Advertisement

Glaucophyta

  • Dana C. Price
  • Jürgen M. Steiner
  • Hwan Su Yoon
  • Debashish Bhattacharya
  • Wolfgang LöffelhardtEmail author
Reference work entry

Abstract

The Glaucophyta is by far the least species-rich phylum of the Archaeplastida comprising only four described genera, Glaucocystis, Cyanophora, Gloeochaete, and Cyanoptyche, and 15 species. However, recent molecular and morphological analyses reveal that glaucophytes are not as species poor as hitherto assumed with many novel lineages existing in natural environments. Glaucophytes are freshwater phototrophs of moderate to low abundance and retain many ancestral plastid traits derived from the cyanobacterial donor of this organelle, including the remnant peptidoglycan wall in their envelope. These plastids were originally named “cyanelles,” which was later changed to “muroplasts” when their shared ancestry with other Archaeplastida was recognized. The model glaucophyte, Cyanophora paradoxa, is well studied with respect to biochemistry, proteomics, and the gene content of the nuclear and organelle genomes. Investigation of the biosynthesis of cytosolic starch led to a model for the transition from glycogen to starch storage during plastid endosymbiosis. The photosynthetic apparatus, including phycobilisome antennae, resembles that of cyanobacteria. However, the carbon-concentrating mechanism is algal in nature and based on pyrenoids. Studies on protein import into muroplasts revealed a primordial Toc/Tic translocon. The peptidoglycan wall was elucidated with respect to composition, biosynthesis, and involvement of nuclear genes. The muroplast genome is distinct, not due to the number of encoded genes but, rather, because of the presence of unique genes not present on other plastid genomes. The mosaic nature of the gene-rich (27,000) nuclear genome came as a surprise, considering the relatively small genomes of unicellular red algae.

Keywords

Archaeplastida Cyanophora paradoxa Muroplasts Single primary endosymbiotic event Phylogenomics Carbon-concentrating mechanism Eukaryotic peptidoglycan Phycobilisomes 

Notes

Acknowledgments

The authors thank B. Franz Lang, Hideya Fukuzawa, and Steven Ball for helpful comments. W.L. is grateful to the Austrian Research Fund for 25 years of support.

References

  1. Adir, N. (2008). Structure of the phycobilisome antennae in cyanobacteria and red algae. In P. Fromme (Ed.), Photosynthetic protein complexes: A structural approach (pp. 243–274). Weinheim: Wiley-VCH.CrossRefGoogle Scholar
  2. Adl, S. M., Simpson, A. G. B., Farmer, M. A., Andersen, R. A., Anderson, O. R., Barta, J. A., Bowser, S. S., Bragerolle, G., Fensome, R. A., Fredericq, S., James, T. Y., Karpov, S., Kugrens, P., Krug, J., Lane, C. E., Lewis, L. A., Lodge, J., Lynn, D. H., Mann, D. G., McCourt, R. M., Mendoza, L., Moestrup, Ø., Mozley-Standridge, S. E., Nerad, T. A., Shearer, C. A., Smirnov, A. V., Spiegel, F. W., & Taylor, M. F. J. R. (2005). The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. Journal of Eukaryotic Microbiology, 52, 399–451.PubMedCrossRefGoogle Scholar
  3. Aitken, A., & Stanier, R. Y. (1979). Characterization of peptidoglycan from the cyanelles of Cyanophora paradoxa. Journal of General Microbiology, 112, 219–223.CrossRefGoogle Scholar
  4. Aldridge, C., Spence, E., Kirkilionis, L., Frigerio, M. A., & Robinson, C. (2008). The Tat-dependent targeting of Rieske iron-sulfur proteins to both the plasma and thylakoid membranes in the cyanobacterium Synechocystis PCC6803. Molecular Microbiology, 70, 140–150.PubMedCrossRefGoogle Scholar
  5. Anders, K., & Essen, L. O. (2015). The family of phytochrome-like photoreceptors: Diverse, complex and multi-colored, but very useful. Current Opinion in Structural Biology, 35, 7–16.PubMedCrossRefGoogle Scholar
  6. Anderson, L. K., & Toole, C. M. (1998). A model for early events in the assembly pathway of cyanobacterial phycobilisomes. Molecular Microbiology, 30, 467–474.PubMedCrossRefGoogle Scholar
  7. Atteia, A., van Lis, R., Tielens, A. G. M., & Martin, W. F. (2013). Anaerobic energy metabolism in unicellular photosynthetic eukaryotes. Biochimica et Biophysica Acta, 1827, 210–223.PubMedCrossRefGoogle Scholar
  8. Badger, M. R., & Price, G. D. (2003). CO2 concentrating mechanisms in cyanobacteria: Molecular components, their diversity and evolution. Journal of Experimental Botany, 54, 609–622.PubMedCrossRefGoogle Scholar
  9. Ball, S. G., Subtil, A., Bhattacharya, D., Moustafa, A., Weber, A. P. M., Gehre, L., Colleoni, C., Arias, M. C., Cenci, U., & Dauvillée, D. (2013). Metabolic effectors secreted by bacterial pathogens: Essential facilitators of plastid endosymbiosis? Plant Cell, 25, 7–21.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Ball, S. G., Bhattacharya, D., Qiu, H., & Weber, A. P. (2016a). Commentary: Plastid establishment did not require a chlamydial partner. Frontiers in Cellular and Infection Microbiology, 6, 43.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Ball, S. G., Bhattacharya, D., & Weber, A. P. (2016b). Evolution. Pathogen to powerhouse. Science, 351, 659–660.PubMedCrossRefGoogle Scholar
  12. Barreteau, H., Kovac, A., Boniface, A., Sova, M., Gobec, S., & Blanot, D. (2008). Cytoplasmic steps of peptidoglycan biosynthesis. FEMS Microbiology Reviews, 32, 168–207.PubMedCrossRefGoogle Scholar
  13. Bartsevich, V. V., & Pakrasi, H. (1995). Molecular identification of an ABC transporter complex for mangenese. Analysis of a cyanobacterial mutant strain impaired in the photosynthetic oxygen evolution process. EMBO Journal, 14, 1845–1853.PubMedPubMedCentralGoogle Scholar
  14. Baudelet, P.-H., Gagez, A.-L., Bérard, J.-B., Juin, C., Bridiau, N., Kaas, R., Thiéry, V., Cadoret, J.-P., & Picot, L. (2013). Antiproliferative activity of Cyanophora paradoxa pigments in melanoma, breast and lung cancer cells. Marine Drugs, 11, 4390–4406.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Baurain, D., Brinkmann, H., Petersen, J., Rodríguez-Ezpeleta, N., Stechmann, A., Demoulin, V., Roger, A. J., Burger, G., Lang, B. F., & Philippe, H. (2010). Phylogenomic evidence for separate acquisition of plastids in cryptophytes, haptophytes, and stramenopiles. Molecular Biology and Evolution, 27, 1698–1709.PubMedCrossRefGoogle Scholar
  16. Berenguer, J., Rojo, F., de Pedro, M. A., Pfanzagl, B., & Löffelhardt, W. (1987). Penicillin-binding proteins in the cyanelles of Cyanophora paradoxa, an eukaryotic photoautotroph sensitive to beta-lactam antibiotics. FEBS Letters, 224, 401–405.CrossRefGoogle Scholar
  17. Betsche, T., Schaller, D., & Melkonian, M. (1992). Identification and characterization of glycolate oxidase and related enzymes from the endocyanotic alga Cyanophora paradoxa and from pea leaves. Plant Physiology, 98, 887–893.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Bhattacharya, D., & Schmidt, H. A. (1997). Division glaucocystophyta. Plant Systematics and Evolution [Suppl.], 11, 139–148.CrossRefGoogle Scholar
  19. Bhattacharya, D., & Weber, K. (1997). Analysis of the coding region of the actin gene of the glaucocystophyte Cyanophora paradoxa: Analysis of the coding region and introns, and an actin phylogeny of eukaryotes. Current Genetics, 31, 439–446.PubMedCrossRefGoogle Scholar
  20. Bhattacharya, D., Helmchen, T., Bibeau, C., & Melkonian, M. (1995). Comparisons of nuclear-encoded small subunit ribosomal RNAs reveal the evolutionary position of the Glaucocystophyta. Molecular Biology and Evolution, 12, 415–420.PubMedGoogle Scholar
