Necrobiology of Liver Cancer: Apoptosis and Related Forms of Cell Death

  • Arthur Zimmermann
Reference work entry


Proliferative growth of cancers, including hepatocellular carcinoma (HCC) and other liver cancers, is counteracted by cell loss induced by various mechanisms of cell death. An intricate process to control cell mass in normal and neoplastic tissues is apoptosis, a complex form of tightly controlled cell death, and its numerous variants. Loss of tumor substance can also occur through necrosis which, in contrast to previous views, is a complex and controlled process rather than a passive phenomenon. In HCC, apoptosis is present as spherical eosinophilic bodies devoid of nuclei, the so-called apoptotic bodies, associated with drop-out of involved cells. The apoptotic response in HCC can be quantitatively assessed by immunohistochemical and molecular methods. Apoptosis in HCC not only involves the cancer cells, but also several classes of stromal cells, including cancer-associated fibroblasts and myofibroblasts, and stromal leukocytes. Death of these cells markedly affects the structure and function of the tumoral microenvironment.


Apoptotic Body Intrinsic Pathway Trail Receptor Cholangiocarcinoma Cell Apoptosis Intrinsic Pathway 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ahn JH, Yu HK, Lee HJ, Hong SW, Kim SJ, Kim JS (2014) Suppression of colorectal cancer liver metastasis by apolipoprotein(a) kringle V in a nude mouse model through the induction of apoptosis in tumor-associated endothelial cells. PLoS One 9:e93794PubMedPubMedCentralCrossRefGoogle Scholar
  2. Allen JE, Saroya BS, Kunkel M, Dicker DT, Das A, Peters KL, Joudeh J, Zhu J, El-Deiry WS (2014) Apoptotic circulating tumor cells (CTCs) in the peripheral blood of metastatic colorectal cancer patients are associated with liver metastasis but not CTCs. Oncotarget 5:1753–1760PubMedCrossRefGoogle Scholar
  3. Ando K, Kernan JL, Liu PH, Sanda T, Logette E, Tschopp J, Look AT, Wang J, Bouchier-Hayes L et al (2012) PIDD death-domain phosphorylation by ATM controls prodeath versus prosurvival PIDDosome signaling. Mol Cell 47:681–693PubMedPubMedCentralCrossRefGoogle Scholar
  4. Andrés-Pons A, Gil A, Oliver MD, Sotelo NS, Pulido R (2012) Cytoplasmic p27Kip1 counteracts the pro-apoptotic function of the open conformation of PTEN by retention and destabilization of PTEN outside of the nucleus. Cell Signal 24:577–587PubMedCrossRefGoogle Scholar
  5. Augello C, Caruso L, Maggioni M, Donadon M, Montorsi M, Santambrogio R, Torzilli G et al (2009) Inhibitors of apoptosis proteins (IAPs) expression and their prognostic significance in hepatocellular carcinoma. BMC Cancer 9:125PubMedPubMedCentralCrossRefGoogle Scholar
  6. Baddour N, Farrag E, Zeid A, Bedewy E, Taher Y (2013) Decreased apoptosis in advanced-stage/high-grade hepatocellular carcinoma complicating chronic hepatitis C is mediated through the downregulation of p21 ras. Chin J Cancer Res 25:281–288PubMedPubMedCentralGoogle Scholar
  7. Balci-Peynircoiglu B, Waite AL, Hu C, Richards N, Staubach-Grosse A, Yilmaz E, Gumucio DL (2008) Pyrin, product of the MEFV locus, interacts with the proapoptotic protein. Siva J Cell Physiol 216:595–602CrossRefGoogle Scholar
  8. Banerjee S, de Freitas A, Friggeri A, Zmijewski JW, Liu G, Abraham E (2011) Intracellular HMGB1 negatively regulates efferocytosis. J Immunol 187:4686–4694PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bao ST, Gui SQ, Lin MS (2006) Relationship between expression of Smac and survivin and apoptosis of primary hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int 5:580–583PubMedGoogle Scholar
  10. Biermann M, Maueröder C, Brauner JM, Chaurio R, Janko C, Herrmann M, Muñoz LE (2013) Surface code – biophysical signals for apoptotic cell clearance. Phys Biol 10:065007PubMedCrossRefGoogle Scholar
  11. Boland K, Flanagan L, Prehn JHM (2013) Paracrine control of tissue regeneration and cell proliferation by caspase-3. Cell Death Dis 4:e725PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bouchier-Hayes L, Green DR (2012) Caspase-2: the orphan caspase. Cell Death Differ 19:51–57PubMedCrossRefGoogle Scholar
  13. Bouchier-Hayes L, Conroy H, Egan H, Adrain C, Creagh EM, MacFarlane M, Martin SJ (2001) CARDINAL, a novel caspase recruitment domain protein, is an inhibitor of multiple NF-kappa B activation pathways. J Biol Chem 276:44069–44077PubMedCrossRefGoogle Scholar
  14. Bouchon A, Dietrich J, Colonna M (2000) Cutting edge: inflammatory responses can be triggered by TREM-1, a novel receptor expressed on neutrophils and monocytes. J Immunol 164:4991–4995PubMedCrossRefGoogle Scholar
  15. Brault C, Levy PL, Bartosch B (2013) Hepatitis C virus-induced mitochondrial dysfunctions. Viruses 5:954–980PubMedPubMedCentralCrossRefGoogle Scholar
  16. Cadamuro M, Nardo G, Indraccolo S, Dall’olmo L, Sambado L, Moserle L, Franceschet I, Colledan M, Massani M et al (2013) Platelet-derived growth factor-D and Rho GTPases regulate recruitment of cancer-associated fibroblasts in cholangiocarcinoma. Hepatology 58:1042–1053PubMedPubMedCentralCrossRefGoogle Scholar
  17. Cai M, Chen Q, Chen C, Liu X, Hou J, Zeng C, Shu Q, Fang X (2013) Activation of triggering receptor expressed on myeloid cells-1 protects monocyte from apoptosis through regulation of myeloid cell leukemia-1. Anesthesiology 118:1140–1149PubMedCrossRefGoogle Scholar
  18. Capece D, Fischietti M, Verzella D, Gaggiano A, Cicciarelli G, Tessitore A, Zazzeroni F, Alesse E (2013) The inflammatory microenvironment in hepatocellular carcinoma: a pivotal role for tumor-associated macrophages. Biomed Res Int 2013:187204PubMedCrossRefGoogle Scholar
  19. Cecconi F (1999) Apaf1 and the apoptotic machinery. Cell Death Differ 6:1087–1098PubMedCrossRefGoogle Scholar
  20. Celli A, Que FG (1998) Dysregulation of apoptosis in the cholangiopathies and cholangiocarcinoma. Semin Liver Dis 18:177–185PubMedCrossRefGoogle Scholar
  21. Chan BC, Ching AK, To KF, Leung JC, Chen S, Li Q, Lai PB, Tang NL, Shaw PC et al (2008) BRE is an antiapoptotic protein in vivo and overexpressed in human hepatocellular carcinoma. Oncogene 27:1208–1217PubMedCrossRefGoogle Scholar
  22. Chang Y, Wang SX, Wang YB, Zhou J, Li WH, Wang N, Fang DF, Li HY, Li AL et al (2013) ECHS1 interacts with STAT3 and negatively regulates STAT3 signaling. FEBS Lett 587:607–613PubMedCrossRefGoogle Scholar
  23. Charlotte F, L’Herminé A, Martin N, Geleyn Y, Nollet M, Gaulard P, Zafrani ES (1994) Immunohistochemical detection of bcl-2 protein in normal and pathological human liver. Am J Pathol 144:460–465PubMedPubMedCentralGoogle Scholar
  24. Chau GY, Lee AF, Tsay SH, Ke YR, Kao HL, Wong FH, Tsou AP, Chau YP (2007) Clinicopathological significance of surviving expression in patients with hepatocellular carcinoma. Histopathology 51:204–218PubMedCrossRefGoogle Scholar
