Advertisement

Gold Nanoparticle-Based Laser Photothermal Therapy

  • Navid Manuchehrabadi
  • Liang Zhu
Reference work entry

Abstract

Laser photothermal therapy using gold nanoparticles in cancer research has attracted a lot of attentions in past decades, since it provides an alternative approach to traditional hyperthermia methods. This review is focused on advancements in gold nanoparticle development and the underlying mechanisms to confine heat generation in tumors when these nanoparticles interact with an incident laser. First, an overview of hyperthermia used in medicine is given, and the development of gold nanoparticles in laser photothermal therapy is discussed. Second, physical mechanisms in generating heat utilizing gold nanoparticles, nanoparticle delivery, and toxicity reaction after injection are described. The next section is focused on evaluation of performance of laser photothermal therapy in clinical/animal studies. Monte Carlo methods are presented to demonstrate current theoretical simulation approaches to determine laser energy absorption distribution in tissue enhanced by gold nanoparticles. Furthermore, modeling heat transfer and assessing thermal damage in biological tissue using gold nanoparticles in designing treatment protocols are described to show a typical designing process. At the end of this review, the current challenges facing clinicians and researchers in delivering effective and safe thermal dosage in laser photothermal therapy are discussed.

Notes

Acknowledgment

This work was supported by an NSF grant (CBET-1335958).

References

  1. Aaseth J, Haugen M, Forre O (1998) Rheumatoid arthritis and metal compounds–perspectives on the role of oxygen radical detoxification. Analyst 123(1):3–6CrossRefGoogle Scholar
  2. American Cancer Society (2016) Cancer facts and figures. American Cancer Society, AtlantaGoogle Scholar
  3. Amreddy N, Muralidharan R, Babu A, Mehta M, Johnson EV, Zhao YD, Munshi A, Ramesh R (2015) Tumor-targeted and pH-controlled delivery of doxorubicin using gold nanorods for lung cancer therapy. Int J Nanomedicine 10:6773Google Scholar
  4. Anvari B, Rastegar S, Motamedi M (1994) Modeling of intraluminal heating of biological tissue: implications for treatment of benign prostatic hyperplasia. IEEE Trans Biomed Eng 41(9):854–864CrossRefGoogle Scholar
  5. Ashokkumar T, Prabhu D, Geetha R, Govindaraju K, Manikandan R, Arulvasu C, Singaravelu G (2014) Apoptosis in liver cancer (HepG2) cells induced by functionalized gold nanoparticles. Colloids Surf B: Biointerfaces 123:549–556CrossRefGoogle Scholar
  6. Bazile D, Prud’homme C, Bassoullet M-T, Marlard M, Spenlehauer G, Veillard M (1995) Stealth Me. PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system. J Pharm Sci 84(4):493–498CrossRefGoogle Scholar
  7. Berlien HMG (2003) Applied laser medicine. Springer, BerlinCrossRefGoogle Scholar
  8. Bernardi RJ, Lowery AR, Thompson PA, Blaney SM, West JL (2008) Immunonanoshells for targeted photothermal ablation in medulloblastoma and glioma: an in vitro evaluation using human cell lines. J Neuro-Oncol 86(2):165–172CrossRefGoogle Scholar
  9. Berry V, Gole A, Kundu S, Murphy CJ, Saraf RF (2005) Deposition of CTAB-terminated nanorods on bacteria to form highly conducting hybrid systems. J Am Chem Soc 127(50):17600–17601CrossRefGoogle Scholar
  10. Bhowmik A, Singh R, Repaka R, Mishra SC (2013) Conventional and newly developed bioheat transport models in vascularized tissues: a review. J Therm Biol 38(3):107–125CrossRefGoogle Scholar
  11. Black KC, Kirkpatrick ND, Troutman TS, Xu L, Vagner J, Gillies RJ, Barton JK, Utzinger U, Romanowski M (2008) Gold nanorods targeted to delta opioid receptor: plasmon-resonant contrast and photothermal agents. Mol Imaging 7(1):50–57CrossRefGoogle Scholar
  12. Boris K, Vladimir Z, Andrei M, Valery T, Nikolai K (2006) Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters. Nanotechnology 17(20):5167CrossRefGoogle Scholar
  13. Bush W (1886) Uber den finfluss wetchen heftigere eryspelen zuweilen auf organlsierte neubildungen dusuben. Verh Natruch Peuss Rhein Westphal 23:28–30Google Scholar
  14. Cabada TF, de Pablo CS, Serrano AM, del Pozo Guerrero F, Olmedo JJ, Gomez MR (2012) Induction of cell death in a glioblastoma line by hyperthermic therapy based on gold nanorods. Int J Nanomed 7:1511Google Scholar
  15. Cai W, Gao T, Hong H, Sun J (2008) Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol Sci Appl.  https://doi.org/10.2147/NSA.S37888
  16. Carrasco E, del Rosal B, Sanz-Rodríguez F, de la Fuente ÁJ, Gonzalez PH, Rocha U, Kumar KU, Jacinto C, Solé JG, Jaque D (2015) Intratumoral thermal reading during photo-thermal therapy by multifunctional fluorescent nanoparticles. Adv Funct Mater 25(4):615–626CrossRefGoogle Scholar
  17. Caruso F, Niikura K, Furlong DN, Okahata Y (1997) 2. Assembly of alternating polyelectrolyte and protein multilayer films for immunosensing. Langmuir 13(13):3427–3433CrossRefGoogle Scholar
