Archiv für Mikrobiologie, 89, 291–304.PubMedCrossRefGoogle Scholar
  54. Hibberd, D. J. (1976). The ultrastructure and taxonomy of the Chrysophyceae and Prymnesiophyceae (Haptophyceae). Botanical Journal of the Linnean Society, 72, 55–80.CrossRefGoogle Scholar
  55. Hibberd, D. J. (1977a). The cytology and ultrastructure of Chrysonebula holmesii Lund (Chrysophyceae) with special reference to the flagellar apparatus. British Phycological Journal, 12, 369–383.CrossRefGoogle Scholar
  56. Hibberd, D. J. (1977b). Ultrastructure of cyst formation in Ochromonas tuberculata (Chrysophyceae). Journal of Phycology, 13, 309–320.Google Scholar
  57. Hibberd, D. J. (1979). The structure and phylogenetic significance of the flagellar transition region in the chlorophyll c-containing algae. Biosystems, 11, 243–262.PubMedCrossRefGoogle Scholar
  58. Hill, F. G., & Outka, D. E. (1974). The structure and origin of mastigonemes in Ochromonas minuta and Monas sp. Journal of Protozoology, 21, 299–312.PubMedCrossRefGoogle Scholar
  59. Hoffman, L. R., Vesk, M., & Pickett-Heaps, J. J. (1986). The cytology and ultrastructure of zoospores of Hydrurus foetidus (Chrysophyceae). Nordic Journal of Botany, 6, 195–120.CrossRefGoogle Scholar
  60. Ikävalko, J. (2001). On the presence of some selected Heterokontophyta (Chrysophyceae, Dictyochophyceae, Bicocoecidae) and cysts (“archaeomonads”) from sea ice – A synopsis. Nova Hedwigia Beiheft, 122, 41–54.Google Scholar
  61. Jarosch, R. (1970). Über die Geisselwellen von Synura bioretii und die Mechanik des uniplanaren Wellenschlags. Protoplasma, 69, 210–214.CrossRefGoogle Scholar
  62. Jo, B. Y., Shin, W., Kim, H. S., Siver, P. A., & Andersen, R. A. (2013). Phylogeny of the genus Mallomonas (Synurophyceae) and descriptions of five new species on the basis of morphological evidence. Phycologia, 52, 266–278.CrossRefGoogle Scholar
  63. Joyon, L. (1963). Contribution à l’étude cytologique de quelques Protozoaires flagellés. Annales de la Faculté des Sciences de l’Université de Clermont, 22, 1–83.Google Scholar
  64. Kahan, D. R., Oren, R., Aaronson, S., & Behrens, U. (1978). Fine structure of the cell surface and Golgi apparatus of Ochromonas. Journal of Protozoology, 25, 30–33.PubMedCrossRefGoogle Scholar
  65. Kamenik, K. (2010). Stom@ocysts & Co – Web applications to bring the research community together via the Internet. Nova Hedwigia. Beiheft, 136, 311–323.Google Scholar
  66. Klaveness, D., Bråte, J., Patil, V., Shalchian-Tabrizi, K., Kluge, R., Gislerød, H. R., Jakobsen, K. S., Klaveness, J. (2011). The 18S and 28S rDNA identity and phylogeny of the common lotic chrysophyte Hydrurus foetidus. European Journal of Phycology, 46, 282–291.Google Scholar
  67. Klaveness, D., & Guillard, R. L. (1975). The requirement for silicon in Synura petersenii (Chrysophyceae). Journal of Phycology, 11, 349–355.Google Scholar
  68. Korshikov, A. A. (1927). Skadovskiella sphagnicola, a new colonial chrysomonad. Archiv für Protistenkunde, 58, 450–455.Google Scholar
  69. Kristiansen, J. (1972). Studies on the lorica structure in Chrysophyceae. Svensk Botanisk Tidskrift, 66, 184–190.Google Scholar
  70. Kristiansen, J. (1975). On the occurrence of the species of Synura (Chrysophyceae). Verhandlungen der Internationalischen Vereinigung für Theoretische und Angewandte Limnologie, 19, 2709–2715.Google Scholar
  71. Kristiansen, J. (1986). The ultrastructural bases of Chrysophyte systematics and phylogeny. CRC Critical Reviews in Plant Sciences, 4(2), 149–211.CrossRefGoogle Scholar
