Reference work entry


Rhodophyta, or red algae, comprises a monophyletic lineage within Archaeplastida that includes glaucophyte algae and green algae plus land plants. Rhodophyta has a long fossil history with evidence of Bangia-like species in ca. 1.2 billion-year-old deposits. Red algal morphology varies from unicellular, filamentous, to multicellular thalloid forms, some of which are sources of economically important products such as agar and carrageenan. These species live primarily in marine environments from the intertidal zone to deep waters. Freshwater (e.g., Batrachospermum) and terrestrial lineages also occur. One of the major innovations in the Rhodophyta is a triphasic life cycle that includes one haploid and two diploid phases with the carposporophyte borne on female gametophytes. Red algae are also well known for their contribution to algal evolution with ecologically important chlorophyll-c containing lineages such as diatoms, dinoflagellates, haptophytes, and phaeophytes all containing a red algal-derived plastid of serial endosymbiotic origin. Analysis of red algal nuclear genomes shows that they have relatively small gene inventories of 6,000–10,000 genes when compared to other free-living eukaryotes. This is likely explained by a phase of massive genome reduction that occurred in the red algal ancestor living in a highly specialized environment. Key traits that have been lost in all red algae include flagella and basal body components, light-sensing phytochromes, and the glycosylphosphatidylinositol (GPI)-anchor biosynthesis and macroautophagy pathways. Research into the biology and evolution of red algae is accelerating and will provide exciting insights into the diversification of this unique group of photosynthetic eukaryotes.


Red algae Rhodophyta Ultrastructure Evolutionary timeline Triphasic life history Genome reduction 


  1. Ackland, J. C., West, J. A., & Pickett-Heaps, J. (2007). Actin and myosin regulate pseudopodia of Porphyra pulchella (Rhodophyta) archeospores. Journal of Phycology, 43(1), 129–138.CrossRefGoogle Scholar
  2. Adey, W. H. (1998). Coral reefs: Algal structured and mediated ecosystems in shallow, turbulent, alkalinewaters. Journal of Phycology, 34(3), 393–406.CrossRefGoogle Scholar
  3. Adey, W. H., & Hayek, L.-A. C. (2011). Elucidating marine biogeography with macrophytes: Quantitative analysis of the North Atlantic supports the thermogeographic model and demonstrates a distinct subarctic region in the northwestern Atlantic. Northeastern Naturalist, 18(8), 1–128.CrossRefGoogle Scholar
  4. Adey, W. H., & Steneck, R. S. (2001). Thermogeography over time creates biogeographic regions: A temperature/space/time-integrated model and an abundance-weighted test for benthic marine algae. Journal of Phycology, 37(5), 677–698.CrossRefGoogle Scholar
  5. Adey, W. H., Lindstrom, S. C., Hommersand, M. H., & Müller, K. M. (2008). The biogeographic origin of Arctic endemic seaweeds: A thermogeographic view. Journal of Phycology, 44(6), 1384–1394.PubMedCrossRefGoogle Scholar
  6. Adey, W., Halfar, J., Humphreys, A., Suskiewicz, T., Belanger, D., Gagnon, P., & Fox, M. (2015). Subarctic rhodolith beds promote longevity of crustose coralline algal buildups and their climate archiving potential. Palaios, 30, 281–293.CrossRefGoogle Scholar
  7. Adl, S. M., Simpson, A. G., Farmer, M. A., Andersen, R. A., Anderson, O. R., Barta, J. R., et al. (2005). The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. Journal of Eukaryotic Microbiology, 52(5), 399–451.PubMedCrossRefGoogle Scholar
  8. Aguirre, J., Riding, R., & Braga, J. C. (2000). Diversity of coralline red algae: Origination and extinction patterns from the early Cretaceous to the Pleistocene. Paleobiology, 26(04), 651–667.CrossRefGoogle Scholar
  9. Aguirre, J., Perfecti, F., & Braga, J. C. (2010). Integrating phylogeny, molecular clocks, and the fossil record in the evolution of coralline algae (Corallinales and Sporolithales, Rhodophyta). Paleobiology, 36(4), 519–533.CrossRefGoogle Scholar
  10. Amado-Filho, G. M., Moura, R. L., Bastos, A. C., Salgado, L. T., Sumida, P. Y., Guth, A. Z., et al. (2012). Rhodolith beds are major CaCO3 bio-factories in the tropical South West Atlantic. PloS One, 7, e35171.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Amsler, C. D., Iken, K., McClintock, J. B., & Baker, B. J. (2009). Defenses of polar macroalgae against herbivores and biofoulers. Botanica Marina, 52(6), 535–545.CrossRefGoogle Scholar
  12. Andreakis, N., Procaccini, G., Maggs, C., & Kooistra, W. H. C. F. (2007). Phylogeography of the invasive seaweed Asparagopsis (Bonnemaisoniales, Rhodophyta) reveals cryptic diversity. Molecular Ecology, 16(11), 2285–2299.PubMedCrossRefGoogle Scholar
  13. Andreakis, N., Kooistra, W. H. C. F., & Procaccini, G. (2009). High genetic diversity and connectivity in the polyploid invasive seaweed Asparagopsis taxiformis (Bonnemaisoniales) in the Mediterranean, explored with microsatellite alleles and multilocus genotypes. Molecular Ecology, 18(2), 212–226.PubMedCrossRefGoogle Scholar
  14. Araujo, R., Violante, J., Pereira, R., Abreu, H., Arenas, F., & Sousa-Pinto, I. (2011). Distribution and population dynamics of the introduced seaweed Grateloupia turuturu (Halymeniaceae, Rhodophyta) along the Portuguese coast. Phycologia, 50(4), 392–402.CrossRefGoogle Scholar
  15. Babuka, S. J., & Pueschel, C. M. (1998). A freeze-substitution ultrastructural study of the cytoskeleton of the red alga Antithamnion kylinii (Ceramiales). Phycologia, 37(4), 251–258.CrossRefGoogle Scholar
  16. Barbera, C., Bordehore, C., Borg, J. A., Glémarec, M., Grall, J., Hall-Spencer, J. M., et al. (2003). Conservation and management of northeast Atlantic and Mediterranean maërl beds. Aquatic Conservation: Marine and Freshwater Ecosystems, 13(S1), S65–S76.CrossRefGoogle Scholar
  17. Basso, D. (2012). Carbonate production by calcareous red algae and global change. Geodiversitas, 34(1), 13–33.CrossRefGoogle Scholar
  18. Bhattacharya, D., Yoon, H. S., & Hackett, J. D. (2004). Photosynthetic eukaryotes unite: Endosymbiosis connects the dots. Bioessays, 26(1), 50–60.PubMedCrossRefGoogle Scholar
  19. Bhattacharya, D., Price, D. C., Chan, C. X., Qiu, H., Rose, N., Ball, S., et al. (2013). Genome of the red alga Porphyridium purpureum. Nature Communications, 4, 1941.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Bischof, K., & Steinhoff, F. S. (2012). Impact of stratospheric ozone depletion and solar UVB radiation on seaweeds. In C. Wiencke & K. Bischof (Eds.), Seaweed biology: Novel insights into ecophysiology, ecology and utilization (pp. 433–448). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  21. Bischoff-Bäsmann, B., & Wiencke, C. (1996). Temperature requirements for growth and survival of Antarctic Rhodophyta. Journal of Phycology, 32, 525–535.CrossRefGoogle Scholar
  22. Bischoff-Bäsmann, B., Bartsch, I., Xia, B. M., & Wiencke, C. (1997). Temperature responses of macroalgae from the tropical island Hainan (P. R. China). Phycological Research, 45(2), 91–104.CrossRefGoogle Scholar
  23. Blunt, J. W., Copp, B. R., Munro, M. H. G., Northcote, P. T., & Prinsep, M. R. (2011). Marine natural products. Natural Product Reports, 28, 196–268.PubMedCrossRefGoogle Scholar
  24. Boo, G. H., Hwang, I. K., Ha, D. S., Miller, K. A., Cho, G. Y., Kim, J. Y., & Boo, S. M. (2016a). Phylogeny and distribution of the genus Pikea (Rhodophyta) with a special reference to P. yoshizakii from Korea. Phycologia, 55, 3–11.CrossRefGoogle Scholar
