Advertisement

Chlorokybophyceae, Klebsormidiophyceae, Coleochaetophyceae

  • Martha E. Cook
  • Linda E. Graham
Reference work entry

Abstract

The freshwater and terrestrial green algal lineages discussed in this chapter include the scaly flagellate Mesostigma, the sarcinoid form Chlorokybus, the unbranched filamentous members of the Klebsormidiophyceae, and the branched filamentous members of the Coleochaetophyceae. The lineages discussed here, together with two other green algal lineages (Charophyceae and Zygnematophyceae) and the land plants (embryophytes), form a monophyletic group known as Streptophyta or Charophyta. The streptophyte algae share cytological and biochemical characteristics with plants and may shed light on the evolution of plant features. Of special interest is the evolution of mechanisms associated with the transition from freshwater to dry land, a topic currently being energized by whole-genome analyses. Metagenomic studies of these organisms have revealed surprising features that might also have characterized the microbiomes of early streptophytes.

Keywords

Charophycean algae Charophyte Chlorokybus Coleochaete Entransia Klebsormidium Mesostigma Plant evolution Streptophyte Terrestrial algae 

References

  1. Becker, B. (2012). Snow ball earth and the split of the streptophyta and chlorophyta. Trends in Plant Science, 18, 180–183.PubMedCrossRefGoogle Scholar
  2. Becker, B., & Marin, B. (2009). Streptophyte algae and the origin of embryophytes. Annals of Botany, 103, 999–1004.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Bourrelly, P. (1966). Les Algues d’Eau Douce. Algues Vertes. Paris: Boubée.Google Scholar
  4. Bower, F. O. (1908). The origin of a land flora; a theory based upon the facts of alternation. London: Macmillan.CrossRefGoogle Scholar
  5. Bowman, J. L. (2013). Walkabout on the long branches of plant evolution. Current Opinion in Plant Biology, 16, 70–77.PubMedCrossRefGoogle Scholar
  6. Brake, S. S., Arango, I., Hasiotis, S. T., & Burch, K. R. (2014). Spatial and temporal distribution and characteristics of eukaryote-dominated microbial biofilms in an acid mine drainage environment: Implications for development of iron-rich stromatolites. Environmental and Earth Sciences, 72, 2779–2796.CrossRefGoogle Scholar
  7. Bremer, K. (1985). Summary of green plant phylogeny and classification. Cladistics, 1, 369–385.CrossRefGoogle Scholar
  8. Brown, R. C., Lemmon, B. E., & Graham, L. E. (1994). Morphogenetic plastid migration and microtubule arrays in mitosis and cytokinesis in the green alga Coleochaete orbicularis. American Journal of Botany, 81, 127–133.CrossRefGoogle Scholar
  9. Cain, J. R., Mattox, K. R., & Stewart, K. D. (1973). The cytology of zoosporogenesis in the filamentous green algal genus, Klebsormidium. Transactions of the American Microscopical Society, 92, 398–404.CrossRefGoogle Scholar
  10. Cain, J. R., Mattox, K. R., & Stewart, K. D. (1974). Conditions of illumination and zoosporogenesis in Klebsormidium flaccidum. Journal of Phycology, 10, 134–136.Google Scholar
  11. Cimino, M. T., & Delwiche, C. F. (2002). Molecular and morphological data identify a cryptic species complex in endophytic members of the genus Coleochaete Bréb. Journal of Phycology, 38, 1213–1221.CrossRefGoogle Scholar
  12. Civáň, P., Foster, P. G., Embley, M. T., Séneca, A., & Cox, C. J. (2014). Analyses of charophyte chloroplast genomes help characterize the ancestral chloroplast genome of land plants. Genome Biology and Evolution, 6, 897–911.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Cook, M. E. (2004a). Cytokinesis in Coleochaete orbicularis (Charophyceae): An ancestral mechanism inherited by plants. American Journal of Botany, 91, 313–320.PubMedCrossRefGoogle Scholar