  21. Bhattacharya, D., Price, D. C., Chan, C. X., Qiu, H., Rose, N., Ball, S., Weber, A. P., Arias, M. C., Henrissat, B., Coutinho, P. M., Krishnan, A., Zäuner, S., Morath, S., Hilliou, F., Egizi, A., Perrineau, M. M., & Yoon, H. S. (2013). Genome of the red alga Porphyridium purpureum. Nature Communications, 4, 1941.PubMedCrossRefPubMedCentralGoogle Scholar
  22. Bhattacharya, D., Price, D. C., Chan, C. X., Gross, J., Steiner, J. M., & Löffelhardt, W. (2014). Analysis of the genome of Cyanophora paradoxa: An algal model for understanding primary endosymbiosis. In W. Löffelhardt (Ed.), Endosymbiosis (pp. 135–150). Heidelberg: Springer.CrossRefGoogle Scholar
  23. Bouhss, A., Trunkfield, A. E., Bugg, T. H., & Mengin-Lecreulx, D. (2008). The biosynthesis of peptidoglycan lipid-linked intermediates. FEMS Microbiology Reviews, 32, 208–233.PubMedCrossRefGoogle Scholar
  24. Bricker, T.M., Roose, J.L., Fagerlund, R.D., Frankel, L.K., Eaton-Rye, J.J. (2012). The extrinsic proteins of photosystem II. Biochimica et Biophysica Acta, 1817, 121–142.PubMedCrossRefGoogle Scholar
  25. Bruce, B. D. (2000). Chloroplast transit peptides: Structure, function and evolution. Trends in Cell Biology, 10, 440–447.PubMedCrossRefGoogle Scholar
  26. Burey, S. C., Fathi-Nejad, S., Poroyko, V., Steiner, J. M., Löffelhardt, W., & Bohnert, H. J. (2005). The central body of the cyanelles of Cyanophora paradoxa: An eukaryotic carboxysome? Canadian Journal of Botany, 83, 758–764.CrossRefGoogle Scholar
  27. Burey, S. C., Poroyko, V., Ozturk, Z. N., Fathi-Nejad, S., Schüller, C., Ohnishi, N., Fukuzawa, H., Bohnert, H. J., & Löffelhardt, W. (2007). Acclimation to low [CO2] by an inorganic carbon concentrating mechanism in Cyanophora paradoxa. Plant, Cell & Environment, 30, 1422–1435.CrossRefGoogle Scholar
  28. Burki, F., Shalchian-Tabrizi, K., & Pawlowski, J. (2007). Phylogenomics reshuffles the eukaryotic supergroups. PLoS ONE, 2, e790.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Burnap, R. L., & Trench, R. K. (1989). The Biogenesis of the cyanellae of Cyanophora paradoxa. I. Polypeptide composition of the cyanellae. Proceedings of the Royal Society of London. Series B, 238, 53–72.Google Scholar
  30. Busch, A., Nield, J., & Hippler, M. (2010). The composition and structure of photosystem I associated antenna from Cyanidioschyzon merolae. Plant Journal, 62, 886–897.PubMedCrossRefGoogle Scholar
  31. Butterfield, N. J. (2000). Bangiomorpha pubescens n. gen. n. sp.: Implications for the evolution of sex, multicellularity, and the mesoproterozoic/neoproterozoic radiation of eukaryotes. Palaeobiology, 26, 386–404.CrossRefGoogle Scholar
  32. Calo, S., Nicolas, F. E., Vila, A., Torres-Martinez, S., & Ruiz-Vazquez, R. M. (2012). Two distinct RNA-dependent RNA polymerases are required for initiation and amplification of RNA silencing in the basal fungus Mucor circinelloides. Molecular Microbiology, 83, 379–394.PubMedCrossRefGoogle Scholar
  33. Cantarel, B. L., Coutinho, P. M., Rancurel, C., Bernard, T., Lombard, V., & Henrissat, B. (2009). The carbohydrate-active enZymes database (CAZy): An expert resource for glycogenomics. Nucleic Acids Research, 37(Database issue), D233–D238.PubMedCrossRefGoogle Scholar
  34. Cenci, U., Nitschke, F., Steup, M., Minassian, B. A., Colleoni, C., & Ball, S. G. (2014). Transition from glycogen to starch metabolism in Archaeplastida. Trends Plant Science, 19, 18–28.CrossRefGoogle Scholar
  35. Cenci, U., Bhattacharya, D., Weber, A.P.M., Colleoni, C., Subtil, A., & Ball, S.G. (2017). Biotic host-pathogen interactions as major drivers of plastid endosymbiosis. Trends in Plant Science, 22, in press. DOI: http://dx.doi.org/10.1016/j.tplants.2016.12.007.Google Scholar
  36. Chan, C. X., Yang, E. C., Banerjee, T., Yoon, H. S., Martone, P. T., Estevez, J. M., & Bhattacharya, D. (2011). Red-and-green algal monophyly and extensive gene sharing found in a rich repertoire of red algal genes. Current Biology, 21, 328–333.PubMedCrossRefGoogle Scholar
  37. Chen, H. M., Chen, L. T., Patel, K., Li, Y. H., Baulcombe, D. C., & Wu, S. H. (2010). 22-Nucleotide RNAs trigger secondary siRNA biogenesis in plants. Proceedings of the National Academy of Sciences of the United States of America, 107, 15269–15274.PubMedCrossRefPubMedCentralGoogle Scholar
  38. Chi, S., Wu, S., Yu, J., Wang, X., Tang, X., & Liu, T. (2014). Phylogeny of C-4-Photosynthesis enzymes based on algal transcriptomic and genomic data supports an archaeal/proteobacterial origin and multiple duplication for most C-4-related genes. PLoS ONE, 9, e110154.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Chong, J., Jackson, C., Kim, J. I., Yoon, H. S., & Reyes-Prieto, A. (2014). Molecular markers from different genomic compartments reveal cryptic diversity within glaucophyte species. Molecular Phylogenetics and Evolution, 76, 181–188.PubMedCrossRefGoogle Scholar
  40. Cline, K., & Dabney-Smith, C. (2008). Plastid protein import and sorting: Different paths to the same compartments. Current Opinion in Plant Biology, 11, 585–592.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Colleoni, C., Linka, M., Deschamps, P., Handford, M. G., Dupree, P., Weber, A. P. M., & Ball, S. G. (2010). Phylogenetic and biochemical evidence supports the recruitment of an ADP-glucose translocator for the export of photosynthate during plastid endosymbiosis. Molecular Biology and Evolution, 27, 2691–2701.PubMedCrossRefGoogle Scholar
  42. Cooley, R. B., Arp, D. J., & Karplus, P. A. (2011). Symerythrin structures at atomic resolution and the origins of rubrerythrins and the ferritin-like superfamily. Journal of Molecular Biology, 413, 177–194.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Croft, M. T., Lawrence, A. D., Raux-Deery, E., Warren, M. J., & Smith, A. G. (2005). Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature, 438, 90–93.PubMedCrossRefGoogle Scholar
  44. Dagan, T., Roettger, M., Stucken, K., Landan, G., Koch, R., Major, P., Gould, S. B., Goremykin, V. V., Rippka, R., Tandeau de Marsac, N., Gugger, M., Lockhart, P. J., Allen, J. F., Brune, I., Maus, I., Pühler, A., & Martin, W. F. (2013). Genomes of stigonematalean cyanobacteria (subsection V) and the evolution of oxygenic photosynthesis from prokaryotes to plastids. Genome Biology and Evolution, 5, 31–44.PubMedCrossRefGoogle Scholar
  45. Dai, H. P., Kentemich, T., Schmitz, K., Müller, B., & Bothe, H. (1992). Distribution of thioredoxins in heterocysts and vegetative cells of cyanobacteria. Journal of Photochemistry and Photobiology, 16, 285–295.CrossRefGoogle Scholar
  46. de Novoa, P. G., & Williams, K. P. (2004). The tmRNA website. Reductive evolution of tmRNA in plastids and other endosymbionts. Nucleic Acids Research, 32, D104–D108.CrossRefGoogle Scholar
  47. Deschamps, P. (2014). Primary endosymbiosis: Have cyanobacteria and Chlamydiae ever been roommates? Acta Societatis Botanicorum Poloniae, 83, 291–302.CrossRefGoogle Scholar
  48. Deschamps, P., & Moreira, D. (2009). Signal conflicts in the phylogeny of the primary photosynthetic eukaryotes. Molecular Biology and Evolution, 26, 2745–2753.PubMedCrossRefGoogle Scholar