  25. Boo, G. H., Nelson, W. A., Preuss, M., Kim, J. Y., & Boo, S. M. (2016b). Genetic segregation and differentiation of a common subtidal red alga Pterocladia lucida (Gelidiales, Rhodophyta) between Australia and New Zealand. Journal of Applied Phycology, 28, 2027–2034.CrossRefGoogle Scholar
  26. Briand, X. (1991). Seaweed harvesting in Europe. In M. D. Guiry & G. Blunden (Eds.), Seaweed resources in Europe: Uses and potential (pp. 293–308). London: Wiley.Google Scholar
  27. Broadwater, S. T., & Scott, J. L. (1994). Ultrastructure of unicellular red algae. In J. Sechback (Ed.), Evolutionary pathways and enigmatic algae: Cyanidium caldarium (Rhodophyta) and related cells (pp. 215–230). Dordrecht: Kluwer.CrossRefGoogle Scholar
  28. Broadwater, S. T., Scott, J. L., & Garbary, D. J. (1992). Cytoskeleton and mitotic spindle in red algae. In D. Menzel (Ed.), The cytoskeleton of the algae (pp. 93–112). Boca Raton: CRC Press.Google Scholar
  29. Brodie, J., Williamson, C. J., Smale, D. A., Kamenos, N. A., et al. (2014). The future of the northeast Atlantic benthic flora in a high CO2 world. Ecology and Evolution, 4, 2787–2798.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Brooke, C., & Riding, R. (1998). Ordovician and Silurian coralline red algae. Lethaia, 31(3), 185–195.CrossRefGoogle Scholar
  31. Broom, J. E. S., Farr, T. J., & Nelson, W. A. (2004). Phylogeny of the Bangia flora of New Zealand suggests a southern origin for Porphyra and Bangia (Bangiales, Rhodophyta). Molecular Phylogenetics and Evolution, 31(3), 1197–1207.PubMedCrossRefGoogle Scholar
  32. Buchholz, C. M., Krause, G., & Buck, B. H. (2012). Chapter 22. Seaweed and Man. In C. Wiencke & K. Bischof (Eds.), Seaweed biology: Novel insights into ecophysiology, ecology and utilization (pp. 471–493). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  33. Burki, F., Kaplan, M., Tikhonenkov, D. V., Zlatogursky, V., Minh, B. Q., Radaykina, L. V., et al. (2016). Untangling the early diversification of eukaryotes: A phylogenomic study of the evolutionary origins of Centrohelida, Haptophyta and Cryptista. Proceedings of the Royal Society B, 283(1823), 20152802. The Royal Society.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Butterfield, N. J. (2000). Bangiomorpha pubescens n. gen., n. sp.: Implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology, 26, 386–404.CrossRefGoogle Scholar
  35. Cecere, E., Petrocelli, A., & Verlaque, M. (2011). Vegetative reproduction by multicellular propagules in Rhodophyta: An overview. Marine Ecology, 32, 419–437.CrossRefGoogle Scholar
  36. Chan, C. X., Yang, E. C., Banerjee, T., Yoon, H. S., Martone, P. T., Estevez, J. M., et al. (2011). Red and green algal monophyly and extensive gene sharing found in a rich repertoire of red algal genes. Current Biology, 21, 328–333.PubMedCrossRefGoogle Scholar
  37. Chopin, T., Robinson, S. M. C., Troell, M., Neori, A., Buschmann, A. H., & Fang, J. (2008). Multitrophic integration for sustainable marine aquaculture. In S. E. Jørgensen & B. D. Fath (Eds.), Encyclopedia of ecology (Ecological engineering, Vol. 3, pp. 2463–2475). Oxford: Elsevier.CrossRefGoogle Scholar
  38. Ciniglia, C., Yoon, H. S., Pollio, A., Pinto, G., & Bhattacharya, D. (2004). Hidden biodiversity of the extremophilic Cyanidiales red algae. Molecular Ecology, 13, 1827–1838.PubMedCrossRefGoogle Scholar
  39. Ciniglia, C., Yang, E. C., Pinto, G., Iovinella, M., Vitale, L., & Yoon, H. S. (2014). Cyanidiophyceae in Iceland: Plastid rbcL gene elucidates origin and dispersal of extremophilic Galdieria sulphuraria and G. maxima (Galdieriaceae, Rhodophyta). Phycologia, 53, 542–551.CrossRefGoogle Scholar
  40. Collén, J. (2015). Win some, lose some: Genome evolution in red algae. Journal of Phycology, 51, 621–623.PubMedCrossRefGoogle Scholar
  41. Collén, J., Porcel, B., Carre, W., Ball, S. G., Chaparro, C., Tonon, T., et al. (2013). Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida. Proceedings of the National Academy of Sciences of the United States of America, 110, 5247–5252.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Condon, D., Zhu, M., Bowring, S., Wang, W., Yang, A., & Jin, Y. (2005). U-Pb ages from the Neoproterozoic Doushantuo Formation, China. Science, 308, 95–98.PubMedCrossRefGoogle Scholar
  43. Cowles, A., Hewitt, J. E., & Taylor, R. B. (2009). Density, biomass and productivity of small mobile invertebrates in a wide range of coastal habitats. Marine Ecology Progress Series, 384, 175–185.CrossRefGoogle Scholar
  44. D’Archino, R., Nelson, W. A., & Zuccarello, G. C. (2007). Invasive marine red alga introduced to New Zealand waters: First record of Grateloupia turuturu (Halymeniaceae, Rhodophyta). New Zealand Journal of Marine and Freshwater Research, 41, 35–42.CrossRefGoogle Scholar
  45. Das, S., Traynor-Kaplan, A., Kachintorn, U., Aley, S. B., & Gillin, F. D. (1994). GP49, an invariant GPI-anchored antigen of Giardia lamblia. Brazilian Journal of Medical and Biological Research, 27, 463–469.PubMedGoogle Scholar
  46. Davidson, A. D., Campbell, M. L., Hewitt, C. L., & Schaffelke, B. (2015). Assessing the impacts of nonindigenous marine macroalgae: An update of current knowledge. Botanica Marina, 58, 55–79.Google Scholar
  47. Derelle, E., Ferraz, C., Rombauts, S., Rouzé, P., Worden, A. Z., Robbens, S., et al. (2006). Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proceedings of the National Academy of Sciences of the United States of America, 103, 11647–11652.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Diaz-Pulido, G., McCook, L. J., Larkum, A. W. D., Lotze, H. K., & Raven, J. A. (2007). Vulnerability of macroalgae of the Great Barrier Reef to climate change. In J. Johnson & P. Marshall (Eds.), Climate change and the Great Barrier Reef: A vulnerability assessment (pp. 151–192). Townsville: Great Barrier Reef Marine Park Authority and Australian Greenhouse Office.Google Scholar
  49. Dixon, P. S. (1973). Biology of the Rhodophyta. New York: Hafner Press.Google Scholar
  50. Donaldson, S. L., Chopin, T., & Saunders, G. W. (2000). An assessment of the AFLP method for investigating population structure in the red alga Chondrus crispus Stackhouse (Gigartinales, Florideophycidae). Journal of Applied Phycology, 12, 25–35.CrossRefGoogle Scholar
  51. Dufresne, A., Salanoubat, M., Partensky, F., Artiguenave, F., Axmann, I. M., Barbe, V., et al. (2003). Genome sequence of the cyanobacterium Prochlorococcus marinus SS120, a nearly minimal oxyphototrophic genome. Proceedings of the National Academy of Sciences of the United States of America, 100, 10020–10025.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Dworjanyn, S. A., de Nys, R., & Steinberg, P. D. (2006). Chemically mediated antifouling in the red alga Delisea pulchra. Marine Ecology Progress Series, 318, 153–163.CrossRefGoogle Scholar
  53. Engel, C. R., Wattier, R., Destombe, C., & Valero, M. (1999). Performance of non-motile male gametes in the sea: Analysis of paternity and fertilization success in a natural population of a red seaweed, Gracilaria gracilis. Proceedings of the Royal Society London, Biology, 266, 1879–1886.CrossRefGoogle Scholar
  54. Engel, C. R., Destombe, C., & Valero, M. (2004). Mating system and gene flow in the red seaweed Gracilaria gracilis: Effect of haploid– diploid life history and intertidal rocky shore landscape on fine-scale genetic structure. Heredity, 92, 289–298.PubMedCrossRefGoogle Scholar