  25. Chekeni FB, Elliott MR, Sandilos JK, Walk SF, Kinchen JM, Lazarowski ER, Armstrong AJ et al (2010) Pannexin 1 channels mediate ‘find-me’ signal release and membrane permeability during apoptosis. Nature 467:863–867PubMedPubMedCentralCrossRefGoogle Scholar
  26. Chen GG, Lai PB, Chan PK, Chak EC, Yip JH, Ho RL, Leung BC, Lau WY (2001) Decreased expression of Bid in human hepatocellular carcinoma is related to hepatitis B virus X protein. Eur J Cancer 37:1695–1702PubMedCrossRefGoogle Scholar
  27. Chen XP, He SQ, Wang HP, Zhao YZ, Zhang WG (2003) Expression of TNF-related apoptosis-inducing ligand receptors and antitumor effects of TNF-related apoptosis-inducing ligand in human hepatocellular carcinoma. World J Gastroenterol 9:2433–2440PubMedPubMedCentralGoogle Scholar
  28. Cho S, Lee JH, Cho SB, Yoon KW, Park SY, Lee WS, Park CH, Joo YE, Kim HS et al (2010) Epigenetic methylation and expression of caspase 8 and survivin in hepatocellular carcinoma. Pathol Int 60:203–211PubMedCrossRefGoogle Scholar
  29. Councilman WT (1890) Report on etiology and prevention of yellow fever. Public Health Bull 2:151–159Google Scholar
  30. Czabotar PE, Colman PM, Huang DC (2009) Bax activation by Bim? Cell Death Differ 16:1187–1191PubMedCrossRefGoogle Scholar
  31. Deng L, Chen N, Li Y, Zheng H, Lei Q (2010) CXCR6/CXCL16 functions a s a regulator in metastasis and progression of cancer. Biochim Biophys Acta 1806:42–49PubMedGoogle Scholar
  32. Dickens LS, Powley IR, Hughes MA, MacFarlane M (2012) The ‘complexities’ of life and death: death receptor signalling platforms. Exp Cell Res 318:1269–1277PubMedCrossRefGoogle Scholar
  33. Diez-Roux G, Argilla M, Makarenkova H, Ko K, Lang RA (1999) Macrophages kill capillary cells in G1 phase of the cell cycle during programmed vascular regression. Development 126:2141–2147PubMedGoogle Scholar
  34. Duan M, Wang ZC, Wang XY, Shi JY, Yang LX, Ding ZB, Gao Q, Zhou J, Fan J (2015) TREM-1, an inflammatory modulator, is expressed in hepatocellular carcinoma cells and significantly promotes tumor progression. Ann Surg Oncol 22:3121–3129Google Scholar
  35. Duprez L, Wirawan E, Vanden Berghe T, Vandenabeele P (2009) Major cell death pathways at a glance. Microbes Infect 11:1050–1062PubMedCrossRefGoogle Scholar
  36. El-Emshaty HM, Saad EA, Toson EA, Abdel Malak CA, Gadelhak NA (2014) Apoptosis and cell proliferation: correlation with BCL-2 and P53 oncoprotein expression in human hepatocellular carcinoma. Hepatogastroenterology 61:1393–1401Google Scholar
  37. Elgohary N, Pellegrino R, Neumann O, Elzawahry HM, Saber MM, Zeeneldin AA, Geffers R, Ehemann V et al (2015) Protumorigenic role of Timeless in hepatocellular carcinoma. Int J Oncol 46:597–606PubMedGoogle Scholar
  38. Elliott MR, Chekeni FB, Trampont PC, Lazarowski ER, Kadl A, Walk SF, Park D et al (2009) Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461:282–286PubMedPubMedCentralCrossRefGoogle Scholar
  39. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516PubMedPubMedCentralCrossRefGoogle Scholar
  40. Fabregat I (2009) Dysregulation of apoptosis in hepatocellular carcinoma cells. World J Gastroenterol 15:513–520PubMedPubMedCentralCrossRefGoogle Scholar
  41. Fadeel B, Orrenius S, Pervaiz S (2004) Buried alive: a novel approach to cancer treatment. FASEB J 18:1–4PubMedCrossRefGoogle Scholar
  42. Fairbrother WJ, Gordon NC, Humke EW, O’Rourke KM, Starovasnik MA, Yin JP et al (2001) The PYRIN domain: a member of the death domain-fold superfamily. Protein Sci 10:1911–1918PubMedPubMedCentralCrossRefGoogle Scholar
  43. Feoktistova M, Geserick P, Kellert B, Dimitrova DP, Langlais C, Hupe M, Cain K, MacFarlane M et al (2011) cIAPs block ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol Cell 43:449–463PubMedPubMedCentralCrossRefGoogle Scholar
  44. Feoktistova M, Geserick P, Panayotova-Dimitrova D, Leverkus M (2012) Pick your poison: the ripoptosome, a cell death platform regulating apoptosis and necroptosis. Cell Cycle 11:460–467PubMedCrossRefGoogle Scholar
  45. Fields AC, Cotsonis G, Sexton D, Santoianni R, Cohen C (2004) Survivin expression in hepatocellular carcinoma: correlation with proliferation, prognostic parameters, and outcome. Mod Pathol 17:1378–1385PubMedCrossRefGoogle Scholar
  46. Fietta P (2006) Many ways to die: passive and active cell death styles. Riv Biol 99:69–83PubMedGoogle Scholar
  47. Fingas CD, Bronk SF, Werneburg NW, Mott JL, Guicciardi ME, Cazanave SC, Mertens JC et al (2011) Myofibroblast-derived PDGF-BB promotes Hedgehog survival signaling in cholangiocarcinoma cells. Hepatology 54:2076–2088PubMedPubMedCentralCrossRefGoogle Scholar
  48. Fingas CD, Altinbas A, Schlattjan M, Beilfuss A, Sowa JP, Sydor S, Bechmann LP et al (2013) Expression of apoptosis- and vitamin D pathway-related genes in hepatocellular carcinoma. Digestion 87:176–181PubMedCrossRefGoogle Scholar
  49. Fink SL, Cookson BT (2005) Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun 73:1907–1916PubMedPubMedCentralCrossRefGoogle Scholar
  50. Flanagan L, Sebastia J, Tuffy LP, Spring A, Lichawska A, Devocelle M, Prehn JH et al (2010) XIAP impairs Smac release from the mitochondria during apoptosis. Cell Death Dis 1:e49PubMedPubMedCentralCrossRefGoogle Scholar
  51. Frasch SC, Fernandez-Boyanapalli RF, Berry KZ, Leslie CC, Bonvehtre JV, Murphy RC et al (2011) Signaling via macrophage G2A enhances efferocytosis of dying neutrophils by augmentation of Rac activity. J Biol Chem 286:12108–12122PubMedPubMedCentralCrossRefGoogle Scholar
  52. Fu DZ, Cheng Y, He H, Liu HY, Liu YF (2014) The fate of Krüppel-like factor 9-positive hepatic carcinoma cells may be determined by the programmed cell death protein 5. Int J Oncol 44:153–160PubMedGoogle Scholar
  53. Fujikawa K, Shiraki K, Sugimoto K, Ito T, Yamanaka T, Takase K, Nakao T (2000) Reduced expression of ICE/caspase1 and CPP32/caspase3 in human hepatocellular carcinoma. Anticancer Res 20:1927–1932PubMedGoogle Scholar
  54. Fukuzawa K, Takahashi K, Furuta K, Tagaya T, Ishikawa T, Wada K, Omoto Y, Koji T et al (2001) Expression of Fas/Fas ligand (FasL) and its involvement in infiltrating lymphocytes in hepatocellular carcinoma (HCC). J Gastroenterol 36:681–688PubMedCrossRefGoogle Scholar
  55. Fullard JF, Kale A, Baker NE (2009) Clearance of apoptotic corpses. Apoptosis 14:1029–1037PubMedCrossRefGoogle Scholar
  56. Galdiero MR, Garlanda C, Jaillon S, Marone G, Mantovani A (2013) Tumor associated macrophages and neutrophils in tumor progression. J Cell Physiol 228:1404–1412PubMedCrossRefGoogle Scholar
  57. Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM et al (2012) Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 19:107–120PubMedCrossRefGoogle Scholar
  58. Gao P, Wang R, Shen JJ, Lin F, Wang X, Dong K, Zhang HZ (2008) Hypoxia-inducible enhancer/alpha-fetoprotein promoter-driven RNA interference targeting STK15 suppresses proliferation and induces apoptosis in human hepatocellular carcinoma cells. Cancer Sci 99:2209–2217PubMedCrossRefGoogle Scholar