  14. Cook, M. E. (2004b). Structure and asexual reproduction of the enigmatic charophycean green alga Entransia fimbriata (Klebsormidiales, Charophyceae). Journal of Phycology, 40, 424–431.CrossRefGoogle Scholar
  15. Cutler, S., & Ehrhardt, D. (2002). Polarized cytokinesis in vacuolated cells of Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 99, 2812–2817.PubMedPubMedCentralCrossRefGoogle Scholar
  16. DeJesus, M. D., Tabatabai, F., & Chapman, D. J. (1989). Taxonomic distribution of copper-zinc superoxide dismutase in green algae and its phylogenetic importance. Journal of Phycology, 25, 767–772.CrossRefGoogle Scholar
  17. Delaux, P.-M., Radhakrishnan, G. V., Jayaraman, D., Cheema, J., Malbreil, M., Volkening, J. D., Sekimoto, H., Nishiyama, T., Melkonian, M., Pokorny, L., Rothfels, C. J., Sederoff, H. W., Stevenson, D. W., Surek, B., Zhango, Y., Sussman, M. R., Dunand, C., Morris, R. J., Roux, C., Wong, G. K.-S., Oldroyd, G. E. D., & Ané, J.-M. (2015). Algal ancestor of land plants was preadapted for symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 43, 13390–13395.CrossRefGoogle Scholar
  18. Delwiche, C. F., & Cooper, E. D. (2015). The evolutionary origin of a terrestrial flora. Current Biology, 25, R899–R910.PubMedCrossRefGoogle Scholar
  19. Delwiche, C. F., Karol, K. G., & Cimino, M. T. (2002). Phylogeny of the genus Coleochaete (Coleochaetales, Charophyta) and related taxa inferred by analysis of the chloroplast gene rbcL. Journal of Phycology, 38, 394–403.CrossRefGoogle Scholar
  20. Domozych, D. S., Wells, B., & Shaw, P. J. (1991). Basket scales of the green alga, Mesostigma viride: Chemistry and ultrastructure. Journal of Cell Science, 100, 397–407.Google Scholar
  21. Domozych, D. S., Wells, B., & Shaw, P. J. (1992). Scale biogenesis in the green alga, Mesostigma viride. Protoplasma, 167, 19–32.CrossRefGoogle Scholar
  22. Doty, K. F., Betzelberger, A. M., Kocot, K. M., & Cook, M. E. (2014). Immunofluorescence localization of the tubulin cytoskeleton during cell division and cell growth in members of the Coleochaetales. Journal of Phycology, 50, 624–639.PubMedCrossRefGoogle Scholar
  23. Finet, C., Timme, R. E., Delwiche, C. F., & Marlétaz, F. (2010). Multigene phylogeny of the green lineage reveals the origin and diversification of land plants. Current Biology, 20, 2217–2222.PubMedCrossRefGoogle Scholar
  24. Finet, C., Timme, R. E., Delwiche, C. F., & Marlétaz, F. (2012). Erratum: Multigene phylogeny of the green lineage reveals the origin and diversification of land plants. Current Biology, 22, 1456–1457.PubMedCrossRefGoogle Scholar
  25. Floyd, G. L., Stewart, K. D., & Mattox, K. R. (1972). Cellular organization, mitosis, and cytokinesis in the ulotrichalean alga, Klebsormidium. Journal of Phycology, 8, 176–184.CrossRefGoogle Scholar
  26. Frederick, S. E., Gruber, P. J., & Tolbert, N. E. (1973). The occurrence of glycolate dehydrogenase and glycolate oxidase in green plants. An evolutionary survey. Plant Physiology, 52, 318–323.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Graham, L. E. (1982). The occurrence and phylogenetic significance of parenchyma in Coleochaete Bréb. American Journal of Botany, 69, 447–454.CrossRefGoogle Scholar
  28. Graham, L. E. (1984). Coleochaete and the origin of land plants. American Journal of Botany, 71, 603–608.CrossRefGoogle Scholar
  29. Graham, L. E. (1985). The origin of the life cycle of land plants. American Scientist, 73, 178–186.Google Scholar