  55. FAO. (2014). The State of World Fisheries and Aquaculture 2014. Rome: FAO Fisheries and Aquaculture Department. Food and Agriculture Organization of the United Nations.Google Scholar
  56. Farris, J. (1977). Phylogenetic analysis under Dollo’s law. Systematic Zoology, 26, 77–88.CrossRefGoogle Scholar
  57. Fierst, J., terHorst, C., Kubler, J. E., & Dudgeon, S. (2005). Fertilization success can drive patterns of phase dominance in complex life histories. Journal of Phycology, 41, 238–249.CrossRefGoogle Scholar
  58. Fietzke, J., Ragazzola, F., Halfar, J., Dietze, H., Foster, L. C., Hansteen, T. H., Eisenhauer, A., & Steneck, R. S. (2015). Century-scale trends and seasonality in pH and temperature for shallow zones of the Bering Sea. Proceedings of the National Academy of Sciences of the United States of America, 112, 2960–2965.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Foster, M. S. (2001). Rhodoliths: Between rocks and soft places. Journal of Phycology, 37, 659–667.CrossRefGoogle Scholar
  60. Frantz, B. R., Kashgarian, M., Coale, K. H., & Foster, M. S. (2000). Growth rate and potential climate record from a rhodolith using 14C accelerator mass spectrometry. Limnology and Oceanography, 45, 1773–1777.CrossRefGoogle Scholar
  61. Frantz, B. R., Foster, M. S., & Riosmena-Rodríguez, R. (2005). Clathromorphum nereostratum (Corallinales, Rhodophyta): The oldest alga? Journal of Phycology, 41, 770–773.CrossRefGoogle Scholar
  62. Freshwater, D. W., Fredericq, S., Butler, B. S., Hommersand, M. H., & Chase, M. W. (1994). A gene phylogeny of the red algae (Rhodophyta) based on plastid rbcL. Proceedings of the National Academy of Sciences of the United States of America, 91, 7281–7285.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Gabrielson, P. W., Garbary, D. J., & Scagel, R. F. (1985). The nature of the ancestral red alga: Inferences from a cladistic analysis. BioSystems, 18, 335–346.PubMedCrossRefGoogle Scholar
  64. Gabrielson, P. W., Garbary, D. J., Sommerfeld, M. R., Townsend, R. A., & Tyler, P. L. (1990). Phylum Rhodophyta. In L. Margulis, J. O. Corliss, M. Melkonian, & D. J. Chapman (Eds.), Handbook of protoctista: The structure, cultivation, habitats and life histories of the eukayotic microorganisms and their descendants exclusive of animals, plants and fungi (p. 914). Boston: Jones and Bartlett Publishers.Google Scholar
  65. Galloway, A. W. E., Britton-Simmons, K. H., Duggins, D. O., Gabrielson, P. W., & Brett, M. T. (2012). Fatty acid signatures differentiate marine macrophytes at ordinal and family ranks. Journal of Phycology, 48, 956–965.PubMedCrossRefGoogle Scholar
  66. Garbary, D. J., & McDonald, A. R. (1996). Actin rings in cytokinesis of apical cells in red algae. Canadian Journal of Botany, 74, 971–974.CrossRefGoogle Scholar
  67. Gavio, B., & Fredericq, S. (2002). Grateloupia turuturu (Halymeniaceae, Rhodophyta) is the correct name of the non-native species in the Atlantic known as Grateloupia doryphora. European Journal of Phycology, 37, 349–359.CrossRefGoogle Scholar
  68. Grall, J., & Hall-Spencer, J. M. (2003). Problems facing maërl conservation in Brittany. Aquatic Conservation: Marine and Freshwater Ecosystems, 13(S1), S55–S64.CrossRefGoogle Scholar
  69. Gross, W., Heilmann, I., Lenze, D., & Schnarrenberger, C. (2001). Biogeography of the Cyanidiaceae (Rhodophyta) based on 18S ribosomal RNA sequence data. European Journal of Phycology, 36(03), 275–280.CrossRefGoogle Scholar
  70. Guillemin, M.-L., Faugeron, S., Destombe, C., Viard, F., Correa, J. A., & Valero, M. (2008). Genetic variation in wild and cultivated populations of the haploid-diploid red alga Gracilaria chilensis: How farming practices favor asexual reproduction and heterozygosity. Evolution, 62, 1500–1519.PubMedCrossRefGoogle Scholar
  71. Guillemin, M.-L., Sepúlveda, R. D., Correa, J. A., & Destombe, C. (2012). Differential ecological responses to environmental stress in the life history phases of the isomorphic red alga Gracilaria chilensis (Rhodophyta). Journal of Applied Phycology, 25(1), 215–224.CrossRefGoogle Scholar
  72. Guillemin, M.-L., Valero, M., Faugeron, S., Nelson, W., & Destombe, C. (2014). Tracing the trans-Pacific evolutionary history of a domesticated seaweed (Gracilaria chilensis) with archaeological and genetic data. PloS One, 9(12), e114039.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Gurgel, C. F. D., & Fredericq, S. (2004). Systematics of the Gracilariaceae (Gracilariales, Rhodophyta): A critical assessment based on rbcL sequence analysis. Journal of Phycology, 40(1), 138–159.CrossRefGoogle Scholar
  74. Gurgel, C. F. D., Fredericq, S., & Norris, J. N. (2004). Phylogeography of Gracilaria tikvahiae (Gracilariaceae, Rhodophyta): A study of genetic discontinuity in a continuously distributed species based on molecular evidence. Journal of Phycology, 40, 748–758.CrossRefGoogle Scholar
  75. Hackett, J. D., Yoon, H. S., Li, S., Reyes-Prieto, A., Rummele, S. E., & Bhattacharya, D. (2007). Phylogenomic analysis supports the monophyly of cryptophytes and haptophytes and the association of Rhizaria with chromalveolates. Molecular Biology and Evolution, 24(8), 1702–1713.PubMedCrossRefGoogle Scholar
  76. Halfar, J., Zach, T., Kronz, A., & Zachos, J. C. (2000). Growth and high resolution paleoenvironmental signals of rhodoliths (coralline red algae): A new biogenic archive. Journal of Geophysical Research, 105(C9), 22107–22116.CrossRefGoogle Scholar
  77. Halfar, J., Steneck, R., Schöne, B., Moore, G. W. K., Joachimski, M., Kronz, A., et al. (2007). Coralline alga reveals first marine record of subarctic North Pacific climate change. Geophysical Research Letters, 34, L07702.CrossRefGoogle Scholar
  78. Halfar, J., Steneck, R. S., Joachimski, M., Kronz, A., & Wanamaker, A. D., Jr. (2008). Coralline red algae as high-resolution climate recorders. Geology, 36, 463–466.CrossRefGoogle Scholar
  79. Halfar, J., Williams, B., Hetzinger, S., Steneck, R. S., Lebednik, P., Winsborough, C., et al. (2011). 225 years of Bering Sea climate and ecosystem dynamics revealed by coralline algal growth-increment widths. Geology, 39, 579–582.CrossRefGoogle Scholar
  80. Harley, C. D. G., & Paine, R. T. (2009). Contingencies and compounded rare perturbations dictate sudden distributional shifts during periods of gradual climate change. Proceedings of the National Academy of Sciences of the United States of America, 106, 11172–11176.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Harley, C. D. G., Anderson, K. M., Demes, K. W., Jorve, J. P., Kordas, R. L., Coyle, T. A., et al. (2012). Effects of climate change on global seaweed communities. Journal of Phycology, 48, 1064–1078.PubMedCrossRefGoogle Scholar
  82. Harper, J. T., & Garbary, D. J. (1997). Marine algae of northern Senegal: The flora and its biogeography. Botanica Marina, 40, 129–138.CrossRefGoogle Scholar
  83. Harvey, W. H. (1836). Algae. In J. T. Mackay (Ed.), Flora Hibernica (pp. 157–254). Dublin: William Curry Jun and Company.Google Scholar
  84. Hawkes, M. W. (1978). Sexual reproduction in Porphyra gardneri (Smith and Hollenberg) Hawkes (Bangiales, Rhodophyta). Phycologia, 17, 326–350.CrossRefGoogle Scholar
  85. Hawkes, M. W. (1988). Evidence of sexual reproduction in Smithora naiadum (Erythropeltidales, Rhodophyta) and its evolutionary significance. British Phycological Journal, 23(4), 327–336.CrossRefGoogle Scholar