  18. Chang IA, Nguyen UD (2004) Thermal modeling of lesion growth with radiofrequency ablation devices. Biomed Eng Online 3(1):1CrossRefGoogle Scholar
  19. Charny CK, Weinbaum S, Levin RL (1990) An evaluation of the Weinbaum-Jiji bioheat equation for normal and hyperthermic conditions. J Biomech Eng 112(1):80–87CrossRefGoogle Scholar
  20. Chato JC (1981) ASME centennial historical perspective paper: reflections on the history of heat and mass transfer in bioengineering. J Biomech Eng 103(2):97–101CrossRefGoogle Scholar
  21. Chaussy C, Thüroff S (2004) Results and side effects of high-intensity focused ultrasound in localized prostate cancer. J Endourol 15(4):437–440CrossRefGoogle Scholar
  22. Cheheltani R, Ezzibdeh RM, Chhour P, Pulaparthi K, Kim J, Jurcova M, Hsu JC, Blundell C, Litt HI, Ferrari VA, Allcock HR, Sehgal CM, Cormode DP (2016) Tunable, biodegradable gold nanoparticles as contrast agents for computed tomography and photoacoustic imaging. Biomaterials 102:87–97CrossRefGoogle Scholar
  23. Chen MM, Holmes KR (1980) Microvascular contributions in tissue heat transfer. Ann N Y Acad Sci 335(1):137–150CrossRefGoogle Scholar
  24. Chen Q, Li K, Wen S, Liu H, Peng C, Cai H, Shen M, Zhang G, Shi X (2013) Targeted CT/MR dual mode imaging of tumors using multifunctional dendrimer-entrapped gold nanoparticles. Biomaterials 34(21):5200–5209CrossRefGoogle Scholar
  25. Cherukuri P, Glazer ES, Curley SA (2010) Targeted hyperthermia using metal nanoparticles. Adv Drug Deliv Rev 62(3):339–345CrossRefGoogle Scholar
  26. Chhetri S, Hirschberg H, Madsen SJ (2014) Photothermal therapy of human glioma spheroids with gold-silica nanoshells and gold nanorods: a comparative study. In: Proceedings of SPIE 8928, optical techniques in neurosurgery, neurophotonics, and optogenetics, 89280UGoogle Scholar
  27. Choi M-R, Stanton-Maxey KJ, Stanley JK, Levin CS, Bardhan R, Akin D, Badve S, Sturgis J, Robinson JP, Bashir R, Halas NJ, Clare SE (2007) A cellular trojan horse for delivery of therapeutic nanoparticles into tumors. Nano Lett 7(12):3759–3765CrossRefGoogle Scholar
  28. Chon JWM, Bullen C, Zijlstra P, Gu M (2007) Spectral encoding on gold nanorods doped in a silica sol–gel matrix and its application to high-density optical data storage. Adv Funct Mater 17(6):875–880CrossRefGoogle Scholar
  29. Colby AH, Liu R, Schulz MD, Padera RF, Colson YL, Grinstaff MW (2016) Two-step delivery: exploiting the partition coefficient concept to increase intratumoral paclitaxel concentrations in vivo using responsive nanoparticles. Sci Rep 6:18720CrossRefGoogle Scholar
  30. Cole JR, Mirin NA, Knight MW, Goodrich GP, Halas NJ (2009) Photothermal efficiencies of nanoshells and nanorods for clinical therapeutic applications. J Phys Chem C 113(28):12090–12094CrossRefGoogle Scholar
  31. Conde J, Oliva N, Zhang Y, Artzi N (2016) Local triple-combination therapy results in tumour regression and prevents recurrence in a colon cancer model. Nat Mater 15:1128–1138. advance online publicationCrossRefGoogle Scholar
  32. Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD (2005) Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1(3):325–327CrossRefGoogle Scholar
  33. Cortesi R, Esposito E, Menegatti E, Gambari R, Nastruzzi C (1996) Effect of cationic liposome composition on in vitro cytotoxicity and protective effect on carried DNA. Int J Pharm 139(1):69–78CrossRefGoogle Scholar
  34. Decuzzi P, Pasqualini R, Arap W, Ferrari M (2008) Intravascular delivery of particulate systems: does geometry really matter? Pharm Res 26(1):235–243CrossRefGoogle Scholar
  35. Dewhirst M, Viglianti B, Lora-Michiels M, Hanson M, Hoopes P (2003) Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. Int J Hyperth 19(3):267–294CrossRefGoogle Scholar
  36. Dewhirst MW, Vujaskovic Z, Jones E, Thrall D (2005) Re-setting the biologic rationale for thermal therapy. Int J Hyperth 21(8):779–790CrossRefGoogle Scholar
  37. Dickerson EB, Dreaden EC, Huang X, El-Sayed IH, Chu H, Pushpanketh S, McDonald JF, El-Sayed MA (2008) Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett 269(1):57–66CrossRefGoogle Scholar
  38. Diederich CJ (2005) Thermal ablation and high-temperature thermal therapy: overview of technology and clinical implementation. Int J Hyperth 21(8):745–753CrossRefGoogle Scholar
  39. Durkee J Jr, Antich P (1991) Exact solutions to the multi-region time-dependent bioheat equation with transient heat sources and boundary conditions. Phys Med Biol 36(3):345CrossRefGoogle Scholar
  40. Durr NJ, Larson T, Smith DK, Korgel BA, Sokolov K, Ben-Yakar A (2007) Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. Nano Lett 7(4):941–945.  https://doi.org/10.1021/nl062962vCrossRefGoogle Scholar
  41. El-dabe NTM, Mohamed M, El-Sayed AF (2003) Effects of microwave heating on the thermal states of biological tissues. Afr J Biotechnol 2(11):453–459CrossRefGoogle Scholar