  72. Kristiansen, J. (2000). Cosmopolitan chrysophytes. Systematics and Geography of Plants, 70, 78–300.CrossRefGoogle Scholar
  73. Kristiansen, J. (2001). Biogeography of silica-scaled chrysophytes. Nova Hedwigia Beiheft, 122, 23–39.Google Scholar
  74. Kristiansen, J. (2002). The Genus Mallomonas A taxonomic survey based on the ultrastructure of silica scales and bristles. Opera Botanica, 139, 1–218.Google Scholar
  75. Kristiansen, J. (2005). Golden algae. A biology of chrysophytes (p. 167). Liechtenstein: A. R. G. Gantner Verlag , distributed by Koeltz Scientific Books.Google Scholar
  76. Kristiansen, J. (2008). Dispersal and biogeography of silica-scaled chrysophytes. Biodiversity and Conservation, 17, 410–426.CrossRefGoogle Scholar
  77. Kristiansen, J., & Lind, J. F. (2005). Endemicity in silica-scaled chrysophytes. Nova Hedwigia Beiheft, 128, 65–83.Google Scholar
  78. Kristiansen, J., & Preisig, H. R. (Eds.). (2001). Encyclopedia of chrysophyte genera, Bibliotheca phycologica (Vol. 110, p. 260). Berlin/Stuttgart: Cramer in der Gebrüder Borntrâger Verlagsbuchhandlung.Google Scholar
  79. Kristiansen, J., & Preisig, H. R. (2007). Chrysophyte and Haptophyte Algae. 2. Teil: Synurophyceae. In Süsswasserflora von Mitteleuropa (Vol. 1–2, p. 252). Berlin/Heidelberg: Spektrum/Springer.Google Scholar
  80. Kristiansen, J., & Preisig, H. R. (2011). Phylum chrysophyta (golden algae). In D. M. John, B. A. Whitton, & A. J. Brook (Eds.), The freshwater algal flora of the British Isles (2nd ed., pp. 280–317). Cambridge: Cambridge University Press.Google Scholar
  81. Kristiansen, J., & Takahashi, E. (1982). Chrysophyceae: Introduction and bibliography. In J. R. Rosowski & B. C. Parker (Eds.), Selected papers in phycology II (pp. 698–704). Lawrence: Phycological Society of America.Google Scholar
  82. Kristiansen, J., & Walne, P. L. (1976). Structural connections between flagellar base and stigma in Dinobryon. Protoplasma, 99, 371–374.CrossRefGoogle Scholar
  83. Kristiansen, J., & Walne, P. L. (1977). Fine structure of photo-kinetic systems in Dinobryon cylindricum var. alpinum (Chrysophyceae). British Phycological Journal, 12, 329–341.Google Scholar
  84. Kynčlová, A., Škaloud, P., & Škaloudová, M. (2010). Unveiling hidden diversity in the Synura petersenii complex (Synurophyceae; Heterokontophyta). Nova Hedwigia Bejheft, 136, 283–298.Google Scholar
  85. Lee, R. E. (1978). Formation of scales in Paraphysomonas vestita and the inhibition of growth by germanium dioxide. Journal of Protozoology, 25, 163–166.CrossRefGoogle Scholar
  86. Leedale, G. F., Leadbeater, B. S. A., & Massalski, A. (1970). The intracellular origin of flagellar hairs in the Chrysophyceae and Xanthophyceae. Journal of Cell Science, 6, 701–719.PubMedGoogle Scholar
  87. Lehmann, J. T. (1976). Ecological and nutritional studies on Dinobryon Ehrenb.: Seasonal periodicity and the phosphate toxicity problem. Limnology and Oceanography, 21, 646–658.CrossRefGoogle Scholar
  88. Lewin, J., Norris, R. E., Jeffrey, S. W., & Pearson, B. E. (1977). An aberrant chrysophycean alga Pelagococcus subviridis gen. nov. et sp. nov. from the North Pacific Ocean. Journal of Phycology, 12, 259–266.Google Scholar
  89. Lim, E. L., Dennett, M. R., & Caron, D. A. (1999). The ecology of Paraphysomonas imperforata based on studies employing oligonucleotid probe identification in coastal water samples and unidentified cultures. Limnology and Oceanography, 44, 37–51.CrossRefGoogle Scholar