  86. Haxo, F. T., & Blinks, L. R. (1950). Photosynthetic action spectra of marine algae. Journal of General Physiology, 33, 389–422.PubMedPubMedCentralCrossRefGoogle Scholar
  87. Hepburn, C. D., Pritchard, D. W., Cornwall, C. E., McLeod, R. J., Beardall, J., Raven, J. A., et al. (2011). Diversity of carbon use strategies in a kelp forest community: Implications for a high CO2 ocean. Global Change Biology, 17, 2488–2497.CrossRefGoogle Scholar
  88. Hernández-Kantún, J., Riosmena-Rodríguez, R., López-vivas, J. M., & Pacheco-Ruíz, I. (2010). Range extension for Kallymenia spp. (Kallymeniaceae: Rhodophyta) associated with rhodolith beds, new records from the Gulf of California, Mexico. Marine Biodiversity Records, 3(e84), 1–5.Google Scholar
  89. Hommersand, M. H. (2007). Global biogeography and relationships of the Australian marine macroalgae. In P. M. McCarthy & A. E. Orchard (Eds.), Algae of Australia – Introduction (pp. 511–542). Melbourne: ABRS/CSIRO Publishing.Google Scholar
  90. Hommersand, M. H., & Fredericq, S. (1990). Sexual reproduction and cystocarp development. In K. M. Cole & R. G. Sheath (Eds.), Biology of the red algae (pp. 305–345). New York: Cambridge University Press.Google Scholar
  91. Hommersand, M. H., Fredericq, S., & Freshwater, D. W. (1994). Phylogenetic systematics and biogeography of the Gigartinaceae (Gigartinales, Rhodophyta) based on sequence analysis of rbcL. Botanica Marina, 37, 193–203.CrossRefGoogle Scholar
  92. Hommersand, M. H., Moe, R. L., Amsler, C. D., & Fredericq, S. (2009). Notes on the systematics and biogeographical relationships of Antarctic and sub-Antarctic Rhodophyta with descriptions of four new genera and five new species. Botanica Marina, 52, 509–534.CrossRefGoogle Scholar
  93. Hsieh, C.-J., Zhan, S. H., Lin, Y., Tang, S.-L., & Liu, S.-L. (2015). Analysis of rbcL sequences reveals the global biodiversity, community structure, and biogeographical pattern of thermoacidophilic red algae (Cyanidiales). Journal of Phycology, 51, 682–694.PubMedCrossRefGoogle Scholar
  94. Hu, Z.-M., Guiry, M. D., Critchley, A. T., & Duan, D. L. (2010). Phylogeographic patterns indicate transatlantic migration from Europe to North America in the red seaweed Chondrus crispus (Gigartinales, Rhodophyta). Journal of Phycology, 46, 889–900.CrossRefGoogle Scholar
  95. Jackson, C. J., & Reyes-Prieto, A. (2014). The mitochondrial genomes of the glaucophytes Gloeochaete wittrockiana and Cyanoptyche gloeocystis: Multilocus phylogenetics suggests a monophyletic archaeplastida. Genome Biology and Evolution, 6(10), 2774–2785.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Janiak, D. S., & Whitlach, R. B. (2012). Epifaunal and algal assemblages associated with the native Chondrus crispus (Stackhouse) and the non-native Grateloupia turuturu (Yamada) in eastern Long Island Sound. Journal of Experimental Marine Biology and Ecology, 413, 38–44.CrossRefGoogle Scholar
  97. Judson, B. L., & Pueschel, C. M. (2002). Ultrastructure of trichocyte (hair cell) complexes in Jania adhaerens (Corallinales, Rhodophyta). Phycologia, 41, 68–78.CrossRefGoogle Scholar
  98. Kamenos, N. A., Moore, P. G., & Hall-Spencer, J. M. (2004a). Small-scale distribution of juvenile gadoids in shallow inshore waters; what role does maërl play? ICES Journal of Marine Science: Journal du Conseil, 61(3), 422–429.CrossRefGoogle Scholar
  99. Kamenos, N. A., Moore, P. G., & Hall-Spencer, J. M. (2004b). Maerl grounds provide both refuge and high growth potential for juvenile queen scallops (Aequipecten opercularis L.). Journal of Experimental Marine Biology and Ecology, 313(2), 241–254.CrossRefGoogle Scholar
  100. Kamenos, N. A., Cusack, M., & Moore, P. G. (2008). Coralline algae are global palaeothermometers with bi-weekly resolution. Geochimica et Cosmochimica Acta, 72(3), 771–779.CrossRefGoogle Scholar
  101. Karsten, U., West, J. A., Zuccarello, G. C., Engbrodt, R., Yokoyama, A., Hara, Y., et al. (2003). Low molecular weigh carbohydrates of the Bangiophycidae (Rhodophyta). Journal of Phycology, 39(3), 584–589.CrossRefGoogle Scholar
  102. Kawagoe, K., Kitamura, D., Okabe, M., Taniuchi, I., Ikawa, M., Watanabe, T., et al. (1996). Glycosylphosphatidylinositol-anchor-deficient mice: Implications for clonal dominance of mutant cells in paroxysmal nocturnal hemoglobinuria. Blood, 87(9), 3600–3606.PubMedGoogle Scholar
  103. Keeling, P. J., & Slamovits, C. H. (2005). Causes and effects of nuclear genome reduction. Current Opinion in Genetics and Development, 15, 601–608.PubMedCrossRefGoogle Scholar
  104. Keeling, P. J., Burki, F., Wilcox, H. M., Allam, B., Allen, E. E., Amaral-Zettler, L. A., et al. (2014). The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): Illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biology, 12(6), e1001889.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Kelaher, B. P., Castilla, J. C., & Seed, R. (2004). Intercontinental test of generality for spatial patterns among diverse molluscan assemblages in coralline algal turf. Marine Ecology Progress Series, 271, 221–231.CrossRefGoogle Scholar
  106. Kim, G. H., & Kim, S.-H. (1999). The role of F-actin during fertilization in the red alga Aglaothamnion oosumiense (Rhodophyta). Journal of Phycology, 35, 806–814.CrossRefGoogle Scholar
  107. Kim, S. Y., Weinberger, F., & Boo, S. M. (2010). Genetic diversity hints at a common donor region of the invasive Atlantic and Pacific populations of Gracilaria vermiculophylla (Rhodophyta). Journal of Phycology, 46, 1346–1349.CrossRefGoogle Scholar
  108. Klochkova, N. G., & Klochkova, T. A. (2001). Floristics and biogeography of marine benthic algae on the coast of Kamchatka and Commander Islands. Algae, 16, 19–128.Google Scholar
  109. Knoll, A. H. (2011). The multiple origins of complex multicellularity. Annual Review of Earth Planet Sciences, 39, 217–239.CrossRefGoogle Scholar
  110. Kollars, N. M., Krueger-Hadfield, S. A., Byers, J. E., Greig, T. W., Strand, A. E., Weinberger, F., & Sotka, E. E. (2015). Development and characterization of microsatellite loci for the haploid-diploid red seaweed Gracilaria vermiculophylla. PeerJ, 3, e1159.PubMedPubMedCentralCrossRefGoogle Scholar
  111. Konar, B., Riosmena-Rodriguez, R., & Katrin, I. (2006). Rhodolith bed: A newly discovered habitat in the North Pacific Ocean. Botanica Marina, 49, 355–359.CrossRefGoogle Scholar
  112. Krayesky, D. M., Norris, J. N., Gabrielson, P. W., Gabriel, D., & Fredericq, S. (2009). A new order of crustose red algae based on the Peyssonneliaceae with an evaluation of the ordinal classification of the Florideophyceae (Rhodophyta). Proceedings of the Biology Society of Washington, 123, 364–391.CrossRefGoogle Scholar
  113. Krueger-Hadfield, S. A., Collén, J., Daguin-Thiebaut, C., & Valero, M. (2011). Genetic population structure and mating system in Chondrus crispus (Rhodophyta). Journal of Phycology, 47, 440–450.PubMedCrossRefGoogle Scholar
  114. Kylin, H. (1956). Die Gattungen der Rhodophyceen. Lund: CWK Gleerups Forlag.Google Scholar
  115. Le Gall, L., & Saunders, G. W. (2007). A nuclear phylogeny of the Florideophyceae (Rhodophyta) inferred from combined EF2, small subunit and large subunit ribosomal DNA: Establishing the new red algal subclass Corallinophycidae. Molecular Phylogenetics Evolution, 43(3), 1118–1130.PubMedCrossRefGoogle Scholar
  116. Li, L. (2003). OrthoMCL: Identification of ortholog groups for eukaryotic genomes. Genome Research, 13, 2178–2189.PubMedPubMedCentralCrossRefGoogle Scholar