  59. Gay NJ, Gangloff M, O’Neill LA (2011) What the Myddosome structure tells us about the initiation of innate immunity. Trends Immunol 32:104–109PubMedCrossRefGoogle Scholar
  60. Geng L, Chaudhuri A, Talmon G, Wisecarver JL, Are C, Brattain M, Wang J (2014) MicroRNA-192 suppresses liver metastasis of colon cancer. Oncogene 33:5332–5340PubMedCrossRefGoogle Scholar
  61. George J, Motshwene PG, Wang H, Kubarenko AV, Rautanen A, Mills TC, Hill AV et al (2011) Two human MYD88 variants, S34Y and R98C., interfere with MyD88-IRAK4-myddosome assembly. J Biol Chem 286:1341–1353PubMedCrossRefGoogle Scholar
  62. Gibot S (2006) Soluble triggering receptor expressed on myeloid cells and the diagnosis of pneumonia and severe sepsis. Semin Respir Crit Care Med 27:29–33PubMedCrossRefGoogle Scholar
  63. Gressner AM (1998) The cell biology of liver fibrogenesis – an imbalance of proliferation, growth arrest and apoptosis of myofibroblasts. Cell Tissue Res 292:447–452PubMedCrossRefGoogle Scholar
  64. Guo H, Nan K, Hu T, Meng J, Hui W, Zhang X, Qin H, Sui C (2010) Prognostic significance of co-expression of nm23 and p57 protein in hepatocellular carcinoma. Hepatol Res 40:1107–1116PubMedCrossRefGoogle Scholar
  65. Guzik K, Potempa J (2008) Friendly fire against neutrophils: proteolytic enzymes confuse the recognition of apoptotic cells by macrophages. Biochimie 90:405–415PubMedCrossRefGoogle Scholar
  66. Guzik K, Brzowska M, Smagur J, Krupa O, Sieprawska M, Travis J, Potempa J (2007) A new insight into phagocytosis of apoptotic cells: proteolytic enzymes divert the recognition and clearance of polymorphonuclear leukocytes by macrophages. Cell Death Differ 14:171–182PubMedCrossRefGoogle Scholar
  67. Hamazaki K, Gochi A, Matsubara N, Mori M, Orita K (1995) Expression of fas antigen and Bcl-2 protein in hepatocellular carcinoma. Acta Med Okayama 49:227–230PubMedGoogle Scholar
  68. Hammam O, Mahmoud O, Zahran M, Aly S, Hosny K, Helmy A, Anas A (2012) The role of fas/fas ligand system in the pathogenesis of liver cirrhosis and hepatocellular carcinoma. Hepat Monit 12:e6132Google Scholar
  69. Hang HL, Xia Q (2014) Role of BMSCs in liver regeneration and metastasis after hepatectomy. World J Gastroenterol 20:126–132PubMedPubMedCentralCrossRefGoogle Scholar
  70. Harnois DM, Que FG, Celli A, LaRusso NF, Gores GJ (1997) Bcl-2 is overexpressed and alters the threshold for apoptosis in a cholangiocarcinoma cell line. Hepatology 26:884–890PubMedCrossRefGoogle Scholar
  71. Hayes AJ, Huang WQ, Mallah J, Yang D, Lippman ME, Li LY (1999) Angiopoietin-1 and its receptor Tie-2 participate in the regulation of capillary-like tubule formation and survival of endothelial cells. Microvasc Res 58:224–237PubMedCrossRefGoogle Scholar
  72. Herzer K, Grosse-Wilde A, Krammer PH, Galle PR, Kanzler S (2008) Transforming growth factor-beta-mediated tumor necrosis factor-related apoptosis-inducing ligand expression and apoptosis in hepatoma cells requires functional cooperation between Smad proteins and activator protein-1. Mol Cancer Res 6:1169–1177PubMedCrossRefGoogle Scholar
  73. Higaki K, Yano H, Kojiro M (1996) Fas antigen expression and its relationship with apoptosis in human hepatocellular carcinoma and noncancerous tissues. Am J Pathol 149:429–437PubMedPubMedCentralGoogle Scholar
  74. Hino N, Higashi T, Nouso K, Nakatsukasa H, Tsuji T (1996) Apoptosis and proliferation of human hepatocellular carcinoma. Liver 16:123–129PubMedCrossRefGoogle Scholar
  75. Ho CC, Liao WY, Wang CY, Lu YH, Huang HY, Chen HY, Chan WK, Chen HW, Yang PC (2008) TREM-1 expression in tumor-associated macrophages and clinical outcome in lung cancer. Am J Respir Crit Care Med 177:763–770PubMedCrossRefGoogle Scholar
  76. Hochreiter-Hufford A, Ravichandran KS (2013) Clearing the dead: apoptotic cell sensing, recognition, engulfment, and digestion. Cold Spring Harb Perspect Biol 5:a008748PubMedPubMedCentralCrossRefGoogle Scholar
  77. Höpker K, Hagmann H, Khurshid S, Chen S, Schermer B, Benzing T, Reinhardt HC (2012) Putting the brakes on p53-driven apoptosis. Cell Cycle 11:4122–4128PubMedPubMedCentralCrossRefGoogle Scholar
  78. Ikeguchi M, Ueda T, Sakatani T, Hirooka Y, Kaibara N (2002) Expression of survivin messenger RNA correlates with poor prognosis in patients with hepatocellular carcinoma. Diagn Mol Pathol 11:33–40PubMedCrossRefGoogle Scholar
  79. Ikeguchi M, Oi K, Hirooka Y, Kaibara N (2004) CD8+ lymphocytes infiltration and apoptosis in hepatocellular carcinoma. Eur J Surg Oncol 30:53–57PubMedCrossRefGoogle Scholar
  80. Imre G, Larisch S, Rajalingam K (2011) Ripoptosome: a novel IAP-regulated cell death-signalling platform. J Mol Cell Biol 3:324–326PubMedCrossRefGoogle Scholar
  81. Ito Y, Takeda T, Umeshita K, Sakon M, Wakasa K, Matsuura N, Monden M (1998) Fas antigen expression in hepatocellular carcinoma tissues. Oncol Rep 5:41–44PubMedGoogle Scholar
  82. Ito Y, Monden M, Takeda T, Eguchi H, Umeshita K, Nagano H, Nakamori S, Dono K et al (2000a) The status of Fas and Fas ligand expression can predict recurrence of hepatocellular carcinoma. Br J Cancer 82:1211–1217PubMedPubMedCentralCrossRefGoogle Scholar
  83. Ito Y, Takeda T, Sasaki Y, Sakon M, Yamada T, Ishiguro S, Imaoka S, Tsujimoto M et al (2000b) Expression of Fas and Fas ligand reflects the biological characteristics but not the status of apoptosis of intrahepatic cholangiocellular carcinoma. Int J Mol Med 6:581–586PubMedGoogle Scholar
  84. Ito Y, Takeda T, Sasaki Y, Sakon M, Monden M, Yamada T, Ishiguro S, Imaoka S et al (2000c) Bcl-2 expression in cholangiocellular carcinoma is inversely correlated with biologically aggressive phenotypes. Oncology 59:63–67PubMedCrossRefGoogle Scholar
  85. Jang TH, Park HH (2013) PIDD mediates and stabilizes the interaction between RAIDD and caspase-2 for the PIDDosome assembly. BMB Rep 46:471–476PubMedPubMedCentralCrossRefGoogle Scholar
  86. Jang TH, Seo EK, Park HH (2013) Analysis of mutation effect on PIDDosome core complex. Appl Biochem Biotechnol 170:210–218PubMedCrossRefGoogle Scholar
  87. Janssens S, Tinel A (2012) The PIDDosome. DNA-damage-induced apoptosis and beyond. Cell Death Differ 19:13–20PubMedCrossRefGoogle Scholar
  88. Javle MM, Tan D, Yu J, LeVea CM, Li F, Kuvshinoff BW, Gibbs JF (2004) Nuclear survivin expression predicts poor outcome in cholangiocarcinoma. Hepatogastroenterology 51:1653–1657PubMedGoogle Scholar
  89. Jhala NC, Vickers SM, Argani P, McDonald JM (2005) Regulators of apoptosis in cholangiocarcinoma. Arch Pathol Lab Med 129:481–486PubMedGoogle Scholar
  90. Jimenez B, Volpert OV, Crawford SE, Febbraio M, Silverstein RL, Bouck N (2000) Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nat Med 6:41–48PubMedCrossRefGoogle Scholar
  91. Kannangai R, Wang J, Liu QZ, Sahin F, Torbenson M (2005) Survivin overexpression in hepatocellular carcinoma is associated with p53 dysregulation. Int J Gastrointest Cancer 35:53–60PubMedCrossRefGoogle Scholar