  42. Elliott AM, Stafford RJ, Schwartz J, Wang J, Shetty AM, Bourgoyne C, O’Neal P, Hazle JD (2007) Laser-induced thermal response and characterization of nanoparticles for cancer treatment using magnetic resonance thermal imaging. Med Phys 34(7):3102–3108CrossRefGoogle Scholar
  43. El-Sayed MA, Shabaka AA, El-Shabrawy OA, Yassin NA, Mahmoud SS, El-Shenawy SM, Al-Ashqar E, Eisa WH, Farag NM, El-Shaer MA, Salah N (2013) Tissue distribution and efficacy of gold nanorods coupled with laser induced photoplasmonic therapy in ehrlich carcinoma solid tumor model. PLoS One 8(10):e76207CrossRefGoogle Scholar
  44. El-Sayed IH, Huang X, El-Sayed MA (2006) Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett 239(1):129–135.  https://doi.org/10.1016/j.canlet.2005.07.035CrossRefGoogle Scholar
  45. Engin K (1994) Biological rationale for hyperthermia in cancer treatment (II). Neoplasma 41(5):277–283Google Scholar
  46. Flock ST, Patterson MS, Wilson BC, Wyman DR (1989) Monte Carlo modeling of light propagation in highly scattering tissues. I. Model predictions and comparison with diffusion theory. IEEE Trans Biomed Eng 36(12):1162–1168CrossRefGoogle Scholar
  47. Gao B, Xu J, He K-W, Shen L, Chen H, Yang H-J, Li A-H, Xiao W-H (2016) Cellular uptake and intra-organ biodistribution of functionalized silica-coated gold nanorods. Mol Imaging Biol 18:1–10CrossRefGoogle Scholar
  48. Garg S, Vermani K, Garg A, Anderson AR, Rencher BW, Zaneveld DLJ (2005) Development and characterization of bioadhesive vaginal films of sodium polystyrene sulfonate (PSS), a novel contraceptive antimicrobial agent. Pharm Res 22(4):584–595CrossRefGoogle Scholar
  49. Gelet A, Chapelon JY, Bouvier R, Rouviere O, Lasne Y, Lyonnet D, Dubernard JM (2000) Transrectal high-intensity focused ultrasound: minimally invasive therapy of localized prostate cancer. J Endourol/Endourol Soc 14(6):519–528CrossRefGoogle Scholar
  50. Gobin AM, Moon JJ, West JL (2008) EphrinA I-targeted nanoshells for photothermal ablation of prostate cancer cells. Int J Nanomedicine 3(3):351–358Google Scholar
  51. Gong T, Olivo M, Dinish US, Goh D, Kong KV, Yong K-T (2013) Engineering bioconjugated gold nanospheres and gold nanorods as label-free plasmon scattering probes for ultrasensitive multiplex dark-field imaging of cancer cells. J Biomed Nanotechnol 9(6):985–991CrossRefGoogle Scholar
  52. Goodman CM, McCusker CD, Yilmaz T, Rotello VM (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 15(4):897–900CrossRefGoogle Scholar
  53. Gorelikov I, Field LM, Kumacheva E (2004) Hybrid microgels photoresponsive in the near-infrared spectral range. J Am Chem Soc 126(49):15938–15939CrossRefGoogle Scholar
  54. Gormley AJ, Greish K, Ray A, Robinson R, Gustafson JA, Ghandehari H (2011) Gold nanorod mediated plasmonic photothermal therapy: a tool to enhance macromolecular delivery. Int J Pharma 415(1):315–318CrossRefGoogle Scholar
  55. Guo Z, Fan X, Liu L, Bian Z, Gu C, Zhang Y, Gu N, Yang D, Zhang J (2010) Achieving high-purity colloidal gold nanoprisms and their application as biosensing platforms. J Colloid Interface Sci 348(1):29–36CrossRefGoogle Scholar
  56. Harris JM, Chess RB (2003) Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov 2(3):214–221CrossRefGoogle Scholar
  57. Heilmann A, Kreibig U (2000) Optical properties of embedded metal nanoparticles at low temperatures. Eur Phys J Appl Phys 10(3):193–202CrossRefGoogle Scholar
  58. Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA 100(23):13549–13554CrossRefGoogle Scholar
  59. Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128(6):2115–2120CrossRefGoogle Scholar
  60. Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2007) Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 23(3):217–228CrossRefGoogle Scholar
  61. Huang X, Jiang P, Tanaka T (2011) A review of dielectric polymer composites with high thermal conductivity. IEEE Electr Insul Mag 27(4):8–16CrossRefGoogle Scholar
  62. Huff TB, Hansen MN, Zhao Y, Cheng JX, Wei A (2007) Controlling the cellular uptake of gold nanorods. Langmuir 23(4):1596–1599.  https://doi.org/10.1021/la062642rCrossRefGoogle Scholar
  63. Issels RD, Lindner LH, Verweij J, Wust P, Reichardt P, Schem B-C, Abdel-Rahman S, Daugaard S, Salat C, Wendtner C-M, Vujaskovic Z, Wessalowski R, Jauch K-W, Dürr HR, Ploner F, Baur-Melnyk A, Mansmann U, Hiddemann W, Blay J-Y, Hohenberger P (2010) Neo-adjuvant chemotherapy alone or with regional hyperthermia for localised high-risk soft-tissue sarcoma: a randomised phase 3 multicentre study. Lancet Oncol 11(6):561–570CrossRefGoogle Scholar
  64. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110(14):7238–7248CrossRefGoogle Scholar
  65. Jain S, Hirst DG, O’Sullivan JM (2012) Gold nanoparticles as novel agents for cancer therapy. Br J Radiol 85(1010):101–113CrossRefGoogle Scholar
  66. Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B 105(19):4065–4067CrossRefGoogle Scholar