  30. Graham, L. E. (1990). Meiospore formation in charophycean algae. In S. Blackmore & R. B. Knox (Eds.), Microspores: Evolution and ontogeny (pp. 43–54). London: Academic.CrossRefGoogle Scholar
  31. Graham, L. E. (1993). Origin of land plants. New York: Wiley.Google Scholar
  32. Graham, L. E. (1996). Green algae to land plants: An evolutionary transition. Journal of Plant Research, 109, 241–251.CrossRefGoogle Scholar
  33. Graham, L. E., & Kaneko, Y. (1991). Subcellular structures of relevance to the origin of land plants (embryophytes) from green algae. Critical Reviews in Plant Science, 10, 323–342.CrossRefGoogle Scholar
  34. Graham, L. E., & McBride, G. E. (1979). The occurrence and phylogenetic significance of a multilayered structure in Coleochaete spermatozoids. American Journal of Botany, 66, 887–894.CrossRefGoogle Scholar
  35. Graham, L. E., & Taylor, C. (1986). The ultrastructure of meiospores of Coleochaete pulvinata (Charophyceae). Journal of Phycology, 22, 299–307.CrossRefGoogle Scholar
  36. Graham, L. E., & Wedemayer, G. J. (1984). Spermatogenesis in Coleochaete pulvinata (Charophyceae): Sperm maturation. Journal of Phycology, 20, 302–309.CrossRefGoogle Scholar
  37. Graham, L. E., & Wilcox, L. W. (1983). The occurrence and phylogenetic significance of putative placental transfer cells in the green algae Coleochaete. American Journal of Botany, 70, 113–120.CrossRefGoogle Scholar
  38. Graham, L. E., & Wilcox, L. W. (2000). The origin of alternation of generations in land plants: A focus on matrotrophy and hexose transport. Philosophical Transactions of the Royal Society of London B, 355, 757–767.CrossRefGoogle Scholar
  39. Graham, L. E., Graham, J. M., & Kranzfelder, J. A. (1986). Irradiance, day-length and temperature effects on zoosporogenesis in Coleochaete scutata (Charophyceae). Journal of Phycology, 22, 35–39.CrossRefGoogle Scholar
  40. Graham, L. E., Cook, M. E., & Busse, J. S. (2000). The origin of plants: Body plan changes contributing to a major evolutionary radiation. Proceedings of the National Academy of Sciences of the United States of America, 97, 4535–4540.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Graham, L. E., Arancibia-Avila, P., Taylor, W. A., Strother, P. K., & Cook, M. E. (2012). Aeroterrestrial Coleochaete (Streptophyta, Coleochaetales) models early plant adaptation to land. American Journal of Botany, 99, 130–144.PubMedCrossRefGoogle Scholar
  42. Graham, L. E., Graham, J. M., Wilcox, L. W., & Cook, M. E. (2016). Algae (3rd ed.). Madison: LJLM Press.Google Scholar
  43. Grievink, L. S., Penny, D., & Holland, B. R. (2013). Missing data and influential sites: Choice of sites for phylogenetic analysis can be as important as taxon sampling and model choice. Genome Biology and Evolution, 5, 681–687.CrossRefGoogle Scholar
  44. Hoffman, J. P., & Graham, L. E. (1984). Effects of selected physiochemical factors on growth and zoosporogenesis of Cladophora glomerata (Chlorophyta). Journal of Phycology, 20, 1–7.CrossRefGoogle Scholar
  45. Holzinger, A., Lütz, C., & Karsten, U. (2011). Desiccation stress causes structural and ultrastructural alterations in the aeroterrestrial green alga Klebsormidium crenulatum (Klebsormidiophyceae, Streptophyta) isolated from an alpine soil crust. Journal of Phycology, 47, 591–602.PubMedCrossRefGoogle Scholar
  46. Honda, M., & Hashimoto, H. (2007). Close association of centrosomes to the distal ends of the microbody during its growth, division and partitioning in the green alga Klebsormidium flaccidum. Protoplasma, 231, 127–135.PubMedCrossRefGoogle Scholar
  47. Hori, K., et al. (2014). Klebsormidium flaccidum genome reveals primary factors for plant terrestrial adaptation. Nature Communications, 5, 3978. doi:10.1038/ncomms4978.Google Scholar