  92. Karagiannis GS, Poutahidis T, Erdman SE, Kirsch R, Riddell RH, Diamandis EP (2012) Cancer-associated fibroblasts drive the progression of metastasis through both paracrine and mechanical pressure on cancer tissue. Mol Cancer Res 10:1403–1418PubMedPubMedCentralCrossRefGoogle Scholar
  93. Karamitopoulou E, Cioccari L, Jakob S, Vallan C, Schaffner T, Zimmermann A, Brunner T (2007) Active caspase 3 and DNA fragmentation as markers for apoptotic cell death in primary and metastatic liver tumours. Pathology 39:558–564PubMedCrossRefGoogle Scholar
  94. Kebers F, Lewalle JM, Desreux J, Munaut C, Devy L, Foidart JM, Noel A (1998) Induction of endothelial cell apoptosis by solid tumor cells. Exp Cell Res 240:197–205PubMedCrossRefGoogle Scholar
  95. Kee JY, Ito A, Hojo S, Hashimoto I, Igarashi Y, Tsukada K, Irimura T, Shibahara N, Nakayama T, Yoshie O, Sakurai H et al (2013) Chemokine CXCL16 suppresses liver metastasis of colorectal cancer via augmentation of tumor-infiltrating natural killer T cells in a murine model. Oncol Rep 29:975–982PubMedGoogle Scholar
  96. Kee JY, Ito A, Hojo S, Hashimoto I, Igarashi Y, Tsuneyama K, Tsukada K, Irimura T, Shibahara N, Takasaki I, Inujima A et al (2014) CXCL16 suppresses liver metastasis of colorectal cancer by promoting TNF-α-induced apoptosis by tumor-associated macrophages. BMC Cancer 14:949PubMedPubMedCentralCrossRefGoogle Scholar
  97. Kersse K, Verspurten J, Vanden Berghe T, Vandenabeele P (2011) The death-fold superfamily of homotypic interaction motifs. Trends Biochem Sci 36:541–552PubMedCrossRefGoogle Scholar
  98. Kim SH, Ricci MS, El-Deiry WS (2008) Mcl-1. a gateway to TRAIL sensitization. Cancer Res 68:2062–2064PubMedCrossRefGoogle Scholar
  99. Kim S, Bae DJ, Hong M, Park SY, Kim IS (2010) The conserved histidine in epidermal growth factor-like domains of stabilin-2 modulates pH-dependent recognition of phosphatidylserine in apoptotic cells. Int J Biochem Cell Biol 42:1154–1163PubMedCrossRefGoogle Scholar
  100. Kim EY, Ryu JH, Kim AK (2013) CAPE promotes TRAIL-induced apoptosis through the upregulation of TRAIL receptors via activation of p38 and suppression of JNK in SK-Hep1 hepatocellular carcinoma cells. Int J Oncol 43:1291–1300PubMedGoogle Scholar
  101. Kiss RS, Ma Z, Nakada-Tsukui K, Brugnera E, Vassilou G, McBride HM, Ravichandran KS, Marcel YL (2006) The lipoprotein receptor-related protein-1 (LRP) adapter protein GULP mediates trafficking of the LRP ligand prosaposin, leading to sphingolipid and free cholesterol accumulation in late endosomes and impaired efflux. J Biol Chem 281:12081–12092PubMedCrossRefGoogle Scholar
  102. Koizumi K, Hojo S, Akashi T, Yasumoto K, Saiki I (2007) Chemokine receptors in cancer metastasis and cancer cell-derived chemokines in host immune response. Cancer Sci 98:1652–1658PubMedCrossRefGoogle Scholar
  103. Kong D, Zhao L, Du Y, He P, Zou Y, Yang L, Sun L, Wang H, Xu D, Meng X, Sun X (2014) Overexpression of GRIM-19, a mitochondrial respiratory chain complex I protein, suppresses hepatocellular carcinoma growth. Int J Clin Exp Pathol 7:7497–7507PubMedPubMedCentralGoogle Scholar
  104. Koschny R, Brost S, Hinz U, Sykora J, Batke EM, Singer S, Breuhahn K, Stremmel W et al (2013) Cytosolic and nuclear caspase-8 opposite impact on survival after liver resection for hepatocellular carcinoma. BMC Cancer 13:532PubMedPubMedCentralCrossRefGoogle Scholar
  105. Kountouras J, Zavos C, Chatzopoulos D (2003) Apoptosis in hepatocellular carcinoma. Hepatogastroenterology 50:242–249PubMedGoogle Scholar
  106. Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV et al (2009) Classification of cell death: recommendations of the Nomenclature Committee on cell Death 2009. Cell Death Differ 16:3–11PubMedCrossRefGoogle Scholar
  107. Kuang DM, Peng C, Zhao Q, Wu Y, Chen MS, Zheng L (2010) Activated monocytes in peritumoral stroma of hepatocellular carcinoma promote expansion of memory T helper 17 cells. Hepatology 51:154–164PubMedCrossRefGoogle Scholar
  108. Kuang DM, Zhao Q, Wu Y, Peng C, Wang J, Xu Z, Yin XY, Zheng L (2011) Peritumoral neutrophils link inflammatory response to disease progression by fostering angiogenesis in hepatocellular carcinoma. J Hepatol 54:948–955PubMedCrossRefGoogle Scholar
  109. Kubo K, Matsuzaki Y, Okazaki M, Kato A, Kobayashi N, Okita K (1998) The Fas system is not significantly involved in apoptosis in human hepatocellular carcinoma. Liver 18:117–123PubMedCrossRefGoogle Scholar
  110. Kykalos S, Dimitroulis D, Ntikoudi E, Karayiannakis A (2013) The clinical significance of apoptosis and M30 expression in colonic cancer progression. J Recept Signal Transduct Res 33:255–259PubMedCrossRefGoogle Scholar
  111. Kzhyshkowska J (2010) Multifunctional receptor stabilin-1 in homeostasis and disease. Sci World J 10:2039–2053CrossRefGoogle Scholar
  112. Langley RE, Bump EA, Quartuccio SG, Medeiros D, Braunhut SJ (1997) Radiation-induced apoptosis in microvascular endothelial cells. Br J Cancer 75:666–672PubMedPubMedCentralCrossRefGoogle Scholar
  113. Larochelle S, Langlois C, Thibault I, Lopez-Vallé CA, Roy M, Moulin V (2004) Sensitivity of myofibroblasts to H2O2-mediated apoptosis and their antioxidant cell network. J Cell Physiol 200:263–271PubMedCrossRefGoogle Scholar
  114. Lavrik IN, Krammer PH (2012) Regulation of CD95/Fas signaling at the DISC. Cell Death Differ 19:36–41PubMedCrossRefGoogle Scholar
  115. Lee SH, Shin MS, Lee HS, Bae JH, Lee HK, Kim HS, Kim SY, Jang JJ, Joo M et al (2001) Expression of Fas and Fas-related molecules in human hepatocellular carcinoma. Hum Pathol 32:250–256PubMedCrossRefGoogle Scholar
  116. Lee WC, Yu MC, Chen MF (2004) Prognostic impact of Fas ligand on hepatocellular carcinoma after hepatectomy. World J Surg 28:792–796PubMedCrossRefGoogle Scholar
  117. Lee SJ, So IS, Park SY, Kim IS (2008) Thymosin beta4 is involved in stabilin-2-mediated apoptotic cell engulfment. FEBS Lett 582:2161–2166PubMedCrossRefGoogle Scholar
  118. Lee WS, Park YL, Kim N, Oh HH, Son DJ, Kim MY, Oak CY, Chung CY, Park HC, Kim JS, Myung DS, Cho SB et al (2014) Myeloid cell leukemia-1 is associated with tumor progression by inhibiting apoptosis and enhancing angiogenesis in colorectal cancer. Am J Cancer Res 5:101–113PubMedPubMedCentralGoogle Scholar
  119. Leers MP, Björklund V, Björklund B, Jörnvall H, Nap M (2002) An immunohistochemical study of the clearance of apoptotic cellular fragments. Cell Mol Life Sci 59:1358–1365PubMedCrossRefGoogle Scholar
  120. Lemke G (2013) Biology of the TAM receptors. Cold Spring Harb Perspect Biol 5:a009076PubMedPubMedCentralCrossRefGoogle Scholar
  121. Li ZY, Zou SQ (2001) Fas counterattack in cholangiocarcinoma: a mechanism for immune evasion in human hilar cholangiocarcinomas. World J Gastroenterol 7:860–863PubMedPubMedCentralCrossRefGoogle Scholar
  122. Li R, Oteiza A, Sorensen KK, McCourt P, Olsen R, Smedsrod B, Svistounov D (2011) Role of liver sinusoidal endothelial cells and stabilins in elimination of oxidized density lipoproteins. Am J Physiol Gastrointest Liver Physiol 300:G71–G81PubMedCrossRefGoogle Scholar