  67. Jiji LM, Weinbaum S, Lemons DE (1984) Theory and experiment for the effect of vascular microstructure on surface tissue heat transfer – part II: model formulation and solution. J Biomech Eng 106(4):331–341CrossRefGoogle Scholar
  68. Jo W, Lee JH, Kim MJ (2012) Temperature measurement in a single patterned gold nanorod cluster using laser-induced fluorescence. J Nanopart Res 14(1):1–11CrossRefGoogle Scholar
  69. Johannsen M, Gneveckow U, Eckelt L, Feussner A, WaldÖFner N, Scholz R, Deger S, Wust P, Loening SA, Jordan A (2005) Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique. Int J Hyperth 21(7):637–647CrossRefGoogle Scholar
  70. Joshi P, Chakraborti S, Ramirez-Vick JE, Ansari ZA, Shanker V, Chakrabarti P, Singh SP (2012) The anticancer activity of chloroquine-gold nanoparticles against MCF-7 breast cancer cells. Colloids Surf B: Biointerfaces 95:195–200CrossRefGoogle Scholar
  71. Kang Y, Taton TA (2005) Controlling shell thickness in core−shell gold nanoparticles via surface-templated adsorption of block copolymer surfactants. Macromolecules 38(14):6115–6121CrossRefGoogle Scholar
  72. Katz E, Willner I (2004) Integrated nanoparticle–biomolecule hybrid systems: synthesis, properties, and applications. Angew Chem Int Ed 43(45):6042–6108CrossRefGoogle Scholar
  73. Kennedy LC, Bickford LR, Lewinski NA, Coughlin AJ, Hu Y, Day ES, West JL, Drezek RA (2011) A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small 7(2):169–183CrossRefGoogle Scholar
  74. Kim F, Song JH, Yang P (2002) Photochemical synthesis of gold nanorods. J Am Chem Soc 124(48):14316–14317CrossRefGoogle Scholar
  75. Kim B, Han G, Toley BJ, Kim CK, Rotello VM, Forbes NS (2010) Tuning payload delivery in tumour cylindroids using gold nanoparticles. Nat Nanotechnol 5(6):465–472CrossRefGoogle Scholar
  76. Kogan B, Andronova N, Khlebtsov N, Khlebtsov B, Rudoy V, Dement’eva O, Sedykh E, Bannykh L (2008) Pharmacokinetic study of PEGylated plasmon resonant gold nanoparticles in tumor-bearing mice. Tech Proc 2008 NSTI Nanotechnol Conf 2:65–68Google Scholar
  77. Krag DN, Fuller SP, Oligino L, Pero SC, Weaver DL, Soden AL, Hebert C, Mills S, Liu C, Peterson D (2002) Phage-displayed random peptide libraries in mice: toxicity after serial panning. Cancer Chemother Pharmacol 50(4):325–332CrossRefGoogle Scholar
  78. Kreith F (2000) Handbook of thermal engineering. CRC Press, Boca RatonMATHGoogle Scholar
  79. Lal S, Clare SE, Halas NJ (2008) Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc Chem Res 41(12):1842–1851CrossRefGoogle Scholar
  80. Lanuti M, Sharma A, Digumarthy SR, Wright CD, Donahue DM, Wain JC, Mathisen DJ, Shepard J-AO (2009) Radiofrequency ablation for treatment of medically inoperable stage I non–small cell lung cancer. J Thorac Cardiovasc Surg 137(1):160–166CrossRefGoogle Scholar
  81. Larson TR, Blute ML, Bruskewitz RC, Mayer RD, Ugarte RR, Utz WJ (1998) A high-efficiency microwave thermoablation system for the treatment of benign prostatic hyperplasia: results of a randomized, sham-controlled, prospective, double-blind, multicenter clinical trial. Urology 51(5):731–742CrossRefGoogle Scholar
  82. Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4(1):26–49CrossRefGoogle Scholar
  83. Li Z, Jin R, Mirkin CA, Letsinger RL (2002) Multiple thiol-anchor capped DNA–gold nanoparticle conjugates. Nucleic Acids Res 30(7):1558–1562CrossRefGoogle Scholar
  84. Li FM, Liu JM, Wang XX, Lin LP, Cai WL, Lin X, Zeng YN, Li ZM, Lin SQ (2011) Non-aggregation based label free colorimetric sensor for the detection of Cr (VI) based on selective etching of gold nanorods. Sens Actuat B Chem 155(2):817–822CrossRefGoogle Scholar
  85. Li J, Gupta S, Li C (2013) Gold nanoparticles in cancer theranostics. Quant Imaging Med Surg 3(6):284–291Google Scholar
  86. Liang Z, Susha A, Caruso F (2003) Gold nanoparticle-based core−shell and hollow spheres and ordered assemblies. There Chem Mater 15(16):3176–3183CrossRefGoogle Scholar
  87. Lin HW, Lu YJ, Chen HY, Lee HM, Gwo S, (2010) InGaN/GaN nanorod array white light-emitting diode. Appl Phys Lett 97(7):073101CrossRefGoogle Scholar
  88. Lin YG, Hsu YK, Chen YC, Wang SB, Miller JT, Chen LC, Chen KH (2012) Plasmonic Ag@ Ag 3 (PO 4) 1−x nanoparticle photosensitized ZnO nanorod-array photoanodes for water oxidation. Energy Environ Sci 5(10):8917–22CrossRefGoogle Scholar
  89. Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103(40):8410–8426CrossRefGoogle Scholar
  90. Link S, El-Sayed MA (2000) Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int Rev Phys Chem 19(3):409–453CrossRefGoogle Scholar
  91. Link S, Mohamed MB, El-Sayed MA (1999) Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J Phys Chem B 103(16):3073–3077CrossRefGoogle Scholar
  92. Link S, Burda C, Nikoobakht B, El-Sayed MA (2000) Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses. J Phys Chem B 104(26):6152–6163CrossRefGoogle Scholar