  117. Lillico, S., Field, M. C., Blundell, P., Coombs, G. H., & Mottram, J. C. (2003). Essential roles for GPI-anchored proteins in African trypanosomes revealed using mutants deficient in GPI8. Molecular Biology of the Cell, 14, 1182–1194.PubMedPubMedCentralCrossRefGoogle Scholar
  118. Lindstrom, S. C. (2006). Biogeography of Alaskan seaweeds. Journal of Applied Phycology, 18, 637–641.CrossRefGoogle Scholar
  119. Lindstrom, S. C. (2009). The biogeography of seaweeds in Southeast Alaska. Journal of Biogeography, 36, 401–409.CrossRefGoogle Scholar
  120. Lindstrom, S. C., Olsen, J. L., & Stam, W. T. (1997). Postglacial recolonization and the biogeography of Palmaria mollis (Rhodophyta) along the northeast Pacific coast. Canadian Journal of Botany, 75, 1887–1896.CrossRefGoogle Scholar
  121. Lindstrom, S. C., Hughey, J. R., & Martone, P. T. (2011). New, resurrected and redefined species of Mastocarpus (Phyllophoraceae, Rhodophyta) from the northeast Pacific. Phycologia, 50, 661–683.CrossRefGoogle Scholar
  122. Littler, M. M., & Littler, D. (2007). Assessment of coral reefs using herbivory/nutrient assays and indicator groups of benthic primary producers: A critical synthesis, proposed protocols, and a critique of management strategies. Aquatic Conservation: Marine & Freshwater Ecosystems, 17, 195–215.CrossRefGoogle Scholar
  123. Ma, J. H., & Miura, A. (1984). Observations of the nuclear division in the conchospores and their germlings in Porphyra yezoensis Ueda. Japanese Journal of Phycology (Sorui), 32, 373–378.Google Scholar
  124. Macaya, E. C., Riosmena-Rodríguez, R., Melzer, R. R., Meyer, R., Försterra, G., & Häussermann, V. (2015). Rhodolith beds in the south-east Pacific. Marine Biodiversity, 45, 153–154.CrossRefGoogle Scholar
  125. Magallόn, S., Hilu, K. W., & Quandt, D. (2013). Land plant evolutionary timeline: Gene effects are secondary to fossil constraints in relaxed clock estimation of age and substitution rates. American Journal of Botany, 100(3), 556–573.CrossRefGoogle Scholar
  126. Maggs, C. A., & Pueschel, C. M. (1989). Morphology and development of Ahnfeltia plicata (Rhodophyta); Proposal of Ahnfeltiales ord. nov. Journal of Phycology, 25(2), 333–351.CrossRefGoogle Scholar
  127. Magne, F. (1960). Le Rhodochaete parvula Thuret (Bangioidée) et sa reproduction sexuée. Cahiers de Biologie Marine, 1, 407–420.Google Scholar
  128. Magne, F. (1990). Reproduction sexuée chez Erythrotrichia carnea (Rhodophyceae, Erythropeltidales). Cryptogamie Algologie, 11(3), 157–170.Google Scholar
  129. Magne, F. (1991). Classification and phylogeny in the lower Rodophyta: A new proposal. Journal of Phycology, 27(Suppl).Google Scholar
  130. Martone, P. T., Estevez, J. M., Lu, F., Ruel, K., Denny, M. W., Somerville, C., & Ralph, J. (2009). Discovery of lignin in seaweed reveals convergent evolution of cell-wall architecture. Current Biology, 19(2), 169–175.PubMedCrossRefGoogle Scholar
  131. Matsuzaki, M., Misumi, O., Shin, I. T., Maruyama, S., Takahara, M., Miyagishima, S. Y., et al. (2004). Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature, 428, 653–657.PubMedCrossRefGoogle Scholar
  132. McCoy, S. J., & Kamenos, N. A. (2015). Coralline algae (Rhodophyta) in a changing world: Integrating ecological, physiological and geochemical responses to global change. Journal of Phycology, 51, 6–24.PubMedPubMedCentralCrossRefGoogle Scholar
  133. McCutcheon, J. P., & Moran, N. A. (2012). Extreme genome reduction in symbiotic bacteria. Nature Reviews Microbiology, 10, 13–26.Google Scholar
  134. Miller, K. A., Aguilar-Rosas, L. E., & Pedroche, F. F. (2011). A review of non-native seaweeds from California, USA and Baja California, Mexico. Hidrobiológica, 21, 365–379.Google Scholar
  135. Miyagishima, S.-Y., Nishida, K., Mori, T., Matsuzaki, M., Higashiyama, T., Kuroiwa, H., et al. (2003). A plant-specific dynamin-related protein forms a ring at the chloroplast division site. Plant Cell, 15, 655–665.PubMedPubMedCentralCrossRefGoogle Scholar
  136. Mizushima, N., & Levine, B. (2010). Autophagy in mammalian development and differentiation. Nature Cell Biology, 12, 823–830.PubMedPubMedCentralCrossRefGoogle Scholar
  137. Montecinos, A., Broitman, B. R., Faugeron, S., Haye, P. A., Tellier, F., & Guillemin, M.-L. (2012). Species replacement along a linear coastal habitat: Phylogeography and speciation in the red alga Mazzaella laminarioides along the south east Pacific. BMC Evolutionary Biology, 12(1), 1.CrossRefGoogle Scholar
  138. Moran, N. A. (2002). Microbial minimalism: Genome reduction in bacterial pathogens. Cell, 108, 583–586.PubMedCrossRefGoogle Scholar
  139. Moreira, D., Le Guyader, H., & Phillippe, H. (2000). The origin of red algae and the evolution of chloroplasts. Nature, 405, 69–72.PubMedCrossRefGoogle Scholar
  140. Morse, A. N. C., Iwao, K., Baba, M., Shimoike, K., Hayashibara, T., & Omori, M. (1996). An ancient chemosensory mechanism brings new life to coral reefs. The Biological Bulletin, 191(2), 149–154.CrossRefGoogle Scholar
  141. Müller, K. M., Oliveira, M. C., Sheath, R. G., & Bhattacharya, D. (2001). Ribosomal DNA phylogeny of the Bangiophycidae (Rhodophyta) and the origin of secondary plastids. American Journal of Botany, 88(8), 1390–1400.PubMedCrossRefGoogle Scholar
  142. Nakamura, Y., Sasaki, N., Kobayashi, M., Ojima, N., Yasuike, M., Shigenobu, Y., et al. (2013). The first symbiont-free genome sequence of marine red alga, Susabi-nori (Pyropia yezoensis). PloS One, 8(3), e57122.PubMedPubMedCentralCrossRefGoogle Scholar
  143. Neill, K. F., Nelson, W. A., D’Archino, P., Leduc, D., & Farr, T. J. (2015). Northern New Zealand rhodoliths: Assessing faunal and flora diversity in physically contrasting beds. Marine Biodiversity, 45, 63–75.CrossRefGoogle Scholar
  144. Nelson, W. A. (1999). A revised checklist of marine algae naturalised in New Zealand. New Zealand Journal of Botany, 37, 355–359.CrossRefGoogle Scholar
  145. Nelson, W. A. (2009). Calcified macroalgae – Critical to coastal ecosystems and vulnerable to change: A review. Marine and Freshwater Research, 60(8), 787–801.CrossRefGoogle Scholar
  146. Nelson, W. A., & Dalen, J. L. (2015). Marine macroalgae of the Kermadec Islands. Bulletin of the Auckland Museum, 20, 125–140.Google Scholar
  147. Nelson, W. A., Brodie, J., & Guiry, M. D. (1999). Terminology used to describe reproduction and life history stages in the genus Porphyra (Bangiales, Rhodophyta). Journal of Applied Phycology, 11, 407–410.CrossRefGoogle Scholar
  148. Nelson, W. A., Broom, J. E., & Farr, T. J. (2003). Pyrophyllon and Chlidophyllon (Erythropeltidales, Rhodophyta): Two new genera for obligate epiphytic species previously placed in Porphyra, and a discussion of the orders Erythropeltidales and Bangiales. Phycologia, 42, 308–315.CrossRefGoogle Scholar
  149. Nelson, W. A., Leister, G. L., & Hommersand, M. H. (2011). Psilophycus alveatus gen. et comb. nov., a basal taxon in the Gigartinaceae (Rhodophyta) from New Zealand. Phycologia, 50(3), 219–231.CrossRefGoogle Scholar
  150. Newton, C., Bracken, E. S., McConville, M., Rodrigue, K., & Thornber, C. S. (2013). Invasion of the red seaweed Heterosiphonia japonica spans biogeographic provinces in the western North Atlantic Ocean. PloS One, 8(4), e62261.PubMedPubMedCentralCrossRefGoogle Scholar
  151. Nylund, G. M., Enge, S., & Pavia, H. (2013). Costs and benefits of chemical defence in the red alga Bonnemaisonia hamifera. PloS One, 8(4), e61291.PubMedPubMedCentralCrossRefGoogle Scholar