  48. Hughes, E. O. (1948). New fresh-water Chlorophyceae from Nova Scotia. American Journal of Botany, 35, 424–427.PubMedCrossRefGoogle Scholar
  49. Iwamoto, K., & Ikawa, T. (2000). A novel glycolate oxidase requiring flavin mononucleotide as the cofactor in the prasinophycean alga Mesostigma viride. Plant and Cell Physiology, 48, 988–991.CrossRefGoogle Scholar
  50. Jobson, R. W., & Qiu, Y.-L. (2011). Amino acid compositional shifts during streptophyte transitions to terrestrial habitats. Journal of Molecular Evolution, 72, 204–214.PubMedCrossRefGoogle Scholar
  51. Kaplan, F., Lewis, L. A., Wastian, J., & Holzinger, A. (2012). Plasmolysis effects and osmotic potential of two phylogenetically distinct alpine strains of Klebsormidium (Streptophyta). Protoplasma, 249, 789–804.PubMedCrossRefGoogle Scholar
  52. Karol, K. G., McCourt, R. M., Cimino, M. T., & Delwiche, C. F. (2001). The closest living relatives of land plants. Science, 294, 2351–2353.PubMedCrossRefGoogle Scholar
  53. Karsten, U., & Holzinger, A. (2014). Green algae in alpine biological soil crust communities: Acclimation strategies against ultraviolet radiation and dehydration. Biodiversity and Conservation, 23, 1845–1858.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Karsten, U., Herburger, K., & Holzinger, A. (2014). Dehydration, temperature, and light tolerance in members of the aeroterrestrial green algal genus Interfilum (Streptophyta) from biogeographically different temperate soils. Journal of Phycology, 50, 804–816.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Katsaros, C. I., Varvarigos, V., Gachonb, C. M. M., Brand, J., Motomurad, T., Nagasatod, C., & Küpperb, F. C. (2011). Comparative immunofluorescence and ultrastructural analysis of microtubule organization in Uronema sp., Klebsormidium flaccidum, K. subtilissimum, Stichococcus bacillaris and S. chloranthus (Chlorophyta). Protist, 162, 315–331.PubMedCrossRefGoogle Scholar
  56. Kim, E., Wilcox, L. W., Fawley, M. W., & Graham, L. E. (2006). Phylogenetic position of the green flagellate Mesostigma vidide based on a-tubulin and b-tubulin gene sequences. International Journal of Plant Sciences, 167, 873–883.CrossRefGoogle Scholar
  57. Kitzing, C., & Karsten, U. (2015). Effects of UV radiation on optimum quantum yield and sunscreen contents in members of the genera Interfilum, Klebsormidium, Hormidiella and Entransia (Klebsormidiophyceae, Streptophyta). European Journal of Phycology, 50, 279–287.CrossRefGoogle Scholar
  58. Knack, J. J., Wilcox, L. W., Delaux, P.-M., Ané, J.-M., Piotrowski, M. J., Cook, M. E., Graham, J. M., & Graham, L. E. (2015). Microbiomes of streptophyte algae and bryophytes suggest that a functional suite of microbiota fostered plant colonization of land. International Journal of Plant Sciences, 176, 405–420.CrossRefGoogle Scholar
  59. Laenen, B., Shaw, B., Schneider, H., Goffinet, B., Paradis, E., Désamoré, A., Heinrichs, J., Villarreal, J. C., Gradstein, S. R., McDaniel, S. F., Long, D. G., Forrest, L. L., Hollingsworth, M. L., Crandall-Stotler, B., David, E. C., Engel, J., Von Konrat, M., Cooper, E. D., Patiño, J., Cox, C. J., Vanderpoorten, A., & Shaw, A. J. (2014). Extant diversity of bryophytes emerged from successive post-Mesozoic diversification bursts. Nature Communications, 5, 5134. doi:10.1038/ncomms6134.PubMedCrossRefGoogle Scholar
  60. Laurin-Lemay, S., Brinkmann, H., & Philippe, H. (2012). Origin of land plants revisited in the light of sequence contamination and missing data. Current Biology, 22, R593–R594.PubMedCrossRefGoogle Scholar