  90. Manton, I., & Harris, K. (1966). Observations on the microanatomy of the brown flagellate Sphaleromantis tetragona Skuja with special reference to the flagellar apparatus and scales. Journal of the Linnean Society (Botany), 59, 397–403.CrossRefGoogle Scholar
  91. McGrory, C. B., & Leadbeater, B. S. C. (1981). Ultrastructure and deposition of silica in the Chrysophyceae. In T. L. Simpson & B. E. Volcani (Eds.), Silicon and Siliceous Structures in Biological Systems (pp. 201–230). New York/Heidelberg/Berlin: Springer.CrossRefGoogle Scholar
  92. McLachlan, J., Chen, L. C.-M., Edelstein, T., & Craigie, J. S. (1971). Observations on Phaeosaccion in culture. Canadian Journal of Botany, 49, 563–566.CrossRefGoogle Scholar
  93. Mignot, J.-P. (1977). Étude ultrastructurale d’un flagellé du genre Spumella. Protistologica, 13, 219–231.Google Scholar
  94. Mignot, J.-P., & Brugerolle, G. (1982). Scale formation in chrysomonad flagellates. Journal of Ultrastructure Research, 81, 13–26.PubMedCrossRefGoogle Scholar
  95. Moestrup, Ø. (1995). Current status of chrysophyte “splinter groups”: Synurophytes, pedinellids, silicoflagellates. In C. D. Sandgren, J. P. Smol, & J. Kristiansen (Eds.), Chrysophyte algae. Distribution, phylogeny and development (pp. 75–91). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  96. Moestrup, Ø., & Thomsen, H. A. (1990). Dictyocha speculum (Silicoflagellata, Dictyochophyceae) studied on armoured and unarmoured stage. In Kongelige Danske Videnskabernes Selskab, Biologiske Skrifter (Vol. 37, pp. 1–57).Google Scholar
  97. Molisch, H. (1901). Über den Goldglanz von Chromophyton rosanoffii. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften. Mathematik, Naturwisssenschaft C 110, 354–363.Google Scholar
  98. Müller, O. F. (1786). Animalcula infusoria fluvia tilia et marina. Copenhagen: Hauniae, Typis Nicolai Mölleri, Aulae Regiae Typographi.Google Scholar
  99. Munch, C. S. (1980). Fossil diatoms and scales of Chrysophyceae in the recent history of Hall Lake Washington. Freshwater Biology, 10, 61–66.CrossRefGoogle Scholar
  100. Nicholls, K. H., & Wujek, D. E. (2003). Chrysophycean algae. In J. D. Wehr & G. Sheath (Eds.), Freshwater algae of North America (pp. 471–509). Academic/Burlington/San Diego/London: Elsevier.CrossRefGoogle Scholar
  101. Nygaard, G. (1956). The ancient and recent flora of diatoms and Chrysophyceae in Lake Gribsø. Folia Limnologica Scandinavica, 8, 32–93.Google Scholar
  102. Ostroff, C. R., Karlander, E. P., & Van Valkenburg, S. D. (1980). Growth rates of Pseudopedinella pyriforme (Chrysophyceae) in response to 75 combinations of light, temperature and salinity. Journal of Phycology, 16, 421–423.CrossRefGoogle Scholar
  103. Parker, B. C., Samsel, G. I., & Prescott, G. W. (1973). Comparison of microhabitats of macroscopic subalpine stream algae. American Midland Naturalist, 90, 143–151.CrossRefGoogle Scholar
  104. Pascher, A. (1910). Der Grossteich bei Hirschberg in Nord-Böhmen (Monographien und Abhandlungen zur Internationale Revue der gesamten Hydrobiologie und Hydrographie, Vol. 1, pp. 1–66). Leipzig: Verlag von Dr. Werner Klinkhardt.Google Scholar
  105. Pascher, A. (1913). Chrysomonadinae. In A. Pascher (Ed.), Die Süsswasserflora Deutschlands Österreichs und der Schweiz (Vol. 2, pp. 7–95). Jena: Verlag von Gustav Fischer.Google Scholar
  106. Pascher, A. (1914). Über Flagellaten und Algen. Berichte der Deutschen Botanischen Gesellschaft, 32, 136–160.Google Scholar
  107. Pascher, A. (1931). Systematische Übersicht über die mit Flagellaten in Zusammenhang stehenden Algenreihen und Versuch einer Einreihung dieser Algenstämme in die Stämme des Pflanzenreiches. Botanisches Zentralblat, Beihefte, 48, 317–332.Google Scholar