  49. Deschamps, P., Colleoni, C., Nakamura, Y., Suzuki, E., Putaux, J.-L., Buléon, A., Haebel, S., Ritte, G., Steup, M., Falcón, L. I., Moreira, D., Löffelhardt, W., Raj, J. N., Plancke, C., d’Hulst, C., Dauvillée, D., & Ball, S. (2008). Metabolic symbiosis and the birth of the plant kingdom. Molecular Biology and Evolution, 25, 536–548.PubMedCrossRefGoogle Scholar
  50. Domman, D., Horn, M., Embley, T. M., & Williams, T. A. (2015). Plastid establishment did not require a chlamydial partner. Nature Communications, 6, 6421.PubMedCrossRefPubMedCentralGoogle Scholar
  51. Duanmu, D., Bachy, C., Sudek, S., Wong, C. H., Jiménez, V., Rockwell, N. C., Martin, S. S., Ngan, C. Y., Reistetter, E. N., van Baren, M. J., Price, D. C., Wei, C. L., Reyes-Prieto, A., Lagarias, J. C., & Worden, A. Z. (2014). Marine algae and land plants share conserved phytochrome signaling systems. Proceedings of the National Academy of Sciences USA, 111, 15827–15832.CrossRefGoogle Scholar
  52. Egelhoff, T., & Grossman, A. R. (1983). Cytoplasmic and chloroplast synthesis of phycobilisome polypeptides. Proceedings of the National Academy of Sciences USA, 80, 3339–3343.CrossRefGoogle Scholar
  53. Enami, I., Suzuki, T., Tada, O., Nakada, Y., Nakamura, K., Tohri, A., Ohta, H., Inoue, I., & Shen, J. R. (2005). Distribution of the extrinsic proteins as a potential marker for the evolution of photosynthetic oxygen-evolving photosystem II. FEBS Journal, 272, 5020–5030.PubMedCrossRefGoogle Scholar
  54. Engel, B. D., Schaffer, M., Kuhn Cuellar, L., Villa, E., Plitzko, J. M., & Baumeister, W. (2015). Native architecture of the Chlamydomonas chloroplast revealed by in situ cryo-electron tomography. eLife, 4, e04889.PubMedPubMedCentralGoogle Scholar
  55. Facchinelli, F., & Weber, A. P. M. (2015). Analysis of Cyanophora paradoxa tells important lessons on plastid evolution. Perspectives in Phycology, 2, 3–10.CrossRefGoogle Scholar
  56. Facchinelli, F., Pribil, M., Oster, U., Ebert, N. J., Bhattacharya, D., Leister, D., & Weber, A. P. M. (2013). Proteomic analysis of the Cyanophora paradoxa muroplast provides clues on early events in plastid endosymbiosis. Planta, 237, 637–651.PubMedCrossRefGoogle Scholar
  57. Fathinejad, S., Steiner, J. M., Reipert, S., Marchetti, M., Allmaier, G., Burey, S. C., Ohnishi, N., Fukuzawa, H., Löffelhardt, W., & Bohnert, H. J. (2008). A carboxysomal CCM in the cyanelles of the “coelacanth” of the algal world, Cyanophora paradoxa? Physiologia Plantarum, 133, 27–32.PubMedCrossRefGoogle Scholar
  58. Fester, T., Volke, E., & Schenk, H. E. A. (1996). Purification and partial characterization of the cyanoplast glucose-6-phosphate dehydrogenase in Cyanophora paradoxa. Endocytobiology Cell Research, 11, 159–176.Google Scholar
  59. Fettke, J., Hejazi, M., Smirnowa, J., Höchel, E., Stage, M., & Steup, M. (2009). Eukaryotic starch degradation: Integration of plastidial and cytosolic pathways. Journal of Experimental Botany, 60, 2907–2922.PubMedCrossRefGoogle Scholar
  60. Flachmann, R., Michalowski, C. B., Löffelhardt, W., & Bohnert, H. J. (1993). SecY, an integral subunit of the bacterial preprotein translocase is encoded by a plastid genome. Journal of Biological Chemistry, 268, 7514–7519.PubMedGoogle Scholar
  61. Flechner, A., Gross, W., Martin, W. F., & Schnarrenberger, C. (1999). Chloroplast class I and II aldolases are bifunctional for fructose-1,6-bisphosphate and sedoheptulose-1,7-bisphosphate cleavage in the Calvin cycle. FEBS Letters, 447, 200–202.PubMedCrossRefGoogle Scholar
  62. Foflonker, F., Price, D. C., Qiu, H., Palenik, B., Wang, S., & Bhattacharya, D. (2015). Genome of the halotolerant green alga Picochlorum SENEW3 reveals strategies for thriving under fluctuating environmental conditions. Environmental Microbiology, 17, 412–426.PubMedCrossRefGoogle Scholar
  63. Frassanito, A. M., Barsanti, L., Passarelli, V., Evangelista, V., & Gualtieri, P. (2010). A rhodopsin-like protein in Cyanophora paradoxa: Gene sequence and protein immunolocalization. Cellular and Molecular Life Sciences, 67, 965–971.PubMedCrossRefGoogle Scholar
  64. Frassanito, A. M., Barsanti, L., Passarelli, V., Evangelista, V., & Gualtieri, P. (2013). A second rhodopsin-like protein in Cyanophora paradoxa: Gene sequence and protein expression in a cell-free system. Journal of Photochemistry and Photobiology B: Biology, 125, 188–193.CrossRefGoogle Scholar
  65. Garcia, M., Myouga, F., Takechi, K., Sato, H., Nabeshima, K., Nagata, N., Takio, S., Shinozaki, K., & Takano, H. (2008). An Arabidopsis homolog of the bacterial peptidoglycan synthesis enzyme MurE has an essential role in chloroplast development. Plant Journal, 53, 924–934.PubMedCrossRefGoogle Scholar
  66. Gebhart, U. B., Maier, T. L., Stefanovic, S., Bayer, M. G., & Schenk, H. E. A. (1992). Ferredoxin-NADP oxidoreductase of Cyanophora paradoxa: Purification, partial characterization, and N-terminal amino acid sequence. Protein Expression and Purification, 3, 228–235.PubMedCrossRefGoogle Scholar
  67. Gehre, L., Gorgette, O., Perrinet, S., Prevost, M. C., Ducatez, M., Giebel, A. M., Nelson, D. E., Ball, S. G., & Subtil, A. (2016). Sequestration of host metabolism by an intracellular pathogen. eLife, 5, e12552.PubMedCrossRefPubMedCentralGoogle Scholar
  68. Geitler, L. (1959a). Syncyanosen. In W. Ruhland (Ed.), Handbuch der Pflanzenphysiologie (Vol. 11, pp. 530–545). Berlin/Göttingen/Heidelberg: Springer.Google Scholar
  69. Geitler, L. (1959b). Eine neue Endocyanose, Cyanoptyche dispersa n.sp., und Bemerkungen über ähnliche Syncyanosen. Österreichische Botanische Zeitschrift, 106, 464–471.CrossRefGoogle Scholar
  70. Gimple, O., & Schön, A. (2001). In vitro and in vivo processing of cyanelle tmRNA by RNaseP. Biological Chemistry, 382, 1421–1429.PubMedCrossRefGoogle Scholar
  71. Gómez-García, M. R., Losada, M., & Serrano, A. (2006). A novel subfamily of monomeric inorganic pyrophosphatases in photosynthetic eukaryotes. Biochemical Journal, 395, 211–221.PubMedCrossRefPubMedCentralGoogle Scholar
  72. Gould, S. B., Sommer, M. S., Hadfi, K., Zauner, S., Kroth, P. G., & Maier, U.-G. (2006). Protein targeting into the complex plastids of cryptophytes. Journal of Molecular Evolution, 62, 674–681.PubMedCrossRefGoogle Scholar
  73. Grauvogel, C., & Petersen, J. (2007). Isoprenoid biosynthesis authenticates the classification of the green alga Mesostigma viride as an ancient streptophyte. Gene, 396, 125–133.PubMedCrossRefGoogle Scholar
  74. Gross, J., & Bhattacharya, D. (2008). Revaluating the evolution of the Toc/Tic protein translocons. Trends in Plant Science, 14, 13–20.PubMedCrossRefGoogle Scholar
  75. Gross, J., & Bhattacharya, D. (2009). Mitochondrial and plastid evolution in eukaryotes: An outsider’s perspective. Nature Reviews Genetics, 10, 495–505.PubMedCrossRefGoogle Scholar
  76. Gross, J., Wajid, S., Price, D. C., Zelzion, E., Li, J., Chan, C. X., & Bhattacharya, D. (2013). Evidence for widespread exonic small RNAs in the glaucophyte alga Cyanophora paradoxa. PLoS ONE, 8, e67669.PubMedCrossRefPubMedCentralGoogle Scholar
  77. Häder, D.-P. (1985). Photomovement in Cyanophora paradoxa. Archives of Microbiology, 143, 100–104.CrossRefGoogle Scholar
  78. Hamoen, L. W., Meile, J. C., de Jong, W., Noirot, P., & Errington, J. (2006). SepF, a novel FtsZ-interacting protein required for a late step in cell division. Molecular Microbiology, 59, 989–999.PubMedCrossRefGoogle Scholar