  123. Li G, Chang H, Zhai YP, Xu W (2013) Targeted silencing of inhibitors of apoptosis proteins with siRNAs: a potential anti-cancer strategy for hepatocellular carcinoma. Asian Pac J Cancer Prev 14:4943–4952PubMedCrossRefGoogle Scholar
  124. Li D, Liu Y, Peng JJ, Tan Y, Zou Q, Song XF, Du M, Yang ZH, Tan Y, Zhou JJ, Xu T, Fu ZQ, Feng JQ et al (2015a) MicroRNA1 promotes apoptosis of hepatocarcinoma cells by targeting apoptosis inhibitor-5 (API-5). FEBS Lett 589:68–76PubMedCrossRefGoogle Scholar
  125. Li XF, Chen DP, Ouyang FZ, Chen MM, Wu Y, Kuang DM, Zheng L (2015b) Increased autophagy sustains the survival and pro-tumourigenic effects of neutrophils in human hepatocellular carcinoma. J Hepatol 62:131–139PubMedCrossRefGoogle Scholar
  126. Liao R, Sun TW, Yi Y, Wu H, Li YW, Wang JX, Zhou J, Shi YH, Cheng YF, Qiu SJ, Fan J (2012) Expression of TREM-1 in hepatic stellate cells and prognostic value in hepatitis B-related hepatocellular carcinoma. Cancer Sci 103:984–992PubMedCrossRefGoogle Scholar
  127. Lin SC, Lo YC, Wu H (2010) Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling. Nature 465:885–890PubMedPubMedCentralCrossRefGoogle Scholar
  128. Liu W, Lin YT, Yan XL, Ding YL, Wu YL, Chen WN, Lin X (2014a) Hepatitis B virus core protein inhibits Fas-mediated apoptosis of hepatoma cells via regulation of mFas/FasL and sFas expression. FASEB J pii:fj. 14–263822Google Scholar
  129. Liu N, Jiao T, Huang Y, Liu W, Li Z, Ye X (2014b) HBV regulates apoptosis and tumorigenesis through miR15a-Smad7-TGF-β pathway. J Virol pii:JVI.02784–14Google Scholar
  130. Mace PD, Riedl SJ (2010) Molecular cell death platforms and assemblies. Curr Opin Cell Biol 22:828–836PubMedPubMedCentralCrossRefGoogle Scholar
  131. MacFarlane M (2003) TRAIL-induced signalling and apoptosis. Toxicol Lett 139:89–97PubMedCrossRefGoogle Scholar
  132. Maemura K, Yoshikawa H, Yokoyama K, Ueno T, Kurose H, Uchiyama K, Otsuki Y (2013) Delta-like 3 is silenced by methylation and induces apoptosis in human hepatocellular carcinoma. Int J Oncol 42:817–822PubMedPubMedCentralGoogle Scholar
  133. Mann B, Gratchev A, Böhm C, Hanski ML, Foss HD, Demel G, Trojanek B, Schmidt-Wolf I, Stein H, Riecken EO et al (1999) FasL is more frequently expressed in liver metastases of colorectal cancer than in matched primary carcinomas. Br J Cancer 79:1262–1269PubMedPubMedCentralCrossRefGoogle Scholar
  134. Manzl C, Peintner L, Krumschnabel G, Bock F, Labi V, Drach M, Newbold A, Johnstone R et al (2012) PIDDosome-independent tumor suppression by caspase-2. Cell Death Differ 19:1722–1732PubMedPubMedCentralCrossRefGoogle Scholar
  135. Martinez MM, Reif RD, Pappas D (2010) Detection of apoptosis: a review of conventional and novel techniques. Anal Methods 2:996–1004CrossRefGoogle Scholar
  136. Maxwell SA, Capp D, Acosta SA (1997) Telomerase activity in immortalized endothelial cells undergoing p53-mediated apoptosis. Biochem Biophys Res Commun 241:642–645PubMedCrossRefGoogle Scholar
  137. McCoy F, Eckard L, Nutt LK (2012) Janus-faced PIDD: a sensor for DNA damage-induced cell death or survival ? Mol. Cell 47:667–668Google Scholar
  138. Mérino D, Giam M, Hughes PD, Siggs OM, Heger K, O’Reilly LA, Adams JM, Strasser A et al (2009) The role of BH3-only protein Bim extends beyond inhibiting Bcl-2-like prosurvival proteins. J Cell Biol 186:355–362PubMedPubMedCentralCrossRefGoogle Scholar
  139. Mertens JC, Fingas CD, Christensen JD, Smoot RL, Bronk SF, Werneburg NW et al (2013) Therapeutic effects of deleting cancer-associated fibroblasts in cholangiocarcinoma. Cancer Res 73:897–907PubMedCrossRefGoogle Scholar
  140. Miao HL, Lei CJ, Qiu ZD, Liu ZK, Li R, Bao ST, Li MY (2014) MicroRNA-520c-3p inhibits hepatocellular carcinoma cell proliferation and invasion through induction of cell apoptosis by targeting glypican-3. Hepatol Res 44:338–348PubMedCrossRefGoogle Scholar
  141. Mille F, Thibert C, Fombonne J, Rama N, Guix C, Hayashi H, Corset V, Reed JC et al (2009) The Patched dependence receptor triggers apoptosis through a DRAL-caspase-9 complex. Nat Cell Biol 11:739–746PubMedPubMedCentralCrossRefGoogle Scholar
  142. Mondal S, Ghosh-Roy S, Loison F, Li Y, Jia Y, Harris C, Williams DA, Luo HR (2011) PTEN negatively regulates engulfment of apoptotic cells by modulating activation of RAC GTPase. J Immunol 187:5783–5794PubMedPubMedCentralCrossRefGoogle Scholar
  143. Moon WS, Tarnawski AS (2003) Nuclear translocation of survivin in hepatocellular carcinoma: a key to cancer cell growth? Hum Pathol 34:1119–1126PubMedCrossRefGoogle Scholar
  144. Motshwene PG, Moncrieffe MC, Grossmann JG, Kao C, Ayaluru M, Sanderock AM et al (2009) An oligomeric signaling platform formed by the Toll-like receptor signal transducers MyD88 and IRAK-4. J Biol Chem 284:25404–25411PubMedPubMedCentralCrossRefGoogle Scholar
  145. Nakajima W, Tanaka N (2011) Noxa induces apoptosis in oncogene-expressing cells through catch-and-release mechanism operating between Puma and Mcl-1. Biochem Biophys Res Commun 413:643–648PubMedCrossRefGoogle Scholar
  146. Natoli G, Ianni A, Costanzo A, De Petrillo G, Ilari I, Chirillo P, Balsano C, Levrero M (1995) Resistance to Fas-mediated apoptosis in human hepatoma cells. Oncogene 11:1157–1164PubMedGoogle Scholar
  147. Nguyen KQ, Tsou WI, Kotenko S, Birge RB (2013) TAM receptors in apoptotic cell clearance, autoimmunity, and cancer. Autoimmunity 46:294–297PubMedCrossRefGoogle Scholar
  148. Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N (2013) Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta 1833:3448–3459PubMedCrossRefGoogle Scholar
  149. Notarbartolo M, Cervello M, Giannitrapani L, Meli M, Poma P, Dusonchet L, Montalto G, D’Alessandro N (2004) Expression of IAPs and alternative splice variants in hepatocellular carcinoma tissues and cells. Ann N Y Acad Sci 1028:289–293PubMedCrossRefGoogle Scholar
  150. Okano H, Shiraki K, Inoue H, Kawakita T, Saitou Y, Enokimura N, Yamamoto N, Sugimoto K et al (2003) Over-expression of Smac promotes TRAIL-induced cell death in human hepatocellular carcinoma. Int J Mol Med 12:25–28PubMedGoogle Scholar
  151. Okaro AC, Deery AR, Hutchins RR, Davidson BR (2001) The expression of antiapoptotic proteins Bcl-2, Bcl-X(L), and Mcl-1 in benign, dysplastic, and malignant biliary epithelium. J Clin Pathol 54:927–932PubMedPubMedCentralCrossRefGoogle Scholar
  152. Op de Beeck K, Van Camp G, Thys S, Cools N, Callebaut I, Vrijens K, Van Nassauw L et al (2011) The DFNA5 gene, responsible for hearing loss and involved in cancer, encodes a novel apoptosis-inducing protein. Eur J Hum Genet 19:965–973PubMedCrossRefGoogle Scholar
  153. Ormsby T, Schlecker E, Ferdin J, Tessarz AS, Angelisova P, Köprülü AD, Borte M, Warnatz K, Schulze I, Ellmeier W et al (2011) Btk is a positive regulator in the TREM-1/DAP12 signaling pathway. Blood 118:936–945PubMedCrossRefGoogle Scholar