  93. Liu M, Kono K, Fréchet JMJ (1999) Water-soluble dendrimer–poly(ethylene glycol) starlike conjugates as potential drug carriers. J Polym Sci A Polym Chem 37(17):3492–3503CrossRefGoogle Scholar
  94. Liu SY, Liang ZS, Gao F, Luo SF, Lu GQ (2010) In vitro photothermal study of gold nanoshells functionalized with small targeting peptides to liver cancer cells. J Mater Sci Mater Med 21(2):665–674CrossRefGoogle Scholar
  95. Loo C, Lowery A, Halas N, West J, Drezek R (2005) Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5(4):709–711CrossRefGoogle Scholar
  96. Lu J, Zhou W, Wang L, Jia J, Ke Y, Yang L, Zhou K, Liu X, Tang Z, Li L, Chen S (2016) Core–shell nanocomposites based on gold nanoparticle@zinc–iron-embedded porous carbons derived from metal–organic frameworks as efficient dual catalysts for oxygen reduction and hydrogen evolution reactions. ACS Catal 6(2):1045–1053CrossRefGoogle Scholar
  97. Luo D, Haverstick K, Belcheva N, Han E, Saltzman WM (2002) Poly(ethylene glycol)-conjugated PAMAM dendrimer for biocompatible, high-efficiency DNA delivery. Macromolecules 35(9):3456–3462CrossRefGoogle Scholar
  98. MacLellan CJ, Fuentes D, Elliott AM, Schwartz J, Hazle JD, Stafford RJ (2014) Estimating nanoparticle optical absorption with magnetic resonance temperature imaging and bioheat transfer simulation. Int J Hyperth 30(1):47–55CrossRefGoogle Scholar
  99. Madsen SJ, Angell-Petersen E, Spetalen S, Carper SW, Ziegler SA, Hirschberg H (2006) Photodynamic therapy of newly implanted glioma cells in the rat brain. Lasers Surg Med 38(5):540–548CrossRefGoogle Scholar
  100. Madsen SJ, Baek S-K, Makkouk AR, Krasieva T, Hirschberg H (2012) Macrophages as cell-based delivery systems for nanoshells in photothermal therapy. Ann Biomed Eng 40(2):507–515CrossRefGoogle Scholar
  101. von Maltzahn G, Park JH, Agrawal A, Bandaru NK, Das SK, Sailor MJ, Bhatia SN (2009) Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Res 69(9):3892–3900CrossRefGoogle Scholar
  102. Manuchehrabadi N, Zhu L (2014) Development of a computational simulation tool to design a protocol for treating prostate tumours using transurethral laser photothermal therapy. Int J Hyperth 30(6):349–361CrossRefGoogle Scholar
  103. Manuchehrabadi N, Attaluri A, Cai H, Edziah R, Lalanne E, Bieberich C, Ma R, Johnson AM, Zhu L (2012) MicroCT imaging and in vivo temperature elevations in implanted prostatic tumors in laser photothermal therapy using gold nanorods. J Nanotechnol Eng Med 3(2):021003CrossRefGoogle Scholar
  104. Manuchehrabadi N, Chen Y, Lebrun A, Ma R, Zhu L (2013a) Computational simulation of temperature elevations in tumors using Monte Carlo method and comparison to experimental measurements in laser photothermal therapy. J Biomech Eng 135(12):121007CrossRefGoogle Scholar
  105. Manuchehrabadi N, Toughiri R, Bieberich C, Cai H, Attaluri A, Edziah R, Lalanne E, Johnson AM, Ma R, Zhu L (2013b) Treatment efficacy of laser photothermal therapy using gold nanorods. Int J Biomed Eng Technol 12(2):157–176CrossRefGoogle Scholar
  106. Martin CR (1994) Nanomaterials – a membrane-based synthetic approach. Office of Naval Research, contract N00014-82K-0612, technical report # 96Google Scholar
  107. Melancon MP, Lu W, Yang Z, Zhang R, Cheng Z, Elliot AM, Stafford J, Olson T, Zhang JZ, Li C (2008) In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photothermal ablation therapy. Mol Cancer Ther 7(6):1730–1739CrossRefGoogle Scholar
  108. Mercatelli R, Ratto F, Centi S, Soria S, Romano G, Matteini P, Quercioli F, Pini R, Fusi F (2013) Quantitative readout of optically encoded gold nanorods using an ordinary dark-field microscope. Nanoscale 5(20):9645–9650CrossRefGoogle Scholar
  109. Meyers JD, Cheng Y, Broome A-M, Agnes RS, Schluchter MD, Margevicius S, Wang X, Kenney ME, Burda C, Basilion JP (2015) Peptide-targeted gold nanoparticles for photodynamic therapy of brain cancer. Part Part Syst Charact 32(4):448–457CrossRefGoogle Scholar
  110. Mie G (1908) Beiträge zur optik trüber medien, speziell kolloidaler metallösungen. Ann Phys 330(3):377–445MATHCrossRefGoogle Scholar
  111. Millstone JE, Park S, Shuford KL, Qin L, Schatz GC, Mirkin CA (2005) Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms. J Am Chem Soc 127(15):5312–5313CrossRefGoogle Scholar
  112. Minkowycz W, Sparrow EM, Abraham JP (2012) Nanoparticle heat transfer and fluid flow, vol 4. CRC Press, New YorkCrossRefGoogle Scholar
  113. Moon H, Kumar D, Kim H, Sim C, Chang J-H, Kim J-M, Kim H, Lim D-K (2015) Amplified photoacoustic performance and enhanced photothermal stability of reduced graphene oxide coated gold nanorods for sensitive photoacoustic imaging. ACS Nano 9(3):2711–2719CrossRefGoogle Scholar
  114. Mooney R, Schena E, Zhumkhawala A, Aboody KS, Berlin JM (2015) Internal temperature increase during photothermal tumour ablation in mice using gold nanorods. The 37th annual international conference of the IEEE engineering in medicine and biology society (EMBC)Google Scholar