  79. Harper, J. T., & Keeling, P. J. (2003). Nucleus-encoded, plastid-targeted glyceraldehyde-3-phosphate dehydrogenase (GAPDH) indicates a single origin for chromalveolate plastids. Molecular Biology and Evolution, 20, 1730–1735.PubMedCrossRefGoogle Scholar
  80. Heimann, K., Reize, I. B., & Melkonian, M. (1989). The flagellar developmental cycle in algae: Flagellar transformation in Cyanophora paradoxa (Glaucocystophyceae). Protoplasma, 148, 106–110.CrossRefGoogle Scholar
  81. Heimann, K., Becker, B., Harnisch, H., Mukherjee, K. D., & Melkonian, M. (1997). Biochemical characterization of plasma membrane vesicles of Cyanophora paradoxa. Botanica Acta, 110, 401–410.CrossRefGoogle Scholar
  82. Heinhorst, S., & Shively, J. M. (1983). Encoding of both subunits of ribulose-1,5-bisphosphate carboxylase by organelle genome of Cyanophora paradoxa. Nature, 304, 373–374.CrossRefGoogle Scholar
  83. Helmchen, T. A., Bhattacharya, D., & Melkonian, M. (1995). Analyses of ribosomal RNA sequences from glaucocystophyte cyanelles provide new insights into evolutionary relationships of plastids. Journal of Molecular Evolution, 41, 203–210.PubMedCrossRefGoogle Scholar
  84. Hirano, T., Tanidokoro, K., Shimizu, Y., Kawarabayasi, Y., Ohshima, T., Sato, M., Tadano, S., Ishikawa, H., Takio, S., Takechi, K., & Takano, H. (2016). Moss chloroplasts are surrounded by a peptidoglycan wall containing D-amino acids. Plant Cell, 28, 1521–1532.PubMedPubMedCentralGoogle Scholar
  85. Hoshaw, R. W., & Rosowski, J. R. (1973). Methods for microscopic algae. In J. R. Stein (Ed.), Handbook of phycological methods, vol. 1, culture methods and growth measurements (pp. 53–68). Cambridge, UK: Cambridge University Press.Google Scholar
  86. Iino, M., & Hashimoto, H. (2003). Intermediate features of cyanelle division of Cyanophora paradoxa (Glaucocystophyta) between cyanobacterial and plastid division. Journal of Phycology, 39, 561–569.CrossRefGoogle Scholar
  87. Jackson, C. J., & Reyes-Prieto, A. (2014). The mitochondrial genomes of the glaucophytes Gloeochaete wittrockiana and Cyanoptyche gloeocystis: Multilocus phylogenetics suggests a monophyletic Archaeplastida. Genome Biology and Evolution, 6, 2774–2785.PubMedCrossRefPubMedCentralGoogle Scholar
  88. Jackson, C., Clayden, S., & Reyes-Prieto, A. (2015). The glaucophyta: The blue-green plants in a nutshell. Acta Societatis Botanicorum Poloniae, 84, 149–165.CrossRefGoogle Scholar
  89. Jakowitsch, J., Bayer, M. G., Maier, T. L., Lüttke, A., Gebhart, U. B., Brandtner, M., Hamilton, B., Neumann-Spallart, C., Michalowski, C. B., Bohnert, H. J., Schenk, H. E. A., & Löffelhardt, W. (1993). Sequence analysis of pre-ferredoxin-NADP+-reductase cDNA from Cyanophora paradoxa specifying a precursor for a nucleus-encoded cyanelle polypeptide. Plant Molecular Biology, 21, 1023–1033.PubMedCrossRefGoogle Scholar
  90. Jakowitsch, J., Neumann-Spallart, C., Ma, Y., Steiner, J. M., Schenk, H. E. A., Bohnert, H. J., & Löffelhardt, W. (1996). In vitro import of pre-ferredoxin-NADP+−oxidoreductase from Cyanophora paradoxa into cyanelles and into pea chloroplasts. FEBS Letters, 381, 153–155.PubMedCrossRefGoogle Scholar
  91. Janouskovec, J., Horák, A., Oborník, M., Lukes, J., & Keeling, P. J. (2010). A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Proceedings of the National Academy of Sciences of the United States of America, 107, 10949–10954.PubMedCrossRefPubMedCentralGoogle Scholar
  92. Kalanon, M., & McFadden, G. I. (2008). The chloroplast protein translocase complexes of Chamydomonas reinhardtii: A bioinformatics comparison of Toc and Tic components in plants, green algae and red algae. Genetics, 179, 95–112.PubMedCrossRefPubMedCentralGoogle Scholar
  93. Karkar, S., Facchinelli, F., Price, D. C., Weber, A. P. M., & Bhattacharya, D. (2015). Metabolic connectivity as a driver of host and endosymbiont integration. Proceedings of the National Academy of Sciences USA, 112, 10208–10215.CrossRefGoogle Scholar
  94. Karlsson, J., Clarke, K. A. K., Chen, Z. Y., Huggins, S. Y., Park, Y. I., Husic, H. D., Moroney, J. V., & Samuelsson, G. (1998). A novel alpha-type carbonic anhdrase associated with the thylakoid membrane in Chlamydomonas reinhardtii is required for growth at ambient CO2. The EMBO Journal, 10, 1208–1216.CrossRefGoogle Scholar
  95. Kern, R., Eisenhut, M., Bauwe, H., Weber, A. P. M., & Hagemann, M. (2013). Does the Cyanophora paradoxa genome revise our view on the evolution of photorespiratory enzymes? Plant Biology, 15, 759–768.PubMedCrossRefGoogle Scholar
  96. Kiefel, B. R., Gilson, P. R., & Beech, P. L. (2004). Diverse eukaryotes have retained mitochondrial homologues of the bacterial division protein FtsZ. Protist, 155, 105–115.PubMedCrossRefGoogle Scholar
  97. Kies, L. (1976). Untersuchungen zur Feinstruktur und taxonomischen Einordnung von Gloeochaete wittrockiana, einer apoplastidalen capsalen Alge mit blaugrünen Endosymbionten (Cyanellen). Protoplasma, 87, 419–446.CrossRefGoogle Scholar
  98. Kies, L. (1979). Zur systematischen Einordnung von Cyanophora paradoxa, Gloeochaete wittrockiana und Glaucocystis nostochinearum. Berichte der Deutschen Botanischen Gesellschaft, 92, 445–454.Google Scholar
  99. Kies, L. (1989). Ultrastructure of Cyanoptyche gloeocystis f. dispersa (Glaucocystophyceae). Plant Systematics and Evolution, 164, 65–73.CrossRefGoogle Scholar
  100. Kies, L. (1992). Glaucocystophyceae and other protists harboring prokaryotic endosymbionts. In W. Reisser (Ed.), Algae and symbioses (pp. 353–377). Bristol: Biopress.Google Scholar
  101. Kies, L., & Kremer, B. P. (1986). Typification of the Glaucocystophyta. Taxon, 35, 128–135.CrossRefGoogle Scholar
  102. Kies, L., & Kremer, B. P. (1990). Phylum glaucocystophyta. In L. Margulis, J. O. Corliss, M. Melkonian, & D. J. Chapman (Eds.), Handbook of protoctista (pp. 152–166). Boston: Jones & Bartlett.Google Scholar
  103. Kilian, O., & Kroth, P. G. (2005). Identification and characterization of a new conserved motif within the presequences of proteins targeted into complex diatom plastids. Plant Journal, 41, 175–183.PubMedCrossRefGoogle Scholar
  104. Kinney, J. N., Axen, S. D., & Kerfeld, C. A. (2011). Comparative analysis of carboxysome shell proteins. Photosynthesis Research, 109, 21–32.PubMedCrossRefPubMedCentralGoogle Scholar
  105. Kleiner, F. (2014). Analyse eines “c6-like” Cytochroms von Cyanophora paradoxa. MSc Thesis, MLU Halle-Wittenberg.Google Scholar
  106. Kneip, C., Voss, C., Lockhart, P. J., & Maier, U. G. (2008). The cyanobacterial endosymbiont of the unicellular alga Rhopalodia gibba shows reductive genome evolution. BMC Evolutionary Biology, 8, 30.PubMedCrossRefPubMedCentralGoogle Scholar
  107. Köhler, D., Dobritzsch, D., Hoehenwarter, W., Helm, S., Steiner, J., & Baginsky, S. (2015). Identification of protein N-termini in Cyanophora paradoxa cyanelles: Transit peptide composition and sequence determinants for precursor maturation. Frontiers in Plant Science, 6, 559.PubMedPubMedCentralGoogle Scholar
  108. Koike, H., Shibata, M., Yasutomi, K., Kashino, Y., & Sato, K. (2000). Identification of photosystem I components from a glaucocystophyte, Cyanophora paradoxa: The PsaD protein has an N-terminal stretch homologous to higher plants. Photosynthesis Research, 65, 207–217.PubMedCrossRefGoogle Scholar
  109. Koike, H., Ikeda, Y., Yusa, F., Kashino, Y., & Sato, K. (2007). Isolation and characterization of outer and inner envelope membranes of cyanelles from a glaucocystophyte, Cyanophora paradoxa. Photosynthesis Research, 93, 45–53.PubMedCrossRefGoogle Scholar