  108. Péterfi, L. S. (1969). The fine structure of Poteriochromonas malhamensis (Pringsheim) comb. nov. with special reference to the lorica. Nova Hedwigia, 17, 93–103.Google Scholar
  109. Pienaar, R. N. (1977). The microanatomy of an unusual species of Chromulina (Chrysophyceae). Proceedings of the Electron Microscopical Society of South Africa, 7, 101–102.Google Scholar
  110. Pienaar, R. N. (1980). Chrysophytes. In E. R. Cox (Ed.), Phytoflagellates (pp. 213–242). Amsterdam: Elsevier/North Holland.Google Scholar
  111. Preisig, H. R., & Hibberd, D. J. (1982). Ultrastructure and taxonomy of Paraphysomonas and related genera 1–2. Nordic Journal of Botany, 2, 397–420, 601–638.Google Scholar
  112. Preisig, H. R., & Hibberd, D. J. (1983). Ultrastructure and taxonomy of Paraphysomonas and related genera 3. Nordic Journal of Botany, 3, 695–723.CrossRefGoogle Scholar
  113. Pringsheim, E. G. (1952). On the nutrition of Ochromonas. Quarterly Journal of Microscopical Science, 93, 71–76.Google Scholar
  114. Řezáčová, M., & Neustupa, J. (2007). Distribution of the genus Mallomonas (Synurophyceae) – Ubiquitous dispersal in microorganisms evaluated. Protist, 158, 29–37.PubMedCrossRefGoogle Scholar
  115. Riaux-Gobin, C., & Stumm, K. (2006). Modern Archaeomonadaceae from the land-fast ice off Adélie Land East Antarctica: A preliminary report. Antarctic Science, 18, 51–60.CrossRefGoogle Scholar
  116. Röderer, G. (1980). On the toxic effects of tetraethyl lead and its derivatives on the chrysophyte Poteriochromonas malhamensis. Environmental Research, 23, 371–384.PubMedCrossRefGoogle Scholar
  117. Round, F. E. (1986). Chrysophyta – A reassessment. In J. Kristiansen & R. A. Andersen (Eds.), Chrysophytes – Aspects and problems (pp. 3–22). Cambridge/London/New York: Cambridge University Press.Google Scholar
  118. Sanders, R. W., & Porter, K. G. (1988). Phagotrophic phytoflagellates. Advances in Microbiological Ecology, 167–192.Google Scholar
  119. Sandgren, C. D. (1980a). An ultrastructural investigation of resting cyst formation in Dinobryon cylindricum Imhoff (Chrysophyceae, Chrysophyta). Protistologica, 16, 259–276.Google Scholar
  120. Sandgren, C. D. (1980b). Resting cyst formation in selected chrysophyte flagellates. Protistologica, 16, 289–303.Google Scholar
  121. Sandgren, C. D. (1981). Characteristics of sexual and asexual resting cyst (statospore) formation in Dinobryon cylindricum Imhof (Chrysophyta). Journal of Phycology, 17, 199–210.CrossRefGoogle Scholar
  122. Sandgren, C. D. (1983a). Morphological variability in populations of chrysophycean resting cysts I. Journal of Phycology, 19, 64–70.CrossRefGoogle Scholar
  123. Sandgren, C. D. (1983b). Survival strategies of chrysophyte flagellates: Reproduction and formation of resistant spores. In G. Fryxell (Ed.), Survival strategies in the algae (pp. 23–48). Cambridge/London/New York: Cambridge University Press.Google Scholar
  124. Sandgren, C. D., & Flanagin, J. (1986). Heterothallic sexuality and density dependent encystment in the chrysophyte alga Synura petersenii. Journal of Phycology, 22, 206–216.Google Scholar
  125. Schnepf, E., & Deichgräber, G. (1969). Über die Feinstruktur von Synura petersenii unter besonderer Berucksichtigung der Morphogenese ihrer Kieselschuppen. Protoplasma, 68, 85–106.CrossRefGoogle Scholar
  126. Schnepf, E., Deichgräber, G., & Koch, W. (1968). Über das Vorkommen und den Bau gestielter “Hüllen” bei Ochromonas malhamensis Pringsheim und Ochromonas sociabilis nom. prov. Pringsheim. Archiv für Mikrobiologie, 63, 15–25.PubMedCrossRefGoogle Scholar