  152. Oates, B. R., & Cole, K. M. (1994). Comparative studies on hair cells of two agarophyte red algae, Gelidium vagum (Gelidiales, Rhodophyta) and Gracilaria pacifica (Gracilariales, Rhodophyta) 1. Phycologia, 33(6), 420–433.CrossRefGoogle Scholar
  153. Oliveira, M. C., & Bhattacharya, D. (2000). Phylogeny of the Bangiophycidae (Rhodophyta) and the secondary endosymbiotic origin of algal plastids. American Journal of Botany, 87, 482–492.PubMedCrossRefGoogle Scholar
  154. Oliveira, A. S., Sudatti, D. B., Fujii, M. T., Rodrigues, S. V., & Pereira, R. C. (2013). Inter- and intrapopulation variation in the defensive chemistry of the red seaweed Laurencia dendroidea (Ceramiales, Rhodophyta). Phycologia, 52(2), 130–136.CrossRefGoogle Scholar
  155. Pakker, H., & Breeman, A. M. (1996). Temperature responses of tropical to warm temperate seaweeds. II. Evidence for ecotypic differentiation in amphi-Atlantic tropical-Mediterranean species. European Journal of Phycology, 31(2), 133–141.CrossRefGoogle Scholar
  156. Paradas, W. C., Crespo, T. M., Salgado, L. T., de Andrade, L. R., Soares, A. R., Hellio, C., et al. (2015). Mevalonosomes: Specific vacuoles containing the mevalonate pathway in Plocamium brasiliense cortical cells (Rhodophyta). Journal of Phycology, 51(2), 225–235.PubMedCrossRefGoogle Scholar
  157. Parfrey, L. W., Grant, J., Tekle, Y. I., Lasek-Nesselquist, E., Morrison, H. G., Sogin, M. L., et al. (2010). Broadly sampled multigene analyses yield a well-resolved eukaryotic tree of life. Systematic Biology, 59(5), 518–533.PubMedPubMedCentralCrossRefGoogle Scholar
  158. Parfrey, L., Lahr, D., Knoll, A. H., & Katz, L. A. (2011). Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proceeding of the National Academy of Sciences of the United States of America, 108(33), 13624–13629.CrossRefGoogle Scholar
  159. Paul, N. A., Cole, L., DeNys, R., & Steinberg, P. D. (2006). Ultrastructure of the gland cells of the red alga Asparagopsis armata (Bonnemaisoniaceae). Journal of Phycology, 42(3), 637–645.CrossRefGoogle Scholar
  160. Peña, V., & Bárbara, I. (2008a). Biological importance of an Atlantic european maerl bed off Benencia Island (northwest Iberian Peninsula). Botanica Marina, 51(6), 493–505.CrossRefGoogle Scholar
  161. Peña, V., & Bárbara, I. (2008b). Maërl community in the north-western Iberian Peninsula: A review of floristic studies and long term changes. Aquatic Conservation: Marine and Freshwater Ecosystems, 18(4), 339–366.CrossRefGoogle Scholar
  162. Pereira, R., Yarish, C., & Critchley, A. (2012). Seaweed aquaculture for human foods, land based. In B. A. Costa-Pierce (Ed.), Ocean farming and sustainable aquaculture science and technology. Encyclopedia of sustainability science and technology. New York: Springer Science.Google Scholar
  163. Pereira-Filho, G. H., Amado-Filho, G. M., de Moura, R. L., Bastos, A. C., Guimarães, S. M. P. B., Salgado, L. T., et al. (2012). Extensive rhodolith beds cover the summits of southwestern Atlantic Ocean seamounts. Journal of Coastal Research, 28(1), 261–269.CrossRefGoogle Scholar
  164. Pickett-Heaps, J. D., West, J. A., Wilson, S. M., & McBride, D. L. (2001). Time-lapse videomicroscopy of cell (spore) movement in red algae. European Journal of Phycology, 36(01), 9–22.CrossRefGoogle Scholar
  165. Pinto, G., Albertano, P., Ciniglia, C., Cozzolino, S., Pollio, A., Yoon, H. S., et al. (2003). Comparative approaches to the taxonomy of the genus Galdieria Merola (Cyanidiales, Rhodophyta). Cryptogamie-Algologie, 24(1), 13–32.Google Scholar
  166. Price, D. C., Chan, C. X., Yoon, H. S., Yang, E. C., Qiu, H., Weber, A. P. M., et al. (2012). Cyanophora paradoxa genome elucidates origin of photosynthesis in algae and plants. Science, 335(6070), 843–847.PubMedCrossRefGoogle Scholar
  167. Provan, J., Wattier, R. A., & Maggs, C. A. (2005). Phylogeographic analysis of the red seaweed Palmaria palmata reveals a Pleistocene marine glacial refugium in the English Channel. Molecular Ecology, 14(3), 793–803.PubMedCrossRefGoogle Scholar
  168. Pueschel, C. M. (1990). Cell structure. In K. M. Cole & R. G. Sheath (Eds.), Biology of the red algae (pp. 7–41). New York: Cambridge University Press.Google Scholar
  169. Pueschel, C. M. (1992). An ultrastructural survey of the diversity of crystalline, proteinaceous inclusions in red algal cells. Phycologia, 31(6), 489–499.CrossRefGoogle Scholar
  170. Pueschel, C. M. (1995). Calcium oxalate crystals in the red alga Antithamnion kylinii (Ceramiales): Cytoplasmic and limited to indeterminate axes. Protoplasma, 189(1–2), 73–80.CrossRefGoogle Scholar
  171. Pueschel, C. M., & Cole, K. M. (1982). Rhodophycean pit plugs: An ultrastructural survey with taxonomic implications. American Journal of Botany, 69, 703–720.CrossRefGoogle Scholar
  172. Pueschel, C. M., & West, J. A. (2007). Effects of ambient calcium concentration on the deposition of calcium oxalate crystals in Antithamnion (Ceramiales, Rhodophyta). Phycologia, 46(4), 371–379.CrossRefGoogle Scholar
  173. Pueschel, C. M., Miller, T. J., & McCausland, B. B. (1996). Development of epithallial cells in Corallina officinalis and Lithophyllum impressum (Corallinales, Rhodophyta). Phycologia, 35(2), 161–169.CrossRefGoogle Scholar
  174. Qiu, H., Price, D., Weber, A. P., Reeb, V., Yang, E. C., Lee, J. M., et al. (2013). Adaptation through horizontal gene transfer in the cryptoendolithic red alga Galdieria phlegrea. Current Biology, 23(19), R865–R866.PubMedCrossRefGoogle Scholar
  175. Qiu, H., Price, D., Yang, E. C., Yoon, H. S., & Bhattacharya, D. (2015). Evidence of ancient genome reduction in red algae (Rhodophyta). Journal of Phycology, 51(4), 624–636.PubMedCrossRefGoogle Scholar
  176. Ragan, M. A., Bird, C. J., Rice, E. L., Gutell, R. R., Murphy, C. A., & Singh, R. K. (1994). A molecular phylogeny of the marine red algae (Rhodophyta) based on the nuclear small-subunit rRNA gene. Proceedings of the National Academy of Sciences of the United States of America, 91, 7276–7280.PubMedPubMedCentralCrossRefGoogle Scholar
  177. Reeb, V., & Bhattacharya, D. (2010). The thermo-acidophilic Cyanidiophyceae (Cyanidiales). In J. Seckbach & D. Chapman (Eds.), Red algae in the genomic age (pp. 409–426). Dordrecht: Springer.CrossRefGoogle Scholar
  178. Reis, V. M., Oliveira, L. S., Passos, R. M. F., Viana, N. B., Mermelstein, C., Sant’Anna, C., et al. (2013). Traffic of secondary metabolites to cell surface in the red alga Laurencia dendroidea depends on a two-step transport by the cytoskeleton. PloS One, 8(5), e63929.PubMedPubMedCentralCrossRefGoogle Scholar
  179. Reyes-Prieto, A., & Bhattacharya, D. (2007). Phylogeny of nuclear-encoded plastid-targeted proteins supports an early divergence of glaucophytes within Plantae. Molecular Biology and Evolution, 24(11), 2358–2361.PubMedCrossRefGoogle Scholar
  180. Riul, P., Targino, C. H., Da Nóbrega Farias, J., Visscher, P. T., & Horta, P. A. (2008). Decrease in Lithothamnion sp. (Rhodophyta) primary production due to the deposition of a thin sediment layer. Journal of the Marine Biological Association of the United Kingdom, 88(01), 17–19.CrossRefGoogle Scholar
  181. Roberts, R. (2001). A review of settlement cues for larval abalone (Haliotis spp.). Journal of Shellfish Research, 20(2), 571–586.Google Scholar
  182. Rodriguez-Ezpeleta, N., Brinkmann, H., Burey, S. C., Roure, B., Burger, G., Löffelhardt, W., et al. (2005). Monophyly of primary photosynthetic eukaryotes: Green plants, red algae, and glaucophytes. Current Biology, 15(14), 1325–1330.PubMedCrossRefGoogle Scholar