  110. Kojima, S., Ko, K.-C., Takatsuka, Y., Abe, N., Kaneko, J., Itoh, Y., & Kamio, Y. (2010). Cadaverine covalently linked to the peptidoglycan mediates the interaction between the peptidoglycan and periplasm-exposed SLH domain of major outer membrane protein Mep45 in Selenomonas ruminantium. Journal of Bacteriology, 192, 5953–5961.PubMedCrossRefPubMedCentralGoogle Scholar
  111. Kondo, K., Ochiai, Y., Katayama, M., & Ikeuchi, M. (2007). The membrane-associated CpcG2-phycobilisome in Synechocystis: A new photosystem I antenna. Plant Physiology, 144, 1200–1210.PubMedCrossRefPubMedCentralGoogle Scholar
  112. Korshikov, A. A. (1924). Protistologische Beobachtungen. I. Cyanophora paradoxa n. g. et sp. Russisches Archiv für Protistologie, 3, 57–74.Google Scholar
  113. Kowallik, K. (1994). From endosymbionts to chloroplasts: Evidence for a single prokaryotic/eukaryotic endocytobiosis. Endocytobiosis & Cell Research, 10, 137–149.Google Scholar
  114. Kugrens, P. (2001). Structure and phylogeny of Cyanophora species. In J. Seckbach (Ed.), Symbiosis (pp. 257–270). Dordrecht: Kluwer Academic Publishers.Google Scholar
  115. Leger, M. M., Petru, M., Žárský, V., Eme, L., Vlček, Č., Harding, T., Lang, B. F., Eliáš, M., Doležal, P., & Roger, A. J. (2015). An ancestral bacterial division system is widespread in eukaryotic mitochondria. Proceedings of the National Academy of Sciences USA, 112, 10239–10246.CrossRefGoogle Scholar
  116. Li, D., Willkomm, D. K., Schön, A., & Hartmann, R. K. (2007). RNase P of the Cyanophora paradoxa cyanelle: A plastid ribozyme. Biochimie, 89, 1528–1538.PubMedCrossRefGoogle Scholar
  117. Liechti, G. W., Kuru, E., Hall, E., Kalinda, A., Brun, Y. V., Vannieuwenhze, M., & Maurelli, A. T. (2014). A new metabolic cell wall labelling method reveals peptidoglycan in Chlamydia trachomatis. Nature, 506, 507–510.PubMedCrossRefGoogle Scholar
  118. Löffelhardt, W. (2010). Low CO2 stress: Glaucocystophytes may have found an unique solution. In J. Seckbach & M. Grube (Eds.), Symbioses and stress: Joint ventures in biology (Vol. 17, pp. 83–94). Dordrecht/Heidelberg/London/New York: Springer.CrossRefGoogle Scholar
  119. Löffelhardt, W. (2014). The single primary endosymbiotic event. In W. Löffelhardt (Ed.), Endosymbiosis (pp. 39–52). Heidelberg/New York: Springer.CrossRefGoogle Scholar
  120. Löffelhardt, W., & Bohnert, H. J. (2001). The cyanelle (muroplast) of Cyanophora paradoxa: A paradigm for endosymbiotic organelle evolution. In J. Seckbach (Ed.), Symbiosis (pp. 111–130). Dordrecht: Kluwer Academic Publishers.Google Scholar
  121. Löffelhardt, W., Bohnert, H. J., & Bryant, D. A. (1997). The complete sequence of the Cyanophora paradoxa cyanelle genome (Glaucocystophyceae). Plant Systematics and Evolution, 11, 149–162.CrossRefGoogle Scholar
  122. Ma, Y., Jakowitsch, J., Maier, T. L., Bayer, M. G., Müller, N. E., Schenk, H. E. A., & Löffelhardt, W. (2001). ATP citrate lyase of the glaucocystophyte alga Cyanophora paradoxa is a cytosolic enzyme: Characterisation of the large subunit at the cDNA and genomic level. Molecular Genetics and Genomics, 266, 231–238.PubMedCrossRefGoogle Scholar
  123. Ma, Y., Jakowitsch, J., Deusch, O., Henze, K., Martin, W., & Löffelhardt, W. (2009). Transketolase from Cyanophora paradoxa: In vitro import into cyanelles and pea chloroplasts and a complex history of a gene often, but not always, transferred in the context of secondary endosymbiosis. Journal of Eukaryotic Microbiology, 56, 568–576.PubMedCrossRefGoogle Scholar
  124. Mackle, M. M., & Zilinskas, B. A. (1994). Role of signal peptides in targeting of proteins in cyanobacteria. Journal of Bacteriology, 176, 1857–1864.PubMedCrossRefPubMedCentralGoogle Scholar
  125. Mallory, A., & Vaucheret, H. (2010). Form, function, and regulation of ARGONAUTE proteins. Plant Cell, 22, 3879–3889.PubMedCrossRefPubMedCentralGoogle Scholar
  126. Maluck, E. (2012). Charakterisierung der Phycobiliprotein-Linkerkomplexe der Phycobilisomen aus Cyanophora paradoxa. BSc Thesis, MLU Halle-Wittenberg.Google Scholar
  127. Mangeney, E., & Gibbs, S. P. (1987). Immunocytochemical localization of ribulose-1,5-bisphosphate carboxylase/oxygenase in the cyanelles of Cyanophora paradoxa and Glaucocystis nostochinearum. European Journal of Cell Biology, 43, 65–70.Google Scholar
  128. Marbouty, M., Mazouni, K., Saguez, C., Cassier-Chauvat, C., & Chauvat, F. (2009). Characterization of the Synechocystis strain PCC 6803 penicillin-binding proteins and cytokinetic proteins FtsQ and FtsW and their network of interactions with ZipN. Journal of Bacteriology, 191, 5123–5133.PubMedCrossRefPubMedCentralGoogle Scholar
  129. Margulis, L. (1981). Symbiosis in cell evolution. San Francisco: W. H. Freeman and Company.Google Scholar
  130. Margulis, L., & Sagan, D. (2003). Acquiring genomes: A theory of the origin of species. New York: Basic Books.Google Scholar
  131. Marin, B., Nowack, E. C. M., Glöckner, G., & Melkonian, M. (2007). The ancestor of the Paulinella chromatophore obtained a carboxysomal operon by horizontal gene transfer from a Nitrococcus-like gamma-proteobacterium. BMC Evolutionary Biology, 7, 85.PubMedCrossRefPubMedCentralGoogle Scholar
  132. Martin, W., Stoebe, B., Goremykin, V., Hansmann, S., Hasegawa, M., & Kowallik, K. (1998). Gene transfer to the nucleus and the evolution of chloroplasts. Nature, 393, 162–165.PubMedCrossRefGoogle Scholar
  133. McFadden, G. I., & van Dooren, G. G. (2004). Evolution: Red algal genome affirms a common origin of all plastids. Current Biology, 14, R514–R516.PubMedCrossRefGoogle Scholar
  134. Melkonian, M. (1983). Evolution of green algae in relation to endosymbiosis. In H. E. A. Schenk & W. Schwemmler (Eds.), Endocytobiology II (pp. 1003–1007). Berlin: W. de Gruyter.Google Scholar
  135. Mereschkowsky, C. (1905). Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biologisches Zentralblatt, 25, 593–604.Google Scholar
  136. Meurer, J., Plücken, H., Kowallik, K. V., & Westhoff, P. (1998). A nuclear-encoded protein of prokaryotic origin is essential for the stability of photosystem II in Arabidopsis thaliana. EMBO Journal, 17, 5286–5297.PubMedCrossRefPubMedCentralGoogle Scholar
  137. Meyer, M., & Griffiths, H. (2013). Origins and diversity of eukaryotic CO2-concentrating mechanisms: Lessons for the future. Journal of Experimental Botany, 64, 769–786.PubMedCrossRefGoogle Scholar
  138. Miyagishima, S., Suzuki, K., Okazaki, K., & Kabeya, Y. (2012). Expression of the nucleus-encoded chloroplast division genes and proteins regulated by the algal cell cycle. Molecular Microbiology, 29, 2957–2970.Google Scholar
  139. Miyagishima, S., Kabeya, Y., Sugita, C., Sugita, M., & Fujiwara, T. (2014a). DipM is required for peptidoglycan hydrolysis during chloroplast division. BMC Plant Biology, 14, 57.PubMedCrossRefPubMedCentralGoogle Scholar
  140. Miyagishima, S., Nakamura, M., Uzuka, A., & Era, A. (2014b). FtsZ-less prokaryotic cell division as well as FtsZ- and dynamin-less chloroplast and non-photosynthetic plastid division. Frontiers in Plant Science, 5, 459.PubMedCrossRefPubMedCentralGoogle Scholar
  141. Morton, B. R. (1998). Selection on the codon bias of chloroplast and cyanelle genes in differing plant and algal lineages. Journal of Molecular Evolution, 46, 449–459.PubMedCrossRefGoogle Scholar