  127. Scoble, J. M., & Cavalier-Smith, T. (2014). Scale evolution in Paraphysomonadida (Chrysophyceae): Sequence phylogeny and revised taxonomy of Paraphysomonas, new genus Clathromonas, and 25 new species. European Journal of Protistology, 50, 551–592.PubMedPubMedCentralCrossRefGoogle Scholar
  128. Sheath, R. G., Hellebust, J. A., & Sawa, T. (1975). The statospore of Dinobryon divergens Imhof: Formation and germination in a subarctic lake. Journal of Phycology, 11, 131–138.Google Scholar
  129. Silva, P. C. (1980). Names of classes and families of living algae. Regnum Vegetabile, 103, 1–156.Google Scholar
  130. Siver, P. (1991). The biology of Mallomonas, morphology, taxonomy and ecology (Developments in hydrobiology, Vol. 63, p. 230). Dordrecht/Boston/London: Kluwer.Google Scholar
  131. Siver, P. (2003). Synurophyte algae. In J. D. Wehr & G. Sheath (Eds.), Freshwater algae of North America (pp. 523–557). Burlington/San Diego/London: Elsevier/Academic.CrossRefGoogle Scholar
  132. Siver, P. A., & Hamer, J. S. (1990). Use of extant populations of scaled chrysophytes for the inference of lakewater pH. Canadian Journal of Fisheries and Aquatic Sciences, 47, 1339–1347.CrossRefGoogle Scholar
  133. Siver, P. A., & Lott, A. M. (2012a). Fossil species of Mallomonas from an Eocene Maar Lake with recessed dome structures: Early attempts at securing bristles to the cell covering? Nova Hedwigia, 95, 517–529.CrossRefGoogle Scholar
  134. Siver, P. A., & Lott, A. M. (2012b). Biogeographic patterns in scaled chrysophytes from east coast of North America. Freshwater Biology, 57, 451–466.CrossRefGoogle Scholar
  135. Siver, P. A., & Marsicano, L. (1996). Inferring lake trophic status using scaled chrysophytes. Nova Hedwigia Beiheft, 114, 233–246.Google Scholar
  136. Siver, P. A., & Smol, J. P. (1993). The use of scaled chrysophytes in long term monitoring programs for the detection of changes in lakewater acidity. Water, Air, and Soil Pollution, 71, 357–376.CrossRefGoogle Scholar
  137. Siver, P. A., & Wolfe, A. P. (2005). Scaled chrysophytes in Middle Eocene lake sediments from Northwestern Canada, including descriptions of six new species. Nova Hedwigia Beiheft, 128, 295–308.Google Scholar
  138. Siver, P. A., Lott, A. M., & Wolfe, A. P. (2009). Taxonomic significance of asymmetrical helmet and lance bristles in the genus Mallomonas (Synurophyceae) and their discovery in Eocene lake sediments. European Journal of Phycology, 44, 447–460.CrossRefGoogle Scholar
  139. Siver, P. A., Lott, A. M., & Wolfe, A. P. (2013a). A summary of Synura taxa in early Cenozoic deposits from Northern Canada. Nova Hedwigia. Beiheft, 142, 181–190.Google Scholar
  140. Siver, P. A., Wolfe, A. P., Rohlf, F. J., Shin, W., & Jo, B. Y. (2013b). Combining geometric morphometrics, molecular phylogeny, and micropaleontology to assess evolutionary patterns in Mallomonas (Synurophyceae: Heterokontophyta). Geobiology, 11, 27–138.CrossRefGoogle Scholar
  141. Siver, P. A., Jo, B. Y., Kim, J. I., Shin, W., Lott, A. M., & Wolfe, A. P. (2015). Assessing the evolutionary history of the class Synurophyceae (Heterokonta) using molecular, morphometric, and paleobiological approaches. American Journal of Botany, 102, 921–941.PubMedCrossRefGoogle Scholar
  142. Škaloud, P., Kynčlová, A., Benada, O., Kofroňová, O., & Škaloudová, M. (2012). Toward a revision of the genus Synura. Section Petersenianae (Synurophyceae, Heterokontophyta): Morphological characterization of six pseudo-cryptic species. Phycologia, 51, 303–329.CrossRefGoogle Scholar