  183. Roleda, M. Y., & Hurd, C. L. (2012). Seaweed responses to ocean acidification. In C. Wiencke & K. Bischof (Eds.), Seaweed biology: Novel insights into ecophysiology, ecology and utilization (pp. 407–431). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  184. Russell, C. A., Guiry, M. D., McDonald, A. R., & Garbary, D. J. (1996). Actin-mediated chloroplast movement in Griffithsia pacifica (Ceramiales, Rhodophyta). Phycological Research, 44, 57–61.CrossRefGoogle Scholar
  185. Salgado, L. T., Viana, N. B., Andrade, L. R., Leal, R. N., da Gama, B. A. P., Attias, M., et al. (2008). Intra-cellular storage, transport and exocytosis of halogenated compounds in marine red alga Laurencia obtusa. Journal of Structural Biology, 162(2), 345–355.PubMedCrossRefGoogle Scholar
  186. Saunders, G. W., & Hommersand, M. H. (2004). Assessing red algal supraordinal diversity and taxonomy in the context of contemporary systematic data. American Journal of Botany, 91(10), 1494–1507.PubMedCrossRefGoogle Scholar
  187. Schneider, C. W. (2010). Report of a new invasive alga in the Atlantic United States: “Heterosiphonia” japonica in Rhode Island. Journal of Phycology, 46(4), 653–657.CrossRefGoogle Scholar
  188. Schneider, C. W., & Wynne, M. J. (2007). A synoptic review of the classification of red algal genera a half century after Kylin’s “Die Gattunger der Rhodophyceen.”. Botanica Marina, 50, 197–249.Google Scholar
  189. Schneider, C. W., & Wynne, M. J. (2013). Second addendum to the synoptic review of red algal genera. Botanica Marina, 56, 111–118.CrossRefGoogle Scholar
  190. Schönknecht, G., Chen, W. H., Ternes, C. M., Barbier, G. G., Shrestha, R. P., Stanke, M., et al. (2013). Gene transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote. Science, 339(6124), 1207–1210.PubMedCrossRefGoogle Scholar
  191. Scott, J., & Broadwater, S. (1990). Cell division. In K. M. Cole & R. G. Sheath (Eds.), Biology of the red algae (pp. 123–145). New York: Cambridge University Press.Google Scholar
  192. Scott, J., Thomas, J., & Saunders, B. (1988). Primary pit connections in Compsopogon coeruleus (Balbis) Montagne (Compsopogonales, Rhodophyta). Phycologia, 27(3), 327–333.CrossRefGoogle Scholar
  193. Scott, J. L., Broadwater, S. T., Saunders, B. D., Thomas, J. P., & Gabrielson, P. W. (1992). Ultrastucture of vegetative organization and cell division in the unicellular red alga Dixoniella grisea gen. nov. (Rhodophyta) and a consideration of the genus Rhodella. Journey of Phycology, 28(5), 649–660.CrossRefGoogle Scholar
  194. Scott, J., Yang, E. C., West, J. A., Yokoyama, A., Kim, H. J., Loiseaux de Goër, S., et al. (2011). On the genus Rhodella, the emended orders Dixoniellales and Rhodellales with a new order Glaucosphaerales (Rhodellophyceae, Rhodophyta). Algae, 26(4), 277–288.CrossRefGoogle Scholar
  195. Scrosati, R., & DeWreede, R. E. (1999). Demographic models to simulate the stable ratio between ecologically similar gametophytes and tetrasporophytes in populations of the Gigartinaceae (Rhodophyta). Phycological Research, 47(3), 153–157.CrossRefGoogle Scholar
  196. Selivanova, O. N., & Zhigadlova, G. G. (1997a). Marine algae of the Commander Islands preliminary remarks on the revision of the Flora. I. Chlorophyta. Botanica Marina, 40(1–6), 1–8.CrossRefGoogle Scholar
  197. Selivanova, O. N., & Zhigadlova, G. G. (1997b). Marine algae of the Commander Islands preliminary remarks on the revision of the flora. II. Phaeophyta. Botanica Marina, 40(1–6), 9–13.Google Scholar
  198. Selivanova, O. N., & Zhigadlova, G. G. (1997c). Marine algae of the Commander Islands preliminary remarks on the revision of the flora. III. Rhodophyta. Botanica Marina, 40(1–6), 15–24.Google Scholar
  199. Seo, Y. B., Lee, Y. W., Lee, C. H., & You, H. C. (2010). Red algae and their use in papermaking. Bioresource Technology, 101(7), 2549–2553.PubMedCrossRefGoogle Scholar
  200. Sjøtun, K., Husa, V., & Peña, V. (2008). Present distribution and possible vectors of introductions of the alga Heterosiphonia japonica (Ceramiales, Rhodophyta) in Europe. Aquatic Invasions, 3(4), 377–394.CrossRefGoogle Scholar
  201. Skorupa, D. J., Reeb, V., Castenholz, R. W., Bhattacharya, D., & McDermott, T. R. (2013). Cyanidiales diversity in Yellowstone National Park. Letters in Applied Microbiology, 57(5), 459–466.PubMedCrossRefGoogle Scholar
  202. Soltis, P. S., Soltis, D. E., Savolainen, V., Crane, P. R., & Barraclough, T. G. (2002). Rate heterogeneity among lineages of tracheophytes: Integration of molecular and fossil data and evidence for molecular living fossils. Proceedings of the National Academy of Sciences of the United States of America, 99(7), 4430–4435.PubMedPubMedCentralCrossRefGoogle Scholar
  203. Steller, D. L., Riosmena-Rodriguez, R., Foster, M. S., & Roberts, C. A. (2003). Rhodolith bed diversity in the Gulf of California: The importance of rhodolith structure and consequences of disturbance. Aquatic Conservation: Marine and Freshwater Ecosystems, 13(S1), S5–S20.CrossRefGoogle Scholar
  204. Sutherland, J. E., Lindstrom, S. C., Nelson, W. A., Brodie, J., Lynch, M. D. J., Hwang, M. S., Choi, H.-G., Miyata, M., Kikuchi, N., Oliveira, M. C., Farr, T., Neefus, C., Mols-Mortensen, A., Milstein, D., & Müller, K. M. (2011). A new look at ancient order: Generic revision of the Bangiales (Rhodophyta). Journal of Phycology, 47(5), 1131–1151.PubMedCrossRefGoogle Scholar
  205. Suzuki, K., Kawazu, T., Mita, T., Takahashi, H., Itoh, R., Toda, K., et al. (1995). Cytokinesis by a contractile ring in the primitive red alga Cyanidium caldarium RK-1. European Journal of Cell Biology, 67(2), 170–178.PubMedGoogle Scholar
  206. Takeda, J., & Kinoshita, T. (1995). GPI-anchor biosynthesis. Trends in Biochemical Sciences, 20(9), 367–371.PubMedCrossRefGoogle Scholar
  207. Tebben, J., Motti, C. A., Siboni, N., Tapiolas, D. M., Negri, A. P., Schupp, P. J., Kitamura, M., Hatta, M., Steinberg, P. D., & Harder, T. (2015). Chemical mediation of coral larval settlement by crustose coralline algae. Scientific Reports, 5, 10803.PubMedPubMedCentralCrossRefGoogle Scholar
  208. Teichert, S. (2014). How rhodoliths increase Svalbard’s shelf biodiversity. Scientific Reports, 4, 6972.PubMedPubMedCentralCrossRefGoogle Scholar
  209. Teichert, S., Woelkerling, W., Rüggeberg, A., Wisshak, M., Piepenburg, D., Meyerhöfer, M., et al. (2012). Rhodolith beds (Corallinales, Rhodophyta) and their physical and biological environment at 80° 13’ N in Nordkappbukta (Nordaustlandet, Svalbard Archipelago, Norway). Phycologia, 51(4), 371–390.CrossRefGoogle Scholar
  210. Thornber, C. S., & Gaines, S. D. (2004). Population demographics in species with biphasic life cycles. Ecology, 85(6), 1661–1674.CrossRefGoogle Scholar
  211. Toplin, J. A., Norris, T. B., Lehr, C. R., McDermott, T. R., & Castenholz, R. W. (2008). Biogeographic and phylogenetic diversity of thermoacidophilic Cyanidiophyceae in Yellowstone National Park, Japan, and New Zealand. Applied and Environmental Microbiology, 74(9), 2822–2833.PubMedPubMedCentralCrossRefGoogle Scholar
  212. Verbruggen, H., Maggs, C. A., Saunders, G. W., Le Gall, L., Yoon, H. S., & De Clerck, O. (2010). Data mining approach identifies research priorities and data requirements for resolving the red algal tree of life. BMC Evolutionary Biology, 10(1), 16.PubMedPubMedCentralCrossRefGoogle Scholar