  142. Moustafa, A., Beszteri, B., Maier, U. G., Bowler, C., Valentin, K., & Bhattacharya, D. (2009). Genomic footprints of a cryptic plastid endosymbiosis in diatoms. Science, 324, 1724–1726.PubMedCrossRefGoogle Scholar
  143. Münch, D., Roemer, T., Lee, S. H., Engeser, M., Sahl, H. G., & Schneider, T. (2012). Identification and in vitro analysis of the GatD/MurT enzyme-complex catalyzing lipid II amidation in Staphylococcus aureus. PLoS Pathogens, 8, e1002509.PubMedCrossRefPubMedCentralGoogle Scholar
  144. Nakai, M. (2015). The TIC complex uncovered: The alternative view on the molecular mechanism of protein translocation across the inner envelope membrane of chloroplasts. Biochimica et Biophysica Acta, 1847, 957–967.PubMedCrossRefGoogle Scholar
  145. Nakai, M., Sugita, D., Omata, T., & Endo, T. (1993). SecY protein is localized in both the cytoplasmic and thylakoid membranes in the cyanobacterium Synechococcus PCC 7942. Biochemical and Biophysical Research Communications, 193, 228–234.PubMedCrossRefGoogle Scholar
  146. Nakayama, T., Kamikawa, R., Tanifuji, G., Kashiyama, Y., Ohkouchi, N., Archibald, J. M., & Inagaki, Y. (2014). Complete genome of a non-photosynthetic cyanobacterium in a diatom reveals recent adaptations to an intracellular lifestyle. Proceedings of the National Academy of Sciences of the United States of America, 111, 11407–11412.PubMedCrossRefPubMedCentralGoogle Scholar
  147. Nowack, E. C. M., Melkonian, M., & Glöckner, G. (2008). Chromatophore genome sequence of Paulinella sheds light on acquisition of photosynthesis by eukaryotes. Current Biology, 18, 410–418.PubMedCrossRefGoogle Scholar
  148. Obbard, D. J., Gordon, K. H., Buck, A. H., & Jiggins, F. M. (2009). The evolution of RNAi as a defence against viruses and transposable elements. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 364, 99–115.PubMedCrossRefGoogle Scholar
  149. Ocheretina, O., Haferkamp, I., Tellioglu, H., & Scheibe, R. (2000). Light-modulated NADP-malate dehydrogenases from mossfern and green algae: Insights into evolution of the enzyme’s regulation. Gene, 258, 147–154.PubMedCrossRefGoogle Scholar
  150. Ossenbühl, F., Inaba-Sulpice, M., Meurer, J., Soll, J., & Eichacker, L. (2006). The Synechocystis sp. PCC 6803 Oxa1 homolog is essential for membrane integration of reaction center precursor protein pD1. Plant Cell, 18, 2236–2246.PubMedCrossRefPubMedCentralGoogle Scholar
  151. Paila, Y. D., Richardson, L. G., & Schnell, D. J. (2015). New insights into the mechanism of chloroplast protein import and its integration with protein quality control, organelle biogenesis and development. Journal of Molecular Biology, 427, 1038–1060.PubMedCrossRefGoogle Scholar
  152. Parfrey, L. W., Grant, J., Tekle, Y. I., Lasek-Nesselquist, E., Morrison, H. G., Sogin, M. L., Patterson, D. J., & Katz, L. A. (2010). Broadly sampled multigene analyses yield a well-resolved eukaryotic tree of life. Systematic Biology, 59, 518–533.PubMedCrossRefPubMedCentralGoogle Scholar
  153. Pascher, A. (1929). Studien über Symbiosen. I. Über einige Endosymbiosen von Blaualgen in Einzellern. Jahrbücher für Wissenschaftliche Botanik, 71, 386–462.Google Scholar
  154. Patron, N. J., & Waller, R. F. (2007). Transit peptide diversity and divergence: A global analysis of plastid targeting signals. BioEssays, 29, 1048–1058.PubMedCrossRefGoogle Scholar
  155. Petersen, J., Teich, R., Becker, B., Cerff, R., & Brinkmann, H. (2006). The GapA/B gene duplication marks the origin of the streptophyta (Charophytes and land plants). Molecular Biology and Evolution, 23, 1109–1118.PubMedCrossRefGoogle Scholar
  156. Pfanzagl, B., & Löffelhardt, W. (1999). In vitro synthesis of peptidoglycan precursors modified with N-acetylputrescine by Cyanophora paradoxa cyanelle envelope membranes. Journal of Bacteriology, 181, 2643–2647.PubMedPubMedCentralGoogle Scholar
  157. Pfanzagl, B., Allmaier, G., Schmid, E. R., de Pedro, M. A., & Löffelhardt, W. (1996a). N-Acetylputrescine as a characteristic constituent of cyanelle peptidoglycan in glaucocystophyte algae. Journal of Bacteriology, 179, 6994–6997.CrossRefGoogle Scholar
  158. Pfanzagl, B., Zenker, A., Pittenauer, E., Allmaier, G., Martinez-Torrecuadrada, J., Schmid, E. R., de Pedro, M. A., & Löffelhardt, W. (1996b). Primary structure of cyanelle peptidoglycan of Cyanophora paradoxa: A prokaryotic cell wall as part of an organelle envelope. Journal of Bacteriology, 178, 332–339.PubMedCrossRefPubMedCentralGoogle Scholar
  159. Pickett-Heaps, J. (1972). Cell division in Cyanophora paradoxa. New Phytologist, 71, 561–567.CrossRefGoogle Scholar
  160. Piriyapongsa, J., & Jordan, I. K. (2008). Dual coding of siRNAs and miRNAs by plant transposable elements. RNA, 14, 814–821.PubMedCrossRefPubMedCentralGoogle Scholar
  161. Pittenauer, E., Allmaier, G., Schmid, E. R., Pfanzagl, B., Löffelhardt, W., Quintela Fernandez, C., de Pedro, M. A., & Stanek, W. (1993). Structural characterization of the cyanelle peptidoglycan of Cyanophora paradoxa by 252Cf-plasma desorption mass spectrometry and fast atom bombardment/tandem mass spectrometry. Biological Mass Spectrometry, 22, 524–536.PubMedCrossRefGoogle Scholar
  162. Plaimauer, B., Pfanzagl, B., Berenguer, J., de Pedro, M. A., & Löffelhardt, W. (1991). Subcellular distribution of enzymes involved in the biosynthesis of cyanelle murein in the protist Cyanophora paradoxa. FEBS Letters, 284, 168–172.CrossRefGoogle Scholar
  163. Plancke, C., Colleoni, C., Deschamps, P., Dauvillée, D., Nakamura, Y., Haebel, S., Steup, M., Buléon, A., Putaux, J.-L., Dupeyre, D., d’Hulst, C., Ral, J.-P., Löffelhardt, W., Maes, E., & Ball, S. G. (2008). The pathway of starch synthesis in the model glaucophyte Cyanophora paradoxa. Eukaryotic Cell, 7, 247–257.PubMedCrossRefGoogle Scholar
  164. Price, D. C., Chan, C. X., Yoon, H. S., Yang, E. C., Qiu, H., Weber, A. P. M., Schwacke, R., Gross, J., Blouin, N. A., Lane, C., Reyes-Prieto, A., Durnford, D. G., Neilson, J. A. D., Lang, B. F., Burger, G., Steiner, J. M., Löffelhardt, W., Meuser, J. E., Posewitz, M. C., Ball, S., Arias, M. C., Henrissat, B., Coutinho, P. M., Rensing, S. A., Symeonidi, A., Doddapaneni, H., Green, B. R., Rajah, V. D., Boore, J., & Bhattacharya, D. (2012). Cyanophora paradoxa genome elucidates origin of photosynthesis in algae and plants. Science, 335, 843–847.PubMedCrossRefGoogle Scholar
  165. Pringsheim, E. G. (1958). Organismen mit blaugrünen Assimilatoren (pp. 165–184). Praha: Studies in Plant Physiology.Google Scholar
  166. Qiu, H., Price, D. C., Weber, A. P., Facchinelli, F., Yoon, H. S., & Bhattacharya, D. (2013a). Assessing the bacterial contribution to the plastid proteome. Trends in Plant Science, 18, 680–687.PubMedCrossRefGoogle Scholar
  167. Qiu, H., Price, D. C., Weber, A. P., Reeb, V., Yang, E. C., Lee, J. M., Kim, S. Y., Yoon, H. S., & Bhattacharya, D. (2013b). Adaptation through horizontal gene transfer in the cryptoendolithic red alga Galdieria phlegrea. Current Biology, 23, R865–R866.PubMedCrossRefGoogle Scholar
  168. Raven, J. A. (2003). Carboxysomes and peptidoglycan walls of cyanelles: Possible physiological functions. European Journal of Phycology, 38, 47–53.CrossRefGoogle Scholar
  169. Reith, M. (1995). Molecular biology of rhodophyte and chromophyte plastids. Annual Review Plant Physiology Plant Molecular Biology, 46, 549–575.CrossRefGoogle Scholar