  115. Moritz AR, Henriques F Jr (1947) Studies of thermal injury: II. The relative importance of time and surface temperature in the causation of cutaneous burns. Am J Pathol 23(5):695Google Scholar
  116. Moroz P, Jones SK, Gray BN (2002) Magnetically mediated hyperthermia: current status and future directions. Int J Hyperth 18(4):267–284CrossRefGoogle Scholar
  117. Mourant JR, Fuselier T, Boyer J, Johnson TM, Bigio IJ (1997) Predictions and measurements of scattering and absorption over broadwavelength ranges in tissue phantoms. Appl Opt 36(4):949–957CrossRefGoogle Scholar
  118. Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, Hunyadi SE, Li T (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109(29):13857–13870CrossRefGoogle Scholar
  119. Myroshnychenko V, Rodriguez-Fernandez J, Pastoriza-Santos I, Funston AM, Novo C, Mulvaney P, Liz-Marzan LM, Garcia de Abajo FJ (2008) Modelling the optical response of gold nanoparticles. Chem Soc Rev 37(9):1792–1805CrossRefGoogle Scholar
  120. Neilson BH, Rudie EN, Dann M (1994) Method for treating interstitial tissue associated with microwave thermal therapy. US Patent US 5,330,518Google Scholar
  121. Ng KC, Cheng W (2012) Fine-tuning longitudinal plasmon resonances of nanorods by thermal reshaping in aqueous media. Nanotechnology 23(10):105602CrossRefGoogle Scholar
  122. Nield DA, Kuznetsov AV (2009) The Cheng–Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid. Int J Heat Mass Transf 52(25–26):5792–5795MATHCrossRefGoogle Scholar
  123. Niidome T, Yamagata M, Okamoto Y, Akiyama Y, Takahashi H, Kawano T, Katayama Y, Niidome Y (2006) PEG-modified gold nanorods with a stealth character for in vivo applications. J Control Release 114(3):343–347CrossRefGoogle Scholar
  124. Nikoobakht B, El-Sayed MA (2001) Evidence for bilayer assembly of cationic surfactants on the surface of gold nanorods. Langmuir 17(20):6368–6374CrossRefGoogle Scholar
  125. Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15(10):1957–1962CrossRefGoogle Scholar
  126. Noh MS, Lee S, Kang H, Yang J-K, Lee H, Hwang D, Lee JW, Jeong S, Jang Y, Jun B-H, Jeong DH, Kim SK, Lee Y-S, Cho M-H (2015) Target-specific near-IR induced drug release and photothermal therapy with accumulated Au/Ag hollow nanoshells on pulmonary cancer cell membranes. Biomaterials 45:81–92CrossRefGoogle Scholar
  127. Norman RS, Stone JW, Gole A, Murphy CJ, Sabo-Attwood TL (2008) Targeted photothermal lysis of the pathogenic bacteria, pseudomonas aeruginosa, with gold nanorods. Nano Lett 8(1):302–306CrossRefGoogle Scholar
  128. O’Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL (2004) Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 209(2):171–176CrossRefGoogle Scholar
  129. Oldenburg SJ, Averitt RD, Westcott SL, Halas NJ (1998) Nanoengineering of optical resonances. Chem Phys Lett 288(2–4):243–247CrossRefGoogle Scholar
  130. Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, Schmid G, Brandau W, Jahnen-Dechent W (2007) Size-dependent cytotoxicity of gold nanoparticles. Small 3(11):1941–1949CrossRefGoogle Scholar
  131. Pearce JA (2009) Relationship between Arrhenius models of thermal damage and the CEM 43 thermal dose. In: Proceedings of SPIE 7181, energy-based treatment of tissue and assessment, volume 718104Google Scholar
  132. Pearce JA (2015) Improving accuracy in Arrhenius models of cell death: adding a temperature-dependent time delay. J Biomech Eng 137(12):121006CrossRefGoogle Scholar
  133. Pennes HH (1948) Analysis of tissue and arterial blood temperature in the resting human forearm. J Appl Phys 1:93–122Google Scholar
  134. Peracchia MT, Fattal E, Desmaële D, Besnard M, Noël JP, Gomis JM, Appel M, d’Angelo J, Couvreur P (1999) Stealth® PEGylated polycyanoacrylate nanoparticles for intravenous administration and splenic targeting. J Control Release 60(1):121–128CrossRefGoogle Scholar
  135. Pérez-Juste J, Pastoriza-Santos I, Liz-Marzán LM, Mulvaney P (2005) Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 249(17–18):1870–1901CrossRefGoogle Scholar
  136. Piao DBJZ, Bartels KE, Holyoak GR, Ritchey JW, Xu G, Bunting CF, Slobodov G (2009) In vivo transrectal ultrasound coupled near-infrared optical tomography of intact normal canine prostate. J Innov Opt Health Sci 2(3):215–225CrossRefGoogle Scholar
  137. Piao DBBK, Jiang Z, Holyoak GR, Ritchey JW, Xu G, Bunting CF, Slobodov G (2010) Alternative transrectal prostate imaging: a diffuse optical tomography method. IEEE J Sel Top Quantum Electron 16(4):715–729CrossRefGoogle Scholar
  138. Pissuwan D, Valenzuela SM, Killingsworth MC, Xu X, Cortie MB (2007a) Targeted destruction of murine macrophage cells with bioconjugated gold nanorods. J Nanopart Res 9(6):1109–1124CrossRefGoogle Scholar
  139. Pissuwan D, Valenzuela SM, Miller CM, Cortie MB (2007b) A golden bullet? Selective targeting of toxoplasma gondii tachyzoites using antibody-functionalized gold nanorods. Nano Lett 7(12):3808–3812CrossRefGoogle Scholar