  154. Ozaki I, Hamajima H, Matsuhashi S, Mizuta T (2011) Regulation of TGF-b1-induced pro-apoptotic signaling by growth factor receptors and extracellular matrix receptor integrins in the liver. Front Physiol 2:78PubMedPubMedCentralCrossRefGoogle Scholar
  155. Paiva C, Oshima CT, Lanzoni VP, Forones NM (2002) Apoptosis, PCNA and p53 in hepatocellular carcinoma. Hepatogastroenterology 49:1058–1061PubMedGoogle Scholar
  156. Palani S, Maksimow M, Miiluniemi M, Auvinen K, Jalkanen S, Salmi M (2011) Stabilin-1/CLEVER-1 a type 2 macrophage marker, is an adhesion and scavenging molecule on human placental macrophages. Eur J Immunol 41:2052–2063PubMedCrossRefGoogle Scholar
  157. Pan G, Vickers SM, Pickens A, Phillips JO, Ying W, Thompson JA, Siegal GP, McDonald JM (1999) Apoptosis and tumorigenesis in human cholangiocarcinoma cells. Involvement of Fas/APO-1 (CD95) and calmodulin. Am J Pathol 155:193–203PubMedPubMedCentralCrossRefGoogle Scholar
  158. Pan Z, Chen C, Long H, Lei C, Tang G, Li L, Feng J, Chen F (2013) Overexpression of GPC3 inhibits hepatocellular carcinoma cell proliferation and invasion through induction of apoptosis. Mol Med Rep 7:969–974PubMedGoogle Scholar
  159. Park HH (2012) Structural features of caspase-activating complexes. Int J Mol Sci 13:4807–4818PubMedPubMedCentralCrossRefGoogle Scholar
  160. Park SY, Kang KB, Thapa N, Kim SY, Lee SJ, Kim IS (2008) Requirement of adaptor protein GULP during stabilin-2-mediated cell corpse engulfment. J Biol Chem 283:10593–10600PubMedCrossRefGoogle Scholar
  161. Park SY, Jung MY, Lee SJ, Kang KB, Gratchev A, Riabov V, Kzhyshkowska J, Kim IS (2009) Stabilin-1 mediates phosphatidylserine-dependent clearance of cell corpses in alternatively activated macrophages. J Cell Sci 122:3365–3373PubMedCrossRefGoogle Scholar
  162. Park SY, Kim SY, Kang KB, Kim IS (2010) Adaptor protein GULP is involved in stabilin-1-mediated phagocytosis. Biochem Biophys Res Commun 398:467–472PubMedCrossRefGoogle Scholar
  163. Peeters CF, de Waal RM, Wobbes T, Westphal JR, Ruers TJ (2006) Outgrowth of human liver metastases after resection of the primary colorectal tumor: a shift in the balance between apoptosis and proliferation. Int J Cancer 119:1249–1253PubMedCrossRefGoogle Scholar
  164. Persad R, Liu C, Wu TT, Houlihan PS, Hamilton SR, Diehl AM, Rashid A (2004) Overexpression of caspase-3 in hepatocellular carcinomas. Mod Pathol 17:861–867PubMedCrossRefGoogle Scholar
  165. Pontisso P (2014) Role of SERPINB3 in hepatocellular carcinoma. Ann Hepatol 13:722–727PubMedGoogle Scholar
  166. Preaux AM, D’Ortho MP, Bralet MP, Laperche Y, Mavier P (2002) Apoptosis of human hepatic myofibroblasts promotes activation of matrix metalloproteinase-2. Hepatology 36:615–622PubMedCrossRefGoogle Scholar
  167. Qi JH, Anand-Apte B (2015) Tissue inhibitor of metalloproteinase-3 (TIMP3) promotes endothelial apoptosis via a caspase-independent mechanism. Apoptosis 20:523–534Google Scholar
  168. Ravichandran KS, Lorenz U (2007) Engulfment of apoptotic cells: signals for a good meal. Nat Rev Immunol 7:964–974PubMedCrossRefGoogle Scholar
  169. Rawat S, Clippinger AJ, Bouchard MJ (2012) Modulation of apoptotic signaling by the hepatitis B virus X protein. Viruses 4:2945–2972PubMedPubMedCentralCrossRefGoogle Scholar
  170. Razon MJ, Kräling BM, Mulliken JB, Bischoff J (1998) Increased apoptosis coincides with onset of involution in infantile hemangioma. Microcirculation 5:189–195PubMedCrossRefGoogle Scholar
  171. Resch U, Schichl YM, Winsauer G, Gudi R, Prasad K, de Martin R (2009) Siva1 is a XIAP-interacting protein that balances NFkappaB and NK signaling to promote apoptosis. J Cell Sci 122:2651–2661PubMedCrossRefGoogle Scholar
  172. Reubold TF, Eschenburg S (2012) A molecular view on signal transduction by the apoptosome. Cell Signal 24:1420–1425PubMedCrossRefGoogle Scholar
  173. Rizvi S, Mertens JC, Bronk SF, Hirsova P, Dai H, Roberts LR, Kaufmann SH, Gores GJ (2014) Platelet-derived growth factor primes cancer-associated fibroblasts for apoptosis. J Biol Chem 289:22835–22849PubMedPubMedCentralCrossRefGoogle Scholar
  174. Rocha Lima H (1912) Zur pathologischen Anatomie des Gelbfiebers. Verh Dtsch Ges Pathol 15:163–182Google Scholar
  175. Rong GH, Yang GX, Ando Y, Zhang W, He XS, Leung PS, Coppel RL, Ansari AA et al (2013) Human intrahepatic biliary epithelial cells engulf blebs from their apoptotic peers. Clin Exp Immunol 172:95–103PubMedPubMedCentralCrossRefGoogle Scholar
  176. Roskams T, Libbrecht L, Van Damme B, Desmet V (2000) Fas and Fas ligand: strong co-expression in human hepatocytes surrounding hepatocellular carcinoma; can cancer induce suicide in peritumoral cells? J Pathol 191:150–153PubMedCrossRefGoogle Scholar
  177. Saile B, Knittel T, Matthes N, Schott P, Ramadori G (1997) CD95/CD95L-mediated apoptosis of the hepatic stellate cell. A mechanism terminating uncontrolled hepatic stellate cell proliferation during hepatic tissue repair. Am J Pathol 151:1265–1272PubMedPubMedCentralGoogle Scholar
  178. Sandilos JK, Bayliss DA (2012) Physiological mechanisms for the modulation of pannexin 1 channel activity. J Physiol 590:6257–6266PubMedPubMedCentralCrossRefGoogle Scholar
  179. Saraste A (1999) Morphologic criteria and detection of apoptosis. Herz 24:189–195PubMedCrossRefGoogle Scholar
  180. Saraste A, Pulkki K (2000) Morphologic and biochemical hallmarks of apoptosis. Cardiovasc Res 45:528–537PubMedCrossRefGoogle Scholar
  181. Sato F, Nagata C, Liu Y, Suzuki T, Kondo J, Morohashi S, Imaizumi T, Kato Y, Kijima H (2009) PERIOD1 is an anti-apoptotic factor in human pancreatic and hepatic cancer cells. J Biochem 146:833–838PubMedCrossRefGoogle Scholar
  182. Schleich K, Krammer PH, Lavrik IN (2013) The chains of death: a new view on caspase-8 activation at the DISC. Cell Cycle 12:193–194PubMedPubMedCentralCrossRefGoogle Scholar
  183. Seong J, Cho JH, Yang WI, Chung EJ, Kim NK (2004) Apoptosis and proliferation in paired primary colorectal adenocarcinomas and liver metastases. Yonsei Med J 45:187–192PubMedCrossRefGoogle Scholar
  184. Shaposhinikov D, Descot A, Schilling J, Posern G (2012) Myocardin-related transcription factor A regulates expression of Bok and Noxa and is involved in apoptotic signalling. Cell Cycle 11:141–150CrossRefGoogle Scholar
  185. Shen YC, Hu FC, Jeng YM, Chang YT, Lin ZZ, Chang MC, Hsu C, Cheng AL (2009) Nuclear overexpression of mitotic regulatory proteins in biliary tract cancer: correlation with clinicopathologic features and patient survival. Cancer Epidemiol Biomarkers Prev 18:417–423PubMedCrossRefGoogle Scholar
  186. Shi M, Yan SG, Xie ST, Wang HN (2008) Tip30-induced apoptosis requires translocation of Bax and involves mitochondrial release of cytochrome c and Smac/DIABLO in hepatocellular carcinoma cells. Biochim Biophys Acta 1783:263–274PubMedCrossRefGoogle Scholar
  187. Shimoda HK, Shide K, Kameda T, Matsunaga T, Shimoda K (2010) Tyrosine kinase 2 interacts with the proapoptotic protein Shiva-1 and augments its apoptotic functions. Biochem Biophys Res Commun 400:252–257PubMedCrossRefGoogle Scholar