  170. Reumann, S., Inoue, K., & Keegstra, K. (2005). Evolution of the general import pathway of plastids. Molecular Membrane Biology, 22, 73–86.PubMedCrossRefGoogle Scholar
  171. Reyes-Prieto, A., & Bhattacharya, D. (2007a). Phylogeny of nuclear-encoded plastid-targeted proteins supports an early divergence of glaucophytes within plantae. Molecular Biology and Evolution, 24, 2358–2361.PubMedCrossRefGoogle Scholar
  172. Reyes-Prieto, A., & Bhattacharya, D. (2007b). Phylogeny of Calvin cycle enzymes supports Plantae monophyly. Molecular Phylogenetics and Evolution, 45, 384–391.PubMedCrossRefGoogle Scholar
  173. Reyes-Prieto, A., Hackett, J. D., Soares, M. B., Bonaldo, M. F., & Bhattacharya, D. (2006). Cyanobacterial contribution to algal nuclear genomes is primarily limited to plastid functions. Current Biology, 16, 2320–2325.PubMedCrossRefGoogle Scholar
  174. Robinson, D. G., & Preston, R. D. (1971). Studies on the fine structure of Glaucocystis nostochinearum Itzigs. I. Wall structure. Journal of Experimental Botany, 22, 635–643.CrossRefGoogle Scholar
  175. Rockwell, N. C., Su, Y. S., & Lagarias, J. C. (2006). Phytochrome structure and signaling mechanisms. Annual Review of Plant Biology, 57, 837–858.PubMedCrossRefPubMedCentralGoogle Scholar
  176. Rockwell, N. C., Duanmu, D., Martin, S. S., Bachy, C., Price, D. C., Bhattacharya, D., Worden, A. Z., & Lagarias, J. C. (2014). Eukaryotic algal phytochromes span the visible spectrum. Proceedings of the National Academy of Sciences USA, 111, 3871–3876.CrossRefGoogle Scholar
  177. Rodríguez-Ezpeleta, N., Brinkmann, H., Burey, S. C., Roure, B., Burger, G., Löffelhardt, W., Bohnert, H. J., Philippe, H., & Lang, B. F. (2005). Monophyly of primary photosynthetic eukaryotes: Green plants, red algae and glaucophytes. Current Biology, 15, 1325–1330.PubMedCrossRefGoogle Scholar
  178. Rogers, C. E., Stewart, K. D., & Mattox, K. R. (1981). Comparison of the flagellar apparatuses of Cyanophora paradoxa and Glaucocystis nostochinearum: A characterization of the Glaucophyceae. Journal of Phycology, 17 , 12.Supplement, Abstract 59Google Scholar
  179. Sato, N., Ishikawa, M., Fujiwara, M., & Sonoike, K. (2005). Mass identification of chloroplast proteins of endosymbiont origin by phylogenetic profiling based on organism-optimized homologous protein groups. Genome Informatics, 16, 56–68.PubMedGoogle Scholar
  180. Sato, M., Mogi, Y., Nishikawa, T., Miyamura, S., Nagumo, T., & Kawano, S. (2009). The dynamic surface of dividing cyanelles and ultrastructure of the region directly below the surface in Cyanophora paradoxa. Planta, 229, 781–791.PubMedCrossRefGoogle Scholar
  181. Sauvage, E., Kerff, F., Terrak, M., Ayala, J. A., & Charlier, P. (2008). The penicillin-binding proteins: Structure and role in peptidoglycan biosynthesis. FEMS Microbiology Reviews, 32, 234–258.PubMedCrossRefGoogle Scholar
  182. Schenk, H. E. A. (1970). Nachweis einer lysozymempfindlichen Stützmembran der Endocyanellen von Cyanophora paradoxa Korschikoff. Zeitschrift für Naturforschung, 25b, 640–656.Google Scholar
  183. Schenk H. E. A. (1994). Cyanophora paradoxa: Anagenetic model or missing link of plastid evolution? Endocytobiosis & Cell Research, 10, 87–106.Google Scholar
  184. Schnepf, E. (1965). Struktur der Zellwände und Zellulosefibrillen bei Glaucocystis. Planta, 67, 213–224.CrossRefGoogle Scholar
  185. Schnepf, E., Koch, W., & Deichgräber, G. (1966). Zur Cytologie und taxonomischen Einordnung von Glaucocystis. Archiv für Mikrobiologie, 55, 149–174.CrossRefGoogle Scholar
  186. Schönknecht, G., Chen, W. H., Ternes, C. M., Barbier, G. G., Shrestha, R. P., Stanke, M., Bräutigam, A., Baker, B. J., Banfield, J. F., Garavito, R. M., Carr, K., Wilkerson, C., Rensing, S. A., Gagneul, D., Dickenson, N. E., Oesterhelt, C., Lercher, M. J., & Weber, A. P. (2013). Gene transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote. Science, 339, 1207–1210.PubMedCrossRefGoogle Scholar
  187. Scott, O. T., Castenholz, R. W., & Bonnett, H. T. (1984). Evidence for a peptidoglycan envelope in the cyanelles of Glaucocystis nostochinearum Itzigsohn. Archives of Microbiology, 139, 130–138.CrossRefGoogle Scholar
  188. Sensen, C. W., Heimann, K., & Melkonian, M. (1993). The production of clonal and axenic cultures of microalgae using fluorescence-activated cell sorting. European Journal of Phycology, 28, 93–97.CrossRefGoogle Scholar
  189. Serrano, A., & Löffelhardt, W. (1994). Identification of 2 different glyceraldehyde-3-phosphate dehydrogenases (phosphorylating) in the photosynthetic protist Cyanophora paradoxa. Archives of Microbiology, 162, 14–19.CrossRefGoogle Scholar
  190. Shibata, M., Kashino, Y., Sato, K., & Koike, H. (2001). Isolation and characterization of oxygen-evolving thylakoid membranes and photosystem II particles from a glaucocystophyte, Cyanophora paradoxa. Plant Cell Physiology, 42, 733–741.PubMedCrossRefGoogle Scholar
  191. Six, C., Thomas, J.-C., Thion, L., Lemoine, Y., Zal, F., & Partensky, F. (2005). Two novel phycoerythrin-associated linker proteins in the marine cyanobacterium Synechococcus sp. strain WH8102. Journal of Bacteriology, 187, 1685–1694.PubMedCrossRefPubMedCentralGoogle Scholar
  192. Skalitzky, C. A., Martin, J. R., Harwood, J. H., Beirne, J. J., Adamczyk, B. J., Heck, G. R., Cline, K., & Fernandez, D. E. (2011). Plastids contain a second Sec translocase system with essential functions. Plant Physiology, 155, 354–369.PubMedCrossRefGoogle Scholar
  193. Skuja, H. (1954). Glaucophyta. In H. Melcher & E. Werdermann (Eds.), Syllabus der Pflanzenfamilien (Vol. 1, pp. 56–57). Berlin: Borntraeger.Google Scholar
  194. Skuja, H.: Taxonomische und biologische Studien über das Phytoplankton schwedischer Binnengewässer. Nova Acta Regiae Societatis Scientiarum Urpsaliensis Ser. 4, Vol. 4 (3), 1–404 (1956).Google Scholar
  195. Smeekens, S., Weisbeek, P., & Robinson, C. (1990). Protein transport into and within chloroplasts. Trends in Biochemical Sciences, 15, 73–76.PubMedCrossRefGoogle Scholar
  196. Sommer, M. S., & Schleiff, E. (2014). Evolution of the protein translocons of the chloroplast envelope. In W. Löffelhardt (Ed.), Endosymbiosis (pp. 81–110). Heidelberg: Springer.CrossRefGoogle Scholar
  197. Starnes, S. M., Lambert, D. H., Maxwell, E. S., Stevens, S. E., Porter, R. D., & Shively, J. M. (1985). Cotranscription of the large and small subunit genes of ribulose-1,5-bisphosphate carboxylase/oxygenase in Cyanophora paradoxa. FEMS Microbiology Letters, 28, 165–169.CrossRefGoogle Scholar
  198. Steiner, J. M., Serrano, A., Allmaier, G., Jakowitsch, J., & Löffelhardt, W. (2000). Cytochrome c6 from Cyanophora paradoxa: Characterization of the protein and the cDNA of the precursor and import into isolated cyanelles. European Journal of Biochemistry, 267, 4232–4241.PubMedGoogle Scholar
  199. Steiner, J. M., & Löffelhardt, W. (2002). Protein import into cyanelles. Trends in Plant Sciences, 7, 72–77.CrossRefGoogle Scholar
  200. Steiner, J. M., Pompe, J. A., & Löffelhardt, W. (2003). Characterization of apcC, the nuclear gene for the phycobilisome core linker polypeptide Lc 7.8 from the glaucocystophyte alga Cyanophora paradoxa. Import of the precursor into cyanelles and integration of the mature protein into intact phycobilisomes. Current Genetics, 44, 132–137.PubMedCrossRefGoogle Scholar
  201. Steiner, J. M., & Löffelhardt, W. (2005). Protein translocation into and within cyanelles. Molecular Membrane Biology, 22, 123–132.PubMedCrossRefGoogle Scholar