  140. Qin Z, Balasubramanian SK, Wolkers WF, Pearce JA, Bischof JC (2014) Correlated parameter fit of Arrhenius model for thermal denaturation of proteins and cells. Ann Biomed Eng 42(12):2392–2404CrossRefGoogle Scholar
  141. Raaymakers B, Kotte A, Lagendijk J, Minkowycz W, Sparrow E, Abraham J (2009) Discrete vasculature (DIVA) model simulating the thermal impact of individual blood vessels for in vivo heat transfer. Adv Numer Heat Tran 3:121–148Google Scholar
  142. Roberts MJ, Bentley MD, Harris JM (2012) Chemistry for peptide and protein PEGylation. Adv Drug Deliv Rev 64(Suppl):116–127CrossRefGoogle Scholar
  143. Rodrigues HF, Mello FM, Branquinho LC, Zufelato N, Silveira-Lacerda EP, Bakuzis AF (2013) Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration. Int J Hyperth 29(8):752–767CrossRefGoogle Scholar
  144. Rudie EN, Neilson BH, Kauphusman JV (1996) Device for asymmetrical thermal therapy with helical dipole microwave antenna. US Patent 5,545,137Google Scholar
  145. Ryu S, Brown SL, Kim S-H, Khil MS, Kim JH (1996) Preferential radiosensitization of human prostatic carcinoma cells by mild hyperthermia. Int J Radiat Oncol Biol Phys 34(1):133–138CrossRefGoogle Scholar
  146. Salem AK, Searson PC, Leong KW (2003) Multifunctional nanorods for gene delivery. Nat Mater 2(10):668–671CrossRefGoogle Scholar
  147. Sapareto SA, Dewey WC (1984) Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys 10(6):787–800CrossRefGoogle Scholar
  148. Schwartz JA, Shetty AM, Price RE, Stafford RJ, Wang JC, Uthamanthil RK, Pham K, McNichols RJ, Coleman CL, Payne JD (2009) Feasibility study of particle-assisted laser ablation of brain tumors in orthotopic canine model. Cancer Res 69(4):1659–1667CrossRefGoogle Scholar
  149. Shenoy D, Fu W, Li J, Crasto C, Jones G, DiMarzio C, Sridhar S, Amiji M (2006) Surface functionalization of gold nanoparticles using hetero-bifunctional poly(ethylene glycol) spacer for intracellular tracking and delivery. Int J Nanomedicine 1(1):51–57CrossRefGoogle Scholar
  150. Sherar MD, Gertner MR, Yue CK, O’Malley ME, Toi A, Gladman AS, Davidson SR, Trachtenberg J (2001) Interstitial microwave thermal therapy for prostate cancer: method of treatment and results of a phase I/II trial. J Urol 166(5):1707–1714CrossRefGoogle Scholar
  151. Shoshan-Barmatz V, Israelson A, Brdiczka D, Sheu SS (2006) The voltage-dependent anion channel (VDAC): function in intracellular signalling, cell life and cell death. Curr Pharm Des 12(18):2249–2270CrossRefGoogle Scholar
  152. Skrabalak SE, Chen J, Sun Y, Lu X, Au L, Cobley LM, Xia Y (2008) Gold nanocages: synthesis, properties, and applications. Acc Chem Res 41(12):1587–1595CrossRefGoogle Scholar
  153. Sönnichsen C, Franzl T, Wilk T, Plessen GV, Feldmann J (2002) Plasmon resonances in large noble-metal clusters. New J Phys 4(1):93CrossRefGoogle Scholar
  154. Stafford RJ, Shetty A, Elliott AM, Schwartz JA, Goodrich GP, Hazle JD (2011) MR temperature imaging of nanoshell mediated laser ablation. Int J Hyperth 27(8):782–790CrossRefGoogle Scholar
  155. Stern JM, Stanfield J, Kabbani W, Hsieh JT, Cadeddu JA (2008) Selective prostate cancer thermal ablation with laser activated gold nanoshells. J Urol 179(2):748–753CrossRefGoogle Scholar
  156. Stern JM, Kibanov Solomonov VV, Sazykina E, Schwartz JA, Gad SC, Goodrich GP (2016) Initial evaluation of the safety of nanoshell-directed photothermal therapy in the treatment of prostate disease. Int J Toxicol 35(1):38–46CrossRefGoogle Scholar
  157. Takahashi H, Niidome Y, Niidome T, Kaneko K, Kawasaki H, Yamada S (2006) Modification of gold nanorods using phosphatidylcholine to reduce cytotoxicity. Langmuir 22(1):2–5CrossRefGoogle Scholar
  158. Tasciotti E, Liu X, Bhavane R, Plant K, Leonard AD, Price BK, Cheng MM-C, Decuzzi P, Tour JM, Robertson F, Ferrari M (2008) Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nat Nanotechnol 3(3):151–157CrossRefGoogle Scholar
  159. Tong L, Zhao Y, Huff TB, Hansen MN, Wei A, Cheng JX (2007) Gold nanorods mediate tumor cell death by compromising membrane integrity. Adv Mater 19(20):3136–3141CrossRefGoogle Scholar
  160. Tong L, Wei Q, Wei A, Cheng JX (2009) Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects. Photochem Photobiol 85(1):21–32CrossRefGoogle Scholar
  161. Tuchin VV (2015) Tissue optics, light scattering methods and instruments for medical diagnostics. Spie Press Book, BellinghamCrossRefGoogle Scholar
  162. Vafai K (2015) Handbook of porous media. CRC Press, Boca RatonMATHGoogle Scholar
  163. Verhaart RF, Verduijn GM, Fortunati V, Rijnen Z, van Walsum T, Veenland JF, Paulides MM (2015) Accurate 3D temperature dosimetry during hyperthermia therapy by combining invasive measurements and patient-specific simulations. Int J Hyperth 31(6):686–692CrossRefGoogle Scholar
  164. Vogel A, Venugopalan V (2003) Kinetics of phase transitions in pulsed IR laser ablation of biological tissues. In: Proceedings of SPIE Vol. 4961 laser tissue interaction XIV, pp 66–74Google Scholar