  188. Shimonishi T, Isse K, Shibata F, Aburatani I, Tsuneyama K, Sabit H, Harada K, Miyazaki K et al (2000) Up-regulation of fas ligand at early stages and down-regulation of Fas at progressed stages of intrahepatic cholangiocarcinoma reflect evasion from immune surveillance. Hepatology 32:761–769PubMedCrossRefGoogle Scholar
  189. Shin EC, Shin JS, Park JH, Kim JJ, Kim H, Kim SJ (1998) Expression of Fas-related genes in human hepatocellular carcinomas. Cancer Lett 134:155–162PubMedCrossRefGoogle Scholar
  190. Shin EC, Shin JS, Park JH, Kim H, Kim SJ (1999) Expression of fas ligand in human hepatoma cell lines: role of hepatitis-B virus X (HBX) in induction of Fas ligand. Int J Cancer 82:587–591PubMedCrossRefGoogle Scholar
  191. Shin EC, Seong YR, Kim CH, Ahn YS, Kim K, Kim SJ, Hong SS, Park JH (2002) Human hepatocellular carcinoma cells resist to TRAIL-induced apoptosis, and the resistance is abolished by cisplatin. Exp Mol Med 34:114–122PubMedCrossRefGoogle Scholar
  192. Shirabe K, Mano Y, Muto J, Matono R, Motomura T, Toshima T, Takeishi K, Uchiyama H, Yoshizumi T, Taketomi A et al (2012) Role of tumor-associated macrophages in the progression of hepatocellular carcinoma. Surg Today 42:1–7PubMedCrossRefGoogle Scholar
  193. Shiraki K, Yamanaka T, Inoue H, Kawakita T, Enokimura N, Okano H, Sugimoto K et al (2005) Expression of TNF-related apoptosis-inducing ligand in human hepatocellular carcinoma. Int J Oncol 26:1273–1281PubMedGoogle Scholar
  194. Shklyar B, Levy-Adam F, Mishnaevski K, Kurant E (2013) Caspase activity is required for engulfment of apoptotic cells. Mol Cell Biol 33:3191–3201PubMedPubMedCentralCrossRefGoogle Scholar
  195. Shu G, Xie B, Ren F, Liu DC, Zhou J, Li Q, Chen J, Yuan L, Zhou J (2013) Restoration of klotho expression induces apoptosis and autophagy in hepatocellular carcinoma cells. Cell Oncol (Dordr) 36:121–129CrossRefGoogle Scholar
  196. Sirach E, Bureau C, Péron JM, Paradayol L, Vinel JP, Buscail L, Cordeiler P (2007) KLF6 transcription factor protects hepatocellular carcinoma-derived cells from apoptosis. Cell Death Differ 14:1202–1210PubMedCrossRefGoogle Scholar
  197. Sirica AE (2011) The role of cancer-associated myofibroblasts in intrahepatic cholangiocarcinoma. Nat Rev Gastroenterol Hepatol 9:44–54PubMedCrossRefGoogle Scholar
  198. Stilo R, Leonardi A, Formisano L, Di Jeso B, Vito P, Liguoro D (2002) TUCAN/CARDINAL and DRAL participate in a common pathway for modulation of NF-kappaB activation. FEBS Lett 521:165–169PubMedCrossRefGoogle Scholar
  199. Su HP, Nakada-Tsukui K, Tosello-Trampont AC, Li Y, Bu G, Henson PM, Ravichandran KS (2002) Interaction of CED-6/GULP, an adapter protein involved in engulfment of apoptotic cells with CED-1 and CD91/low density lipoprotein receptor-related protein (LRP). J Biol Chem 277:11772–11779PubMedCrossRefGoogle Scholar
  200. Sullivan CS, Scheib JL, Ma Z, Dang RP, Schafer JM, Hickman FE, Brodsky FM et al (2014) The adaptor protein GULP promotes Jedi-1-mediated phagocytosis through a clathrin-dependent mechanism. Mol Biol Cell 25:1925–1936PubMedPubMedCentralCrossRefGoogle Scholar
  201. Sun BH, Zhao XP, Wang BJ, Yang DL, Hao LJ (2000) FADD and TRADD expression and apoptosis in primary hepatocellular carcinoma. World J Gastroenterol 6:223–227PubMedPubMedCentralCrossRefGoogle Scholar
  202. Sun GG, Lu YF, Cheng YJ, Yang CR, Liu Q, Jing SW, Han XC (2014) Expression of BTG1 in hepatocellular carcinoma and its correlation with cell cycles, cell apoptosis, and cell metastasis. Tumour Biol 35:11771–11779PubMedCrossRefGoogle Scholar
  203. Taimr P, Higuchi H, Kocova E, Rippe RA, Friedman S, Gores GJ (2003) Activated stellate cells express the TRAIL receptor-2/death receptor-5 and undergo TRAIL-mediated apoptosis. Hepatology 37:87–95PubMedCrossRefGoogle Scholar
  204. Tanaka S, Sugimachi K, Shirabe K, Shimada M, Wands JR (2000) Expression and antitumor effects of TRAIL in human cholangiocarcinoma. Hepatology 32:523–527PubMedCrossRefGoogle Scholar
  205. Tang W, Xue R, Weng S, Wu J, Fang Y, Wang Y, Ji L, Hu T, Liu T, Huang X, Chen S, Shen X, Zhang S et al (2015) BIRC6 promotes hepatocellular carcinogenesis: interaction of BIRC6 with p53 facilitating p53 degradation. Int J Cancer 136:E475–E487PubMedCrossRefGoogle Scholar
  206. Tatebe S, Ishida M, Kasagi N, Tsujitani S, Kaibara N, Ito H (1996) Apoptosis occurs more frequently in metastatic foci than in primary lesions of human colorectal carcinomas: analysis by terminal-deoxynucleotidyl-transferase-mediated dUTP-biotin nick end labeling. Int J Cancer 65:173–177PubMedCrossRefGoogle Scholar
  207. Tenev T, Bianchi K, Darding M, Broemer M, Langlais C, Wallberg F, Zachariou A, Lopez J et al (2011) The ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IPAs. Mol Cell 43:432–448PubMedCrossRefGoogle Scholar
  208. Terada T, Nakanuma Y (1996) Expression of apoptosis, proliferating cell nuclear antigen, and apoptosis-related antigens (bcl-2, c-myc, Fas, Lewis(y) and p53) in human cholangiocarcinomas and hepatocellular carcinomas. Pathol Int 46:764–770PubMedCrossRefGoogle Scholar
  209. Tessarz AS, Cerwenka A (2008) The TREM-1/DAP12 pathway. Immunol Lett 116:111–116PubMedCrossRefGoogle Scholar
  210. Thirunavukkarasu C, Watkins S, Harvey SA, Gandhi CR (2004) Superoxide-induced apoptosis of activated rat hepatic stellate cells. J Hepatol 41:567–575PubMedCrossRefGoogle Scholar
  211. Thorburn A (2004) Death receptor-induced cell killing. Cell Signal 16:139–144PubMedCrossRefGoogle Scholar
  212. Tinel A, Tschopp J (2004) The PIDDosome, a protein complex implicated in activation of caspase-2 in response to genotoxic stress. Science 304:843–846PubMedCrossRefGoogle Scholar
  213. Toda S, Hanayama R, Nagata S (2012) Two-step engulfment of apoptotic cells. Mol Cell Biol 32:118–125PubMedPubMedCentralCrossRefGoogle Scholar
  214. Tran J, Rak J, Sheehan C, Saibil SD, LaCasse E, Korneluk RG, Kerbel RS (1999) Marked induction of the IAP family antiapoptotic proteins survivin and XIAP by VEGF in vascular endothelial cells. Biochem Biophys Res Commun 264:781–788PubMedCrossRefGoogle Scholar
  215. Uesugi K, Hiasa Y, Tokumoto Y, Mashiba T, Koizumi Y, Hirooka M, Abe M, Matsuura B et al (2013) Wilms’ tumor 1 gene modulates Fas-related death signals and anti-apoptotic functions in hepatocellular carcinoma. J Gastroenterol 48:1069–1080PubMedCrossRefGoogle Scholar
  216. Vakifahmetoglu-Norberg H, Norberg E, Perdomo AB, Olsson M, Ciccosanti F, Orrenius S et al (2013) Caspase-2 promotes cytoskeleton protein degradation during apoptotic cell death. Cell Death Dis 4:e940PubMedPubMedCentralCrossRefGoogle Scholar
  217. Valentino T, Palmieri D, Vitiello M, Pierantoni GM, Fusco A, Fedele M (2013) PATZ1 interacts with p53 and regulates expression of p53-target genes enhancing apoptosis or cell survival based on the cellular context. Cell Death Dis 4:e963PubMedPubMedCentralCrossRefGoogle Scholar