  202. Steiner, J. M., Yusa, F., Pompe, J. A., & Löffelhardt, W. (2005a). Homologous protein import machineries in chloroplasts and cyanelles. Plant Journal, 44, 646–652.PubMedCrossRefGoogle Scholar
  203. Steiner, J. M., Berghöfer, J., Yusa, F., Pompe, J. A., Klösgen, R. B., & Löffelhardt, W. (2005b). Conservative sorting in a primitive plastid: the cyanelle of Cyanophora paradoxa. FEBS Journal, 272, 987–998.PubMedCrossRefGoogle Scholar
  204. Steiner, J. M., & Löffelhardt, W. (2011). The Photosynthetic Apparatus of the Living Fossil, Cyanophora paradoxa. In G. A. Peschek, C. Obinger, & G. Renger (Eds.), Bioenergetic processes of cyanobacteria (pp. 71–87). Dordrecht: Springer.CrossRefGoogle Scholar
  205. Steiner, J. M., Bhattacharya, D., & Löffelhardt, W. (2012). Conservative sorting in the muroplasts of Cyanophora paradoxa: A reevaluation based on the completed genome sequence. Symbiosis, 58, 127–133.CrossRefGoogle Scholar
  206. Stirewalt, V. L., Michalowski, C. B., Löffelhardt, W., Bohnert, H. J., & Bryant, D. A. (1995). Nucleotide sequence of the cyanelle genome from Cyanophora paradoxa. Plant Molecular Biology Reporter, 13, 327–332.CrossRefGoogle Scholar
  207. Stoebe, B., Martin, W., & Kowallik, K. V. (1998). Distribution and nomenclature of protein–coding genes in 12 sequenced chloroplast genomes. Plant Molecular Biology Reporter, 16, 243–255.CrossRefGoogle Scholar
  208. Struyvé, M., Moons, M., & Tommassen, J. (1991). Carboxy-terminal phenylalanine is essential for the correct assembly of a bacterial outer membrane protein. Journal of Molecular Biology, 218, 141–148.PubMedCrossRefGoogle Scholar
  209. Tachibana, M., Allen, A. E., Kikutani, S., Endo, Y., Bowler, C., & Matsuda, Y. (2011). Localization of putative carbonic anhydrases in two marine diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana. Photosynthesis Research, 109, 205–221.PubMedCrossRefGoogle Scholar
  210. Takahashi, T., Nishida, T., Tuji, A., Saito, C., Matsuzaki, R., Sato, M., Toyooka, K., Yasuda, H., & Nozaki, H. (2016). Delineation of six species of the primitive algal genus Glaucocystis based on in situ ultrastructural characteristics. Scientific Reports, 6, 29209.PubMedCrossRefPubMedCentralGoogle Scholar
  211. Takahashi, T., Sato, M., Toyooka, K., Matsuzaki, R., Kawafune, K., Kawamura, M., Okuda, K., & Nozaki, H. (2014). Five Cyanophora (Cyanophorales, Glaucophyta) species delineated based on morphological and molecular data. Journal of Phycology, 50, 1058–1069.PubMedCrossRefGoogle Scholar
  212. Takano, H., & Takechi, K. (2010). Plastid peptidoglycan. Biochimica et Biophysica Acta, 1800, 144–151.PubMedCrossRefGoogle Scholar
  213. Timmis, J. N., Ayliffe, M. A., Huang, C. Y., & Martin, W. (2004). Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nature Reviews Genetics, 5, 123–135.PubMedCrossRefGoogle Scholar
  214. Tissier, C., Woolhead, C. A., & Robinson, C. (2002). Unique structural determinants in the signal peptides of ‘spontaneously’ inserting thylakoid membrane proteins. European Journal of Biochemistry, 269, 3131–3141.PubMedCrossRefGoogle Scholar
  215. Trench, R. K. (1982). Physiology, biochemistry, and ultrastructure of cyanelles. In F. E. Round & D. J. Chapman (Eds.), Progress in phycological research (Vol. 1, pp. 257–288). Amsterdam: Elsevier.Google Scholar
  216. Verissimo, A. F., & Daldal, F. (2014). Cytochrome c biogenesis system I: An intricate process catalyzed by a maturase supercomplex? Biochimica et Biophysica Acta, 1837, 989–998.PubMedCrossRefPubMedCentralGoogle Scholar
  217. Voulhoux, R., & Tommassen, J. (2004). Omp85, an evolutionarily conserved bacterial protein involved in outer-membran-protein assembly. Reseach in Microbiology, 155, 129–135.CrossRefGoogle Scholar
  218. Wagener, N., Ackermann, M., Funes, S., & Neupert, W. (2011). A pathway of protein translocation in mitochondria mediated by the AAA-ATPase Bcs1. Molecular Cell, 44, 191–202.PubMedCrossRefGoogle Scholar
  219. Watanabe, M., Kubota, H., Wada, H., Narikawa, R., & Ikeuchi, M. (2011). Novel supercomplex organization of photosystem I in Anabaena and Cyanophora paradoxa. Plant Cell Physiology, 52, 162–168.PubMedCrossRefGoogle Scholar
  220. Watanabe, M., Sato, M., Kondo, K., Narikawa, R., & Ikeuchi, M. (2012). Phycobilisome model with novel skeleton-like structures in a glaucocystophyte Cyanophora paradoxa. Biochimica et Biophysica Acta, 1817, 1428–1435.PubMedCrossRefGoogle Scholar
  221. Weber, A. P. M., Linka, M., & Bhattacharya, D. (2006). Single ancient origin of a plastid metabolite translocator family in Plantae from an endomembrane-derived ancestor. Eukaryotic Cell, 5, 609–612.PubMedCrossRefPubMedCentralGoogle Scholar
  222. Weisser, A. (2012). Charakterisierung der Phycobilisomen-Architektur von Cyanophora paradoxa. MSc Thesis, MLU Halle-Wittenberg.Google Scholar
  223. Wheeler, G., Ishikawa, T., Pornsaksit, V., & Smirnoff, N. (2015). Evolution of alternative biosynthetic pathways for vitamin C following plastid acquisition in photosynthetic eukaryotes. eLife, 4, e06369.PubMedCentralGoogle Scholar
  224. Wunder, T., Martin, R., Löffelhardt, W., Schleiff, E., & Steiner, J. M. (2007). The invariant phenylalanine of precursor proteins discloses the importance of Omp85 for protein translocation into cyanelles. BMC Evolutionary Biology, 7, 236.PubMedCrossRefPubMedCentralGoogle Scholar
  225. Yabuki, A., Kamikawa, R., Ishikawa, S. A., Kolisko, M., Kim, E., Tanabe, A. S., Kume, K., Ishida, K., & Inagaki, Y. (2014). Palpitomonas bilix represents a basal cryptist lineage: Insight into the character evolution in Cryptista. Scientific Reports, 4, 4641.PubMedCrossRefPubMedCentralGoogle Scholar
  226. Yamano, T., Tsujikawa, T., Hatano, K., Ozawa, S., Takahashi, Y., & Fukuzawa, H. (2010). Light and low-CO2 -dependent LCIB–LCIC complex localization in the chloroplast supports the carbon-concentrating mechanism in Chlamydomonas reinhardtii. Plant Cell Physiology, 51, 1453–1468.PubMedCrossRefGoogle Scholar
  227. Yamano, T., Sato, E., Iguchi, H., Fukuda, Y., & Fukuzawa, H. (2015). Characterization of cooperative bicarbonate uptake into chloroplast stroma in the green alga Chlamydomonas reinhardtii. Proceedings of the National Academy of Sciences USA, 112, 7315–7320.CrossRefGoogle Scholar
  228. Yang, Y., Glynn, J. M., Olson, B. J., Schmitz, A. J., & Osteryoung, K. W. (2008). Plastid division: Across time and space. Current Opinion in Plant Biology, 11, 577–584.PubMedCrossRefGoogle Scholar
  229. Yusa, F., Steiner, J. M., & Löffelhardt, W. (2008). Evolutionary conservation of dual Sec translocases in the cyanelles of Cyanophora paradoxa. BMC Evolutionary Biology, 8, 304.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Dana C. Price
    • 1
  • Jürgen M. Steiner
    • 2
  • Hwan Su Yoon
    • 3
  • Debashish Bhattacharya
    • 4
  • Wolfgang Löffelhardt
    • 5
    Email author
  1. 1.Department of Plant Biology and PathologyThe State University of New JerseyNew BrunswickUSA
  2. 2.Institute of Biology, Plant PhysiologyMartin-Luther-University Halle-WittenbergHalle (Saale)Germany
  3. 3.Department of Biological SciencesSungkyunkwan UniversitySuwonSouth Korea
  4. 4.Department of Ecology, Evolution and Natural ResourcesThe State University of New JerseyNew BrunswickUSA
  5. 5.Department of Biochemistry and Cell BiologyUniversity of ViennaViennaAustria

Personalised recommendations