  165. Wang L, Jacques SL, Zheng L (1995) MCML – Monte Carlo modeling of light transport in multi-layered tissues. Comput Methods Prog Biomed 47(2):131–146CrossRefGoogle Scholar
  166. Wang B-K, Yu X-F, Wang J-H, Li Z-B, Li P-H, Wang H, Song L, Chu PK, Li C (2016) Gold-nanorods-siRNA nanoplex for improved photothermal therapy by gene silencing. Biomaterials 78:27–39CrossRefGoogle Scholar
  167. Welch AJ, van Gemert MJC (1995) Optical-thermal response of laser-irradiated tissue. Plenum Press, New YorkCrossRefGoogle Scholar
  168. Werthmöller N, Frey B, Rückert M, Lotter M, Fietkau R, Gaipl US (2016) Combination of ionising radiation with hyperthermia increases the immunogenic potential of B16-F10 melanoma cells in vitro and in vivo. Int J Hyperth 32(1):23–30CrossRefGoogle Scholar
  169. Westcott SL, Oldenburg SJ, Lee TR, Halas NJ (1998) Formation and adsorption of clusters of gold nanoparticles onto functionalized silica nanoparticle surfaces. Langmuir 14(19):5396–5401CrossRefGoogle Scholar
  170. Wilson BC, Adam G (1983) A Monte Carlo model for the absorption and flux distributions of light in tissue. Med Phys 10(6):824–830CrossRefGoogle Scholar
  171. Wong SL, Mangu PB, Choti MA, Crocenzi TS, Dodd GD 3rd, Dorfman GS, Eng C, Fong Y, Giusti AF, Lu D, Marsland TA, Michelson R, Poston GJ, Schrag D, Seidenfeld J, Benson AB 3rd (2010) American Society of Clinical Oncology 2009 clinical evidence review on radiofrequency ablation of hepatic metastases from colorectal cancer. J Clin Oncol 28(3):493–508CrossRefGoogle Scholar
  172. Wulff W (1974) The energy conservation equation for living tissue. IEEE Trans Biomed Eng 6(BME-21):494–495CrossRefGoogle Scholar
  173. Yang H-W, Liu H-L, Li M-L, Hsi IW, Fan C-T, Huang C-Y, Lu Y-J, Hua M-Y, Chou H-Y, Liaw J-W, Ma C-CM, Wei K-C (2013) Magnetic gold-nanorod/ PNIPAAmMA nanoparticles for dual magnetic resonance and photoacoustic imaging and targeted photothermal therapy. Biomaterials 34(22):5651–5660CrossRefGoogle Scholar
  174. Yavuz MS, Cheng Y, Chen J, Cobley CM, Zhang Q, Rycenga M, Xie J, Kim C, Song KH, Schwartz AG, Wang LV, Xia Y (2009) Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat Mater 8(12):935–939CrossRefGoogle Scholar
  175. Ye D, Wang G, Liu Y, Huang W, Wu M, Zhu S, Jia W, Deng A-M, Liu H, Kang J (2012) MiR-138 promotes induced pluripotent stem cell generation through the regulation of the p53 signaling. Stem Cells 30(8):1645–1654CrossRefGoogle Scholar
  176. Ying Y, Chang S-S, Lee C-L, Wang CRC (1997) Gold nanorods: electrochemical synthesis and optical properties. J Phys Chem B 101(34):6661–6664CrossRefGoogle Scholar
  177. Zaman RT, Diagaradjane P, Wang JC, Schwartz J, Rajaram N, Gill-Sharp KL, Cho SH, Rylander HG III, Payne JD, Krishnan S (2007) In vivo detection of gold nanoshells in tumors using diffuse optical spectroscopy. IEEE J Sel Top Quantum Electron 13(6):1715–1720CrossRefGoogle Scholar
  178. Zhang G, Yang Z, Lu W, Zhang R, Huang Q, Tian M, Li L, Liang D, Li C (2009) Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice. Biomaterials 30(10):1928–1936CrossRefGoogle Scholar
  179. Zhang W, Meng J, Ji Y, Li X, Kong H, Wu X, Xu H (2011) Inhibiting metastasis of breast cancer cells in vitro using gold nanorod-siRNA delivery system. Nanoscale 3(9):3923–3932CrossRefGoogle Scholar
  180. Zhang W, Ji Y, Wu X, Xu H (2013) Trafficking of gold nanorods in breast cancer cells: uptake, lysosome maturation, and elimination. ACS Appl Mater Interfaces 5(19):9856–9865CrossRefGoogle Scholar
  181. Zhang J, Li C, Zhang X, Huo S, Jin S, An F-F, Wang X, Xue X, Okeke CI, Duan G, Guo F, Zhang X, Hao J, Wang PC, Zhang J, Liang X-J (2015) In vivo tumor-targeted dual-modal fluorescence/CT imaging using a nanoprobe co-loaded with an aggregation-induced emission dye and gold nanoparticles. Biomaterials 42:103–111CrossRefGoogle Scholar
  182. Zhang N, Chen H, Liu A-Y, Shen J-J, Shah V, Zhang C, Hong J, Ding Y (2016a) Gold conjugate-based liposomes with hybrid cluster bomb structure for liver cancer therapy. Biomaterials 74:280–291CrossRefGoogle Scholar
  183. Zhang W, Wang F, Wang Y, Wang J, Yu Y, Guo S, Chen R, Zhou D (2016b) pH and near-infrared light dual-stimuli responsive drug delivery using DNA-conjugated gold nanorods for effective treatment of multidrug resistant cancer cells. J Control Release 232:9–19CrossRefGoogle Scholar
  184. Zou YPLW, Zheng F, Li FC, Huang H, Du JD, Liu HR (2010) Intraoperative radiofrequency ablation combined with 125iodine seed implantation for unresectable pancreatic cancer. World J Gastroenterol 16(40):5104–5110CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of Minnesota at MinneapolisMinneapolisUSA
  2. 2.Department of Mechanical EngineeringUniversity of Maryland Baltimore CountyBaltimoreUSA

Section editors and affiliations

  • Ram Devireddy
    • 1
  1. 1.Department of Mechanical and Industrial EngineeringLouisiana State UniversityBaton RougeUSA

Personalised recommendations