  143. Škaloud, P., Kristiansen, J., & Škaloudová, M. (2013). Developments in the taxonomy of silica-scaled chrysophytes – From morphological and ultrastructural to molecular approaches. Nordic Journal of Botany, 31, 385–401.CrossRefGoogle Scholar
  144. Škaloud, P., Škaloudová, M., Procházková, A., & Němcová, Y. (2014). Morphological delineation and distribution patterns of four newly described species within the Synura petersenii species complex (Chrysophyceae, Stramenopiles). European Journal of Phycology, 49, 213–229.CrossRefGoogle Scholar
  145. Slankis, T., & Gibbs, S. P. (1972). The fine structure of mitosis and cell division in the chrysophycean alga Ochromonas danica. Journal of Phycology, 8, 243–256.Google Scholar
  146. Smol, J. P. (1980). Fossil synuracean (Chrysophyceae) scales in lake sediments: A new group of paleoindicators. Canadian Journal of Botany, 58, 458–465.CrossRefGoogle Scholar
  147. Smol, J. P., Charles, D. F., & Whitehead, D. R. (1984). Mallomonadacean (Chrysophyceae) assemblages and their relationships with limnological characteristics in 38 Adirondack (New York) lakes. Canadian Journal of Botany, 62, 911–923.CrossRefGoogle Scholar
  148. Starmach, K. (1985). Chrysophyceae und Haptophyceae. In H. Ettl, J. Gerloff, H. Heynig, & D. Mollenhauer (Eds.), Süsswasserflora von Mittleleuropa (Vol. 1). Stuttgart/New York: Gustav Fischer Verlag.Google Scholar
  149. Stein, F. (1878). Der Organismus der Infusionsthiere (Vol. 3(1)). Leipzig: W. Engelmann.Google Scholar
  150. Takahashi, E. (1978). Electron microscopical studies of the synuraceae in Japan. Tokyo: Tokai University Press.Google Scholar
  151. Takishita, K., Yamaguchi, H., Maruyama, T., & Inagaki, Y. (2009). A hypothesis for the evolution of nuclear-encoded, plastid-targeted Glyceraldehyde-3-phosphate dehydrogenase genes in “chromalveolate” members. PLoS ONE, 4, e4737.PubMedPubMedCentralCrossRefGoogle Scholar
  152. Tappan, H. (1980). The paleobiology of plant protists (pp. 490–534). San Francisco: W. H. Freeman and Co..Google Scholar
  153. Watson, S. B., & Satchwill, T. (2003). Chrysophyte odour production: Resource-mediated changes at the cell and population levels. Phycologia, 42, 393–405.CrossRefGoogle Scholar
  154. Watson, S. B., Satchwill, T., & McCauley, E. (2001). Drinking water taste and odour: A chrysophyte perspective. Nova Hedwigia Beiheft, 122, 119–146.Google Scholar
  155. Wawrik, F. (1972). Isogame Hologamie in der Gattung Mallomonas Perty. Nova Hedwigia, 23, 353–362.Google Scholar
  156. Wetherbee, R., & Andersen, R. A. (1992). Flagella of chrysophycean algae play an active role in prey capture and selection. Protoplasma, 166, 1–7.CrossRefGoogle Scholar
  157. Wilkinson, A. N., Zeeb, B. A., & Smol, J. P. (2001). Atlas of Chrysophycean Cysts II. Dordrecht: Kluwer.CrossRefGoogle Scholar
  158. Wujek, D. E., & Kristiansen, J. (1978). Observations on bristle and scale production in Mallomonas caudata (Chrysophyceae). Archiv für Protistenkunde, 120, 213–221.CrossRefGoogle Scholar
  159. Yang, E. C., Boo, G. H., Kim, H. J., Cho, S. M., Boo, S. M., Andersen, R. A., & Yoon, H. S. (2012). Supermatrix data highlight the phylogenetic relationships of photosynthetic Stramenopiles. Protist, 163, 217–231.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of BiologyUniversity of CopenhagenCopenhagenDenmark
  2. 2.Department of BotanyCharles UniversityPragueCzech Republic

Personalised recommendations