  61. Leliaert, F., Verbruggen, H., & Zechman, F. W. (2011). Into the deep: New discoveries at the base of the green plant phylogeny. Bioessays, 33, 683–692.PubMedCrossRefGoogle Scholar
  62. Leliaert, F., Smith, D. R., Moreau, H., Herron, M. D., Verbruggen, H., Delwiche, C. F., & De Clerck, O. (2012). Phylogeny and molecular evolution of the green algae. Current Research in Plant Sciences, 31, 1–46.Google Scholar
  63. Lemieux, C., Otis, C., & Turmel, M. (2000). Ancestral chloroplast genome in Mesostigma viride reveals an early branch of green plant evolution. Nature, 403, 649–652.PubMedCrossRefGoogle Scholar
  64. Lemieux, C., Otis, C., & Turmel, M. (2007). A clade uniting the green algae Mesostigma viride and Chlorokybus atmophyticus represents the deepest branch of the Streptophyta in chloroplast genome-based phylogenies. BMC Biology, 5, 2. doi:10.1186/1741-7007-5-2.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Lewis, L. A., & McCourt, R. M. (2004). Green algae and the origin of land plants. American Journal of Botany, 91, 1535–1556.PubMedCrossRefGoogle Scholar
  66. Lokhorst, G. M. (1996). Comparative taxonomic studies on the genus Klebsormidium (Charophyceae) in Europe. Cryptogamic Studies, 5, 1–132.Google Scholar
  67. Lokhorst, G. M., & Star, W. (1985). Ultrastructure of mitosis and cytokinesis in Klebsormidium mucosum nov. comb., formerly Ulothrix verrucosa (Chlorophyta). Journal of Phycology, 21, 466–476.CrossRefGoogle Scholar
  68. Lokhorst, G. M., Sluiman, H. J., & Star, W. (1988). The ultrastructure of mitosis and cytokinesis in the sarcinoid Chlorokybus atmophyticus (Chlorophyta, Charophyceae) revealed by rapid freeze fixation and freeze substitution. Journal of Phycology, 24, 237–248.Google Scholar
  69. Lokhorst, G. M., Star, W., & Lukešová, A. (2000). The new species Hormidiella attenuata (Klebsormidiales), notes on morphology and reproduction. Algological Studies, 100, 11–27.Google Scholar
  70. Manton, I., & Ettl, H. (1965). Observations on the fine structure of Mesostigma viride Lauterborn. Botanical Journal of the Linnean Society, 59, 175–184.CrossRefGoogle Scholar
  71. Marchant, H. J., & Pickett-Heaps, J. D. (1973). Mitosis and cytokinesis in Coleochaete scutata. Journal of Phycology, 9, 461–471.Google Scholar
  72. Marchant, H. J., & Pickett-Heaps, J. D. (1977). Ultrastructure, development and cytoplasmic rotation of seta-bearing cells of Coleochaete scutata. Journal of Phycology, 13, 28–36.Google Scholar
  73. Marchant, H. J., Pickett-Heaps, J. D., & Jacobs, K. (1973). An ultrastructural study of zoosporogenesis and the mature zoospore of Klebsormidium flaccidum. Cytobios, 8, 95–107.PubMedGoogle Scholar
  74. Marin, B., & Melkonian, M. (1999). Mesostigmatophyceae, a new class of streptophyte green algae revealed by SSU rRNA sequence comparisons. Protist, 150, 399–417.PubMedCrossRefGoogle Scholar
  75. Mattox, K. R., & Stewart, K. D. (1984). Classification of the green algae: A concept based on comparative cytology. In D. E. G. Irvine & D. M. John (Eds.), Systematics of the green algae (pp. 29–72). London/Orlando: Academic.Google Scholar
  76. McCourt, R. M. (1995). Green algal phylogeny. Trends in Ecology & Evolution, 10, 159–163.CrossRefGoogle Scholar
  77. McCourt, R. M., Karol, K. G., Bell, J., Helm-Bychowski, K. M., Grajewska, A., Wojciechowski, M. F., & Hoshaw, R. W. (2000). Phylogeny of the conjugating green algae (Zygnemophyceae) based on rbcL sequences. Journal of Phycology, 36, 747–758.CrossRefGoogle Scholar
  78. McCourt, R. M., Delwiche, C. F., & Karol, K. G. (2004). Charophyte algae and land plant origins. Trends in Ecology & Evolution, 19, 661–666.CrossRefGoogle Scholar