  213. Verlaque, M., Brannock, P. M., Komatsu, T., Villalard-Bohnsack, M., & Marston, M. (2005). The genus Grateloupia C. Agardh (Halymeniaceae, Rhodophyta) in the Thau Lagoon (France, Mediterranean): A case study of marine plurispecific introductions. Phycologia, 44(5), 477–496.CrossRefGoogle Scholar
  214. Vis, M. L., Necchi, O., Jr., Chiasson, W. B., & Entwisle, T. J. (2012). Molecular phylogeny of the genus Kumanoa (Batrachospermales, Rhodophyta). Journal of Phycology, 48(3), 750–758.PubMedCrossRefGoogle Scholar
  215. Waller, R. F., & McFadden, G. I. (1995). Morphological and cytochemical analysis of an unusual nucleus-pyrenoid association in a unicellular red alga. Protoplasma, 186(3–4), 131–141.CrossRefGoogle Scholar
  216. Wettstein, A. (1901). Handbuch der systematischen Botanik. Leipzig/Vienna: Deuticke.Google Scholar
  217. Wiencke, C., Bartsch, I., Bischoff, B., Peters, A. F., & Breeman, A. M. (1994). Temperature requirements and biogeography of Antarctic, Arctic and amphiequitorial seaweeds. Botanica Marina, 37(3), 247–259.CrossRefGoogle Scholar
  218. Wilcox, S. J., Barr, N., Broom, J., Furneaux, R. H., & Nelson, W. A. (2007). Using gigartinine to track the distribution of an alien species of Gracilaria in New Zealand. Journal of Applied Phycology, 19(4), 313–323.CrossRefGoogle Scholar
  219. Williams, S. L., & Smith, J. E. (2007). A global review of the distribution, taxonomy, and impacts of introduced seaweeds. Annual Review of Ecology, Evolution, and Systematics, 38, 327–359.CrossRefGoogle Scholar
  220. Wilson, S. M., Pickett-Heaps, J. D., & West, J. A. (2002a). Fertilisation and the cytoskeleton in the red alga Bostrychia moritziana (Rhodomelaceae, Rhodophyta). European Journal of Phycology, 37, 509–522.CrossRefGoogle Scholar
  221. Wilson, S. M., West, J., Pickett-Heaps, J., Yokoyama, A., & Hara, Y. (2002b). Chloroplast rotation and morphological plasticity of the unicellular alga Rhodosorus (Rhodophyta, Stylonematales). Phycological Research, 50, 183–192.CrossRefGoogle Scholar
  222. Wilson, S. M., West, J. A., & Pickett-Heaps, J. D. (2003). Time-lapse videomicroscopy of fertilisation and the actin cytoskeleton in Murrayella periclados (Rhodomelaceae, Rhodophyta). Phycologia, 42, 638–645.CrossRefGoogle Scholar
  223. Wilson, S. M., Pickett-Heaps, J. D., & West, J. A. (2006). Vesicle transport and the cytoskeleton in the unicellular red alga Glaucosphaera vacuolata. Phycological Research, 54, 15–20.CrossRefGoogle Scholar
  224. Withall, R. D., & Saunders, G. W. (2006). Combining small and large subunit ribosomal DNA genes to resolve relationships among orders of Rhodymeniophycidae (Rhodophyta): Recognition of the Acrosymphytales ord. nov. and Sebdeniales ord. nov. European Journal of Phycology, 41(4), 379–394.CrossRefGoogle Scholar
  225. Wulff, A., Iken, K., Quartino, M. L., Al-Handal, A., Wiencke, C., & Clayton, M. N. (2009). Biodiversity, biogeography and zonation of marine benthic micro-and macrolagae in the Arctic and Antarctic. Botanica Marina, 52, 491–507.CrossRefGoogle Scholar
  226. Wynne, M. J., & Schneider, C. W. (2010). Addendum to the synoptic review of red algal genera. Botanica Marina, 53, 291–299.CrossRefGoogle Scholar
  227. Xiao, S., Zhang, Y., & Knoll, A. H. (1998). Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature, 391, 553–558.CrossRefGoogle Scholar
  228. Xiao, S., Knoll, A. H., Yuan, X., & Pueschel, C. M. (2004). Phosphatized multicellular algae in the Neoproterozoic Doushantuo formation, China, and the early evolution of florideophyte red algae. American Journal of Botany, 91(2), 214–227.PubMedCrossRefGoogle Scholar
  229. Xiao, S., Muscente, A. D., Chen, L., Zhou, C., Schiffbauer, J. D., Wood, A. D., et al. (2014). The Weng’an biota and the Ediacaran radiation of multicellular eukaryotes. National Science Review, 1(4), 498–520.CrossRefGoogle Scholar
  230. Yabuki, A., Kamikawa, R., Ishikawa, S. A., Kolisko, M., Kim, E., Tanabe, A. S., et al. (2014). Palpitomonas bilix represents a basal cryptist lineage: Insight into the character evolution in Cryptista. Scientific Reports, 4, 4641.PubMedPubMedCentralCrossRefGoogle Scholar
  231. Yang, E. C., Cho, G. Y., Kogame, K., Carlile, A. L., & Boo, S. M. (2008). RuBisCo cistron sequence variation and phylogeography of Ceramium kondoi (Ceramiaceae, Rhodophyta). Botanica Marina, 51, 370–377.CrossRefGoogle Scholar
  232. Yang, E. C., Lee, S. Y., Lee, W. J., & Boo, S. M. (2009). Molecular evidence for recolonization of Ceramium japonicum (Ceramiaceae, Rhodophyta) on the west coast of Korea after the last glacial maximum. Botanica Marina, 52, 307–315.CrossRefGoogle Scholar
  233. Yang, E. C., Kim, K. M., Kim, S. Y., Lee, J. M., Boo, G. H., Lee, J. H., et al. (2015). Highly conserved mitochondrial genomes among multicellular red algae of the Florideophyceae. Genome Biolology Evolution, 7, 2394–2406.CrossRefGoogle Scholar
  234. Yang, E. C., Boo, S. M., Bhattacharya, D., Saunders, G. W., Knoll, A. H., Fredericq, S., et al. (2016). Divergence time estimates and the evolution of major lineages in the florideophyte red algae. Scientific Reports, 6, 21361.PubMedPubMedCentralCrossRefGoogle Scholar
  235. Yokoyama, A., Scott, J. L., Zuccarello, G. C., Kajikawa, M., Hara, Y., & West, J. A. (2009). Corynoplastis japonica gen. et sp. nov. and Dixoniellales ord. nov. (Rhodellophyceae, Rhodophyta) based on morphological and molecular evidence. Phycological Research, 57(4), 278–289.CrossRefGoogle Scholar
  236. Yoon, H. S., Hackett, J. D., & Bhattacharya, D. (2002a). A single origin of the peridinin- and fucoxanthin-containing plastids in dinoflagellates through tertiary endosymbiosis. Proceedings of the National Academy of Sciences of the United States of America, 99(18), 11724–11729.PubMedPubMedCentralCrossRefGoogle Scholar
  237. Yoon, H. S., Hackett, J. D., Pinto, G., & Bhattacharya, D. (2002b). The single, ancient origin of chromist plastids. Proceedings of the National Academy of Sciences of the United States of America, 99(24), 15507–15512.PubMedPubMedCentralCrossRefGoogle Scholar
  238. Yoon, H. S., Hackett, J. D., Ciniglia, C., Pinto, G., & Bhattacharya, D. (2004). A molecular timeline for the origin of photosynthetic eukaryotes. Molecular Biology and Evolution, 21(5), 809–818.PubMedCrossRefGoogle Scholar
  239. Yoon, H. S., Müller, K. M., Sheath, R. G., Ott, F. D., & Bhattacharya, D. (2006). Defining the major lineages of red algae (Rhodophyta). Journal of Phycology, 42(2), 482–492.CrossRefGoogle Scholar
  240. Yoon, H. S., Grant, J., Tekle, Y. I., Wu, M., Chaon, B. C., Cole, J. C., et al. (2008). Broadly sampled multigene trees of eukaryotes. BMC Evolutionary Biology, 8(1), 14.PubMedPubMedCentralCrossRefGoogle Scholar
  241. Yoon, H. S., Zuccarello, G. C., & Bhattacharya, D. (2010). Evolutionary history and taxonomy of red algae. In J. Seckbach & D. J. Chapman (Eds.), Cellular origin, life in extreme habitats and astrobiology (Vol. 13, pp. 25–42). New York: Springer.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Biological SciencesSungkyunkwan UniversitySuwonSouth Korea
  2. 2.National Institute of Water and Atmospheric ResearchWellingtonNew Zealand
  3. 3.School of Biological SciencesUniversity of AucklandAucklandNew Zealand
  4. 4.Department of Botany and Beaty Biodiversity MuseumUniversity of British ColumbiaVancouverCanada
  5. 5.Department of BiologyChungnam National UniversityDaejeonSouth Korea
  6. 6.Department of Biological SciencesBinghamton UniversityBinghamtonUSA
  7. 7.Department of Ecology, Evolution and Natural ResourcesThe State University of New JerseyNew BrunswickUSA

Personalised recommendations