  218. Wang CJ, Tang L, Shen DW, Wang C, Yuan QY, Gao W, Wang YK, Xu RH, Zhang H (2013a) The expression and regulation of DFNA5 in human hepatocellular carcinoma DFNA5 in hepatocellular carcinoma. Mol Biol Rep 40:6525–6531PubMedCrossRefGoogle Scholar
  219. Wang Y, Yang C, Mao K, Chen S, Meng G, Sun B (2013b) Cellular localization of NLRP3 inflammasome. Protein Cell 4:425–431PubMedPubMedCentralCrossRefGoogle Scholar
  220. Wensveen FM, Derks IA, van Gisbergen KP, de Bruin AM, Meijers JC, Yigittop H et al (2011) BH3-only protein Noxa regulates apoptosis in activated B cells and controls high-affinity antibody formation. Blood 119:1440–1449PubMedCrossRefGoogle Scholar
  221. Willingham MC (1999) Cytochemical methods for the detection of apoptosis. J Histochem Cytochem 47:1101–1109PubMedCrossRefGoogle Scholar
  222. Willis SN, Fletcher JI, Kaufmann T, van Delft MF, Chen L, Czabotar PE, Ierino H et al (2007) Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science 315:856–859PubMedCrossRefGoogle Scholar
  223. Wong CM, Lee JM, Ching YP, Jin DY, Ng IO (2003) Genetic and epigenetic alterations of DLC-1 gene in hepatocellular carcinoma. Cancer Res 63:7646–7651PubMedGoogle Scholar
  224. Wu Y, Zhao Q, Peng C, Sun L, Li XF, Kuang DM (2011) Neutrophils promote motility of cancer cells via a hyaluronan-mediated TLR4/PI3K activation loop. J Pathol 225:438–447PubMedCrossRefGoogle Scholar
  225. Wu J, Li J, Salcedo R, Mivechi NF, Trinchieri G, Horuzsko A (2012) The proinflammatory myeloid cell receptor TREM-1 controls Kupffer cell activation and development of hepatocellular carcinoma. Cancer Res 72:3977–3986PubMedPubMedCentralCrossRefGoogle Scholar
  226. Xia YH, Wang ZM, Chen RX, Ye SL, Sun RX, Xue Q, Huang Y (2013) T-cell apoptosis induced by intratumoral activated hepatic stellate cells is associated with lung metastasis in hepatocellular carcinoma. Oncol Rep 30:1175–1184PubMedGoogle Scholar
  227. Xiao CX, Yang XN, Huang QW, Zhang YQ, Lin BY, Liu JJ, Liu YP, Jazag A, Guleng B et al (2013) ECHS1 acts as a novel HBsAg-binding protein enhancing apoptosis through the mitochondrial pathway in HepG2 cells. Cancer Lett 330:67–73PubMedCrossRefGoogle Scholar
  228. Xie S, Zhu M, Lv G, Zhang Q, Wang G (2012) The role of RhoC in the proliferation and apoptosis of hepatocellular carcinoma cells. Med Oncol 29:1802–1809PubMedCrossRefGoogle Scholar
  229. Xing SQ, Zhang CG, Yuan JF, Yang HM, Zhao SD, Zhang H (2015) Adiponectin induces apoptosis in hepatocellular carcinoma through differential modulation of thioredoxin proteins. Biochem Pharmacol 93:221–231PubMedCrossRefGoogle Scholar
  230. Xu Y, Kim SO, Li Y, Han J (2006) Autophagy contributes to caspase-independent macrophage cell death. J Biol Chem 281:19179–19187PubMedCrossRefGoogle Scholar
  231. Yano H, Fukuda K, Haramaki M, Momosaki S, Ogasawara S, Higaki K, Kojiro M (1996) Expression of Fas and anti-Fas-mediated apoptosis in human hepatocellular carcinoma cell lines. J Hepatol 25:454–464PubMedCrossRefGoogle Scholar
  232. Yano Y, Hayashi Y, Nakaji M, Nagano H, Seo Y, Ninomiya T, Yoon S, Wada A, Hirai M et al (2003) Different apoptotic regulation of TRAIL-caspase pathway in HBV- and HCV-related hepatocellular carcinoma. Int J Mol Med 11:499–504PubMedGoogle Scholar
  233. Yao Z, Zhang P, Guo H, Shi J, Liu S, Liu Y, Zheng D (2014) RIP1 modulates death receptor mediated apoptosis and autophagy in macrophages. Mol Oncol pii:S1571-7891(14)00289-0Google Scholar
  234. Ye CP, Qiu CZ, Huang ZX, Su QC, Zhuang W, Wu RL, Li XF (2007) Relationship between surviving expression and recurrence, and prognosis in hepatocellular carcinoma. World J Gastroenterol 13:6264–6268PubMedPubMedCentralCrossRefGoogle Scholar
  235. Yi HC, Liu YL, You P, Pan JS, Zhou JY, Liu ZJ, Zhang ZY (2015) Overexpression of DEK gene is correlated with poor prognosis in hepatocellular carcinoma. Mol Med Rep 11:1318–1323PubMedGoogle Scholar
  236. Yuan S, Akey CW (2013) Apoptosome structure, assembly, and procaspase activation. Structure 21:501–515PubMedPubMedCentralCrossRefGoogle Scholar
  237. Yuan S, Yu X, Topf M, Ludtke SJ, Wang X, Akey CW (2010) Structure of an apoptosome-procaspase-9 CRAD complex. Structure 18:571–583PubMedPubMedCentralCrossRefGoogle Scholar
  238. Yuan S, Yu X, Asara JM, Heuser JE, Ludtke SJ, Akey CW (2011) The holo-apoptosome: activation of procaspase-9 and interactions with caspase-3. Structure 19:1084–1096PubMedPubMedCentralCrossRefGoogle Scholar
  239. Yuan Z, Syed MA, Panchal D, Joo M, Colonna M, Brantly M, Sadikot RT (2014) Triggering receptor expressed on myeloid cells 1 (TREM-1)-mediated Bcl-2 induction prolongs macrophage survival. J Biol Chem 289:15118–15129PubMedPubMedCentralCrossRefGoogle Scholar
  240. Yunqiao L, Vanke H, Jun X, Tangmeng G (2014) MicroRNA-206, down-regulated in hepatocellular carcinoma, suppresses cell proliferation and promotes apoptosis. Hepatogastroenterology 61:1302–1307Google Scholar
  241. Zhang HY, Phan SH (1999) Inhibition of myofibroblast apoptosis by transforming growth factor beta(1). Am J Respir Cell Mol Biol 21:658–665PubMedCrossRefGoogle Scholar
  242. Zhang YY, Zhou LM (2013) Omentin-1, a new adipokine, promotes apoptosis through regulating Sirt1-dependent p53 deacetylation in hepatocellular carcinoma cells. Eur J Pharmacol 698:137–144PubMedCrossRefGoogle Scholar
  243. Zhang Z, Liang X, Gao L, Ma H, Liu X, Pan Y, Yan W, Shan H, Wang Z, Chen YH et al (2014) TIPE1 induces apoptosis by negatively regulating Rac1 activation in hepatocellular carcinoma cells. Oncogene. doi:10.1038/onc.2014.208Google Scholar
  244. Zhao M, Zimmermann A (1997a) Apoptosis in human hepatocellular carcinoma and in liver cell dysplasia is correlated with p53 protein immunoreactivity. J Clin Pathol 50:394–400PubMedPubMedCentralCrossRefGoogle Scholar
  245. Zhao M, Zimmermann A (1997b) Apoptosis in hepatocellular carcinomas with neuroendocrine differentiation. Histol Histopathol 12:973–980PubMedGoogle Scholar
  246. Zheng T, Wang J, Song X, Meng X, Pan S, Jiang H, Liu L (2010) Nutlin-3 cooperates with doxorubicin to induce apoptosis of human hepatocellular carcinoma cells through p53 or p73 signaling pathways. J Cancer Res Clin Oncol 136:1597–1604PubMedCrossRefGoogle Scholar
  247. Zhou X, Thorgeirsson SS, Popescu NC (2004) Restoration of DLC-1 gene expression induces apoptosis and inhibits both cell growth and tumorigenicity in human hepatocellular carcinoma cells. Oncogene 23:1308–1313PubMedCrossRefGoogle Scholar
  248. Zimmermann A, Kappeler A, Friess H, Büchler MW (2002) Hepatocellular carcinoma with an unusual medullary-like histology and signs of regression (“medullary-like hepatocellular carcinoma”). Dig Liver Dis 34:748–763PubMedCrossRefGoogle Scholar
  249. Zou C, Chen J, Chen K, Wang S, Cao Y, Zhang J, Sheng Y, Huang A, Tang H (2014) Functional analysis of miR-181a and Fas involved in hepatitis B virus-related hepatocellular carcinoma pathogenesis. Exp Cell Res pii:S0014-4827(14)00503-5Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.University of BernBernSwitzerland

Personalised recommendations