  79. Melkonian, M. (1989). Flagellar apparatus ultrastructure in Mesostigma viride (Prasinophyceae). Plant Systematics and Evolution, 164, 93–122.CrossRefGoogle Scholar
  80. Mikhailyuk, T. I., Sluiman, H. J., Massalski, A., Mudimu, O., Demchenko, E. M., Kondratyuk, S. Y., & Friedl, T. (2008). New streptophyte green algae from terrestrial habitats and an assessment of the genus Interfilum (Klebsormidiophyceae, Streptophyta). Journal of Phycology, 44, 1586–1603.PubMedCrossRefGoogle Scholar
  81. Mikhailyuk, T. I., Holzinger, A., Massalski, A., & Karsten, U. (2014). Morphology and ultrastructure of Interfilum and Klebsormidium (Klebsormidiales, Streptophyta) with special reference to cell division and thallus formation. European Journal of Phycology, 49, 395–412.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Mikhailyuk, T. I., Glaser, K., Holzinger, A., & Karsten, U. (2015). Biodiversity of Klebsormidium (Streptophyta) from alpine biological soilcrusts (Alps, Tyrol, Austria, and Italy). Journal of Phycology, 51, 750–767.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Moestrup, Ø. (1974). Ultrastructure of the scale-covered zoospores of the green alga Chaetosphaeridium, a possible ancestor of the higher plants and bryophytes. Biological Journal of the Linnean Society, 6, 111–125.CrossRefGoogle Scholar
  84. Nedelcu, A. M., Borza, T., & Lee, R. W. (2006). A land plant–specific multigene family in the unicellular Mesostigma argues for its close relationship to Streptophyta. Molecular Biology and Evolution, 23, 1011–1015.PubMedCrossRefGoogle Scholar
  85. Nichols, H. W. (1973). Growth media-freshwater. In J. Stein (Ed.), Handbook of phycological methods (Culture methods and growth measurements, Vol. 1, pp. 7–24). London/New York: Cambridge University Press.Google Scholar
  86. Novis, P. M. (2006). Taxonomy of Klebsormidium (Klebsormidiales, Charophyceae) in New Zealand streams and the significance of low-pH habitats. Phycologia, 45, 293–301.CrossRefGoogle Scholar
  87. Novis, P. M., & Visnovsky, G. (2011). Novel alpine algae for New Zealand: Klebsormidiales. New Zealand Journal of Botany, 49, 339–349.CrossRefGoogle Scholar
  88. O’Rourke, C., Gregson, T., Murray, L., Sadler, I. H., & Fry, S. C. (2015). Sugar composition of the pectic polysaccharides of charophytes, the closest algal relatives of land-plants: Presence of 3-O-methyl-d-galactose residues. Annals of Botany, 116, 225–236.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Okuda, K., & Brown, R. M. (1992). A new putative cellulose-synthesizing complex of Colechaete scutata. Protoplasma, 168, 51–63.CrossRefGoogle Scholar
  90. Orandi, S., & Lewis, D. M. (2013). Biosorption of heavy metals in a photo-rotating biological contactor – a batch process study. Applied Microbiology and Biotechnology, 97, 5113–5123.PubMedCrossRefGoogle Scholar
  91. Petersen, J., Teich, R., Becker, B., Cerff, R., & Binkmann, H. (2006). The Gap A/B gene duplication marks the origin of Streptophyta (Charophytes and land plants). Molecular Biology and Evolution, 23, 1109–1118.PubMedCrossRefGoogle Scholar
  92. Pickett-Heaps, J. D. (1972). Cell division in Klebsormidium subtilissimum (formerly Ulothrix subtillissima) and its possible phylogenetic significance. Cytobios, 6, 167–183.PubMedGoogle Scholar
  93. Pickett-Heaps, J. D., & Marchant, H. J. (1972). The phylogeny of the green algae: A new proposal. Cytobios, 6, 255–264.Google Scholar
  94. Pringsheim, N. (1860). Beiträge zur Morphologie und Systematik der Algen. III. Die Coleochaeteen. Jahrbuch für Wissenschaftliche Botanik, 2, 1–38.Google Scholar
  95. Printz, H. (1964). Die Chaetophoralean der Binnengewässer, Eine systematische Übersicht. Hydrobiologia, 24, 1–376.CrossRefGoogle Scholar
  96. Qiu, Y.-L., Li, L., Wang, B., Chen, Z., Dombrovska, O., Lee, J., Kent, L., Li, R., Jobson, R. W., Hendry, T. A., Taylor, D. W., Testa, C. M., & Ambros, M. (2007). A nonflowering land plant phylogeny inferred from nucleotide sequences of seven chloroplast, mitochondrial, and nuclear genes. International Journal of Plant Sciences, 168, 691–708.CrossRefGoogle Scholar
  97. Rindi, F., Guiry, M. D., & Lopez-Bautista, J. M. (2008). Distribution, morphology, and phylogeny of Klebsormidium (Klebsormidiales, Charaophyceae) in urban environments in Europe. Journal of Phycology, 44, 1529–1540.PubMedCrossRefGoogle Scholar
  98. Rindi, F., Mikhailyuk, T. I., Sluiman, H. J., Friedl, T., & Lopez-Bautista, J. M. (2011). Phylogenetic relationships in Interfilum and Klebsormidium (Klebsormidiophyceae, Streptophyta). Molecular Phylogenetics and Evolution, 58, 218–231.PubMedCrossRefGoogle Scholar
  99. Rodríguez-Ezpeleta, N., Philippe, H., Brinkmann, H., Becker, B., & Melkonian, M. (2007). Phylogenetic analyses of nuclear, mitochondrial, and plastid multigene data sets support the placement of Mesostigma in the Streptophyta. Molecular Biology and Evolution, 24, 723–731.PubMedCrossRefGoogle Scholar
  100. Rogers, C. E., Mattox, K. R., & Stewart, K. D. (1980). The zoospore of Chlorokybus atmophyticus, a charophyte with sarcinoid growth habit. American Journal of Botany, 67, 774–783.CrossRefGoogle Scholar
  101. Rogers, C. E., Domozych, D. S., Stewart, K. D., & Mattox, K. R. (1981). The flagellar apparatus of Mesostigma viride (Prasinophyceae): Multilayered structures in a scaly green flagellate. Plant Systematics and Evolution, 138, 247–258.CrossRefGoogle Scholar
  102. Schwender, J., Gemunden, C., & Lichtenthaler, H. K. (2001). Chlorophyta exclusively use the 1-deoxyxylulose 5-phosphate/2-C-methylerythritol 4-phosphate pathway for the biosynthesis of isoprenoids. Planta, 212, 416–423.PubMedCrossRefGoogle Scholar
  103. Silva, P. C., Mattox, K. R., & Blackwell, W. H., Jr. (1972). The generic name Hormidium as applied to green algae. Taxon, 21, 639–645.CrossRefGoogle Scholar
  104. Simon, A., Glöckner, G., Felder, M., Melkonian, M., & Becker, B. (2006). EST analysis of the scaly green flagellate Mesostigma viride (Streptophyta): Implications for the evolution of green plants (Viridiplantae). BMC Plant Biology, 6, 2. doi:10.1186/1471-2229-6-2.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Škaloud, P. (2006). Variation and taxonomic significance of some morphological features in European strains of Klebsormidium (Klebsormidiophyceae, Streptophyta). Nova Hedwigia, 83, 533–550.CrossRefGoogle Scholar
  106. Škaloud, P. (2009). Species composition and diversity of aero-terrestrial algae and cyanobacteria of the Boreč Hill ventaroles. Fottea, 9, 65–80.CrossRefGoogle Scholar
  107. Škaloud, P., & Rindi, F. (2013). Ecological differentiation of cryptic species within an asexual protist morphospecies: A case study of filamentous green alga Klebsormidium (Streptophyta). Journal of Eukaryotic Microbiology, 60, 350–362.PubMedCrossRefGoogle Scholar
  108. Sluiman, H. J. (1983). The flagellar apparatus of the zoospore of the filamentous green algae Coleochaete pulvinata: Absolute configuration and phylogenetic significance. Protoplasma, 115, 160–175.CrossRefGoogle Scholar
  109. Sluiman, H. J., Guihal, C., & Mudimu, O. (2008). Assessing phylogenetic affinities and species delimitations in Klebsormidiales (Streptophyta): Nuclear-encoded rDNA phylogenies and ITS secondary structure models in Klebsormidium, Hormidiella, and Entransia. Journal of Phycology, 44, 183–195.PubMedCrossRefGoogle Scholar
  110. Smith, G. M. (1950). The fresh-water algae of the United States. New York/Toronto/London: McGraw-Hill.Google Scholar
  111. Sørensen, I., Pettolino, F. A., Bacic, A., Ralph, J., Lu, F., O’Neill, M. A., Fei, Z., Rose, J. K. C., Domozych, D. S., & Willats, W. G. T. (2011). The charophycean green algae provide insights into the early origins of plant cell walls. The Plant Journal, 68, 201–211.PubMedCrossRefGoogle Scholar
  112. Stabenau, H., & Winkler, U. (2005). Glycolate metabolism in green algae. Physiologia Plantarum, 123, 235–245.CrossRefGoogle Scholar
  113. Stewart, K. D., & Mattox, K. R. (1975). Comparative cytology, evolution and classification of the green algae, with some consideration of the origin of other organisms with chlorophylls a and b. Botanical Review, 41, 104–135.CrossRefGoogle Scholar
  114. Thompson, R. H. (1969). Sexual reproduction in Chaetosphaeridium globosum (Nordst.) Klebahn (Chlorophyceae) and description of a species new to science. Journal of Phycology, 5, 285–290.PubMedCrossRefGoogle Scholar
  115. Timme, R. E., Bachvaroff, T. R., & Delwiche, C. F. (2012). Broad phylogenomic sampling and the sister lineage of land plants. PLoS ONE, 7, e29696. doi:10.1371/journal.pone.0029696.PubMedPubMedCentralCrossRefGoogle Scholar
  116. Tsekos, I. (1999). The sites of cellulose synthesis in algae: Diversity and evolution of cellulose-synthesizing enzyme complexes. Journal of Phycology, 35, 635–655.CrossRefGoogle Scholar
  117. Turmel, M., Ehara, M., Otis, C., & Lemieux, C. (2002). Phylogenetic relationships among streptophytes as inferred from chloroplast small and large subunit rRNA gene sequences. Journal of Phycology, 38, 364–375.CrossRefGoogle Scholar
  118. Turmel, M., Otis, C., & Lemieux, C. (2003). The mitochondrial genome of Chara vulgaris: Insights into the mitochondrial DNA architecture of the last common ancestor of green algae and land plants. The Plant Cell, 15, 1888–1903.PubMedPubMedCentralCrossRefGoogle Scholar
  119. Turmel, M., Otis, C., & Lemieux, C. (2006). The chloroplast genome sequence of Chara vulgaris sheds new light into the closest green algal relatives of land plants. Molecular Biology and Evolution, 23, 1324–1338.PubMedCrossRefGoogle Scholar
  120. Turmel, M., Pombert, J.-F., Charlebois, P., Otis, C., & Lemieux, C. (2007). The green algal ancestry of land plants as revealed by the chloroplast genome. International Journal of Plant Sciences, 168, 679–689.CrossRefGoogle Scholar
  121. Turmel, M., Otis, C., & Lemieux, C. (2013). Tracing the evolution of streptophyte algae and their mitochondrial genome. Genome Biology and Evolution, 5, 1817–1835.PubMedPubMedCentralCrossRefGoogle Scholar
  122. Viaene, T., Delwiche, C. F., Rensing, S. A., & Friml, J. (2013). Origin and evolution of PIN auxin transporters in the green lineage. Trends in Plant Science, 18, 5–10.PubMedCrossRefGoogle Scholar
  123. Wesley, O. (1928). Asexual reproduction in Coleochaete. Botanical Gazette, 86, 1–31.CrossRefGoogle Scholar
  124. Wickett, N. J., et al. (2014). Phylotranscriptomic analysis of the origin and early diversification of land plants. Proceedings of the National Academy of Sciences of the United States of America, 111, E4859–E4868. doi:10.1073/pnas.1323926111.PubMedPubMedCentralCrossRefGoogle Scholar
  125. Wodniok, S., Brinkmann, H., Glöckner, G., Heidel, A. J., Philippe, H., Melkonian, M., & Becker, B. (2011). Origin of land plants: Do conjugating green algae hold the key? BMC Evolutionary Biology, 11, 104. doi:10.1186/1471-2148-11-104.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Biological SciencesIllinois State UniversityNormalUSA
  2. 2.Department of BotanyUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations