Thermal Considerations with Tissue Electroporation

  • Timothy J. O’Brien
  • Christopher B. Arena
  • Rafael V. Davalos
Reference work entry


Electroporation is an energy‐directed therapeutic that relies on the application of pulsed electric fields to increase the transmembrane potential of a cell above a critical value, destabilizing the lipid bilayer of the cellular membrane and increasing cell tissue permeability. For years, researchers have used this phenomenon to assist the transport of macromolecules that typically are unable to penetrate the cell membrane with the intent of avoiding cell necrosis or irreversible electroporation. More recently, however, irreversible electroporation is proven to be a successful option for the treatment of cancer. More specifically, the proper tuning of pulse parameters has allowed for a nonthermally damaging targeted treatment of unresectable tumors. Pretreatment planning is implemented to moderate the associated thermal effects with the electroporation of biological tissue. However, the overall size and volume of the ablation is a function of the electrode geometry, electrode spacing, voltage amplitude, pulse frequency, and pulse repetition. Many researchers are motivated to maintain tissue temperature below a thermally damaging threshold while expanding the range of treatment and increasing ablation dimensions. Thermal mitigation strategies, including the installation of active cooling channels and phase change materials within electrodes, have the potential to allow the delivery of more energy to the tissue at a thermally safe temperature, ultimately resulting in larger ablation volumes.



This work was supported by the NSF CAREER Award (CBET-1055913), the R21 Award from the National Cancer Institute of the National Institutes of Health (R21CA192042), and the Institute of Critical Technology and Applied Science at Virginia Tech.


  1. Abidor IG, Arakelyan VB, Chernomordik LV, Chizmadzhev YA, Pastushenko VF, Tarasevich MP (1979) Electric breakdown of bilayer lipid membranes. I. The main experimental facts and their qualitative discussion. J Electroanal Chem 104(C):37–52. Scholar
  2. Al-Sakere B, André F, Bernat C, Connault E, Opolon P, Davalos RV, Rubinsky B, Mir LM (2007) Tumor ablation with irreversible electroporation. PLoS One 2(11):1–8. Scholar
  3. Arena CB, Mahajan RL, Rylander MN, Davalos RV (2013) An experimental and numerical investigation of phase change electrodes for therapeutic irreversible electroporation. J Biomech Eng 135(11):111009. Scholar
  4. Arena CB, Mahajan RL, Rylander MN, Davalos RV (2012) Towards the development of latent heat storage electrodes for electroporation-based therapies. Appl Phys Lett 101(8):1–5. Scholar
  5. Bao N, Le TT, Cheng J-X, Chang L (2010) Microfluidic electroporation of tumor and blood cells: observation of nucleus expansion and implications on selective analysis and purging of circulating tumor cells. Integr Biol (Camb) 2(2–3):113–120. Scholar
  6. Becker SM, Kuznetsov AV (2007a) Numerical assessment of thermal response associated with in vivo skin electroporation: the importance of the composite skin model. J Biomech Eng 129:330–340. Scholar
  7. Becker SM, Kuznetsov AV (2007b) Thermal damage reduction associated with in vivo skin electroporation: a numerical investigation justifying aggressive pre-cooling. Int J Heat Mass Transf 50(1–2):105–116. Scholar
  8. Belehradek M, Domenge C, Luboinski B, Orlowski S, Belehradek J, Mir LM (1993) Electrochemotherapy, a new antitumor treatment: first clinical phase I-II trial. Cancer 72(12):3694–3700. 72:12<3694::AID-CNCR2820721222>3.0.CO;2-2CrossRefGoogle Scholar
  9. Bernat C, André F, Connault E, Opolon P, Davalos RV, Mir LM (2007) A study of the immunological response to tumor ablation with irreversible electroporation. Technol Cancer Res Treat 6(4):301–306CrossRefGoogle Scholar
  10. Cadossi R, Ronchetti M, Cadossi M (2014) Locally enhanced chemotherapy by electroporation: clinical experiences and perspective of use of electrochemotherapy. Future Oncol 10(5):877–890. Scholar
  11. Cemazar M, Tamzali Y, Sersa G, Tozon N, Mir LM, Miklavcic D, Lowe R, Teissie J (2008) Electrochemotherapy in veterinary oncology. J Vet Intern Med 22(4):826–831. Scholar
  12. Chen N, Schoenbach KH, Kolb JF, James Swanson R, Garner AL, Yang J, Joshi RP, Beebe SJ (2004) Leukemic cell intracellular responses to nanosecond electric fields. Biochem Biophys Res Commun 317(2):421–427. Scholar
  13. Chen Q, Thouas GA (2015) Metallic implant biomaterials. Mater Sci Eng R 87:1–57. Elsevier B.VCrossRefGoogle Scholar
  14. Daniels CS, Rubinsky B (2011) Temperature modulation of electric fields in biological matter. PLoS One 6(6):1–9. Scholar
  15. Davalos RV, Mir LM, Rubinsky B (2005) Tissue ablation with irreversible electroporation. Ann Biomed Eng 33(2):223–231. Scholar
  16. Davalos RV, Rubinsky B (2008) Temperature considerations during irreversible electroporation. Int J Heat Mass Transf 51(23–24):5617–5622. Elsevier LtdCrossRefzbMATHGoogle Scholar
  17. Davalos RV, Rubinsky B, Mir LM (2003) Theoretical analysis of the thermal effects during in vivo tissue electroporation. Bioelectrochemistry 61(1–2):99–107. Scholar
  18. Davalos RV, Garcia PA, Edd JF (2010) Thermal aspects of irreversible electroporation. pp 123–154CrossRefGoogle Scholar
  19. Deng Z-S, Liu J (2002) Analytical study on bioheat transfer problems with spatial or transient heating on skin surface or inside biological bodies. J Biomech Eng 124(6):638. Scholar
  20. Diller KR, Hayes LJ (1983) A finite element model of burn injury in blood-perfused skin. J Biomech Eng 105(3):300–307. Scholar
  21. Domenge C, Luboinski B, De Baere T, Schwaab G, Belehradek J Jr, Mir LM, Orlowski S (1996) Antitumor electrochemotherapy: new advances in the clinical protocol. Cancer 77(5):956–963CrossRefGoogle Scholar
  22. Duck FA (1990) Physical properties of tissues: a comprehensive reference book. Academic Press, San DiegoGoogle Scholar
  23. Edd JF, Davalos RV (2007) Mathematical modeling of irreversible electroporation for treatment planning. Technol Cancer Res Treat 6(4):275–286. Scholar
  24. Ellis TL, Garcia PA, Rossmeisl JH, Henao-Guerrero N, Robertson J, Davalos RV (2011) Nonthermal irreversible electroporation for intracranial surgical applications. Laboratory investigation. J Neurosurg 114(3):681–688. Scholar
  25. Fok SC, Shen W, Tan FL (2010) Cooling of portable hand-held electronic devices using phase change materials in finned heat sinks. Int J Therm Sci 49(1):109–117. Elsevier Masson SASCrossRefGoogle Scholar
  26. Frey W, White JA, Price RO, Blackmore PF, Joshi RP, Nuccitelli R, Beebe SJ, Schoenbach KH, Kolb JF (2006) Plasma membrane voltage changes during nanosecond pulsed electric field exposure. Biophys J 90(10):3608–3615. ElsevierCrossRefGoogle Scholar
  27. Gallo S, Sen A, Hensen M, Hui SW (2002) Temperature-Dependent Electrical and Ultrastructural Characterizations of Porcine Skin upon Electroporation. Biophys J 82(1 Pt 1):109–119. ElsevierCrossRefGoogle Scholar
  28. Garcia PA, Rossmeisl JH Jr, Neal RE 2nd, Ellis TL, Davalos RV (2011) A parametric study delineating irreversible electroporation from thermal damage based on a minimally invasive intracranial procedure. Biomed Eng Online 10(April):34. Scholar
  29. Garcia P, Rossmeisl J, Robertson J, Ellis T, Davalos R (2009) Irreversible electroporation for intracranial surgery: a pilot study in a canine model. Neuro-Oncology 11(5):588Google Scholar
  30. Garcia P, Rossmeisl J, Neal R, Ellis T, Olson J, Henao-Guerrero N, Robertson J, Davalos R (2010) Intracranial nonthermal irreversible electroporation: in vivo analysis. J Membr Biol 236(1):127–136. Scholar
  31. Garon EB, David S, Thomas Vernier P, Tang T, Sun Y, Marcu L, Gundersen MA, Phillip Koeffler H (2007) In vitro and in vivo evaluation and a case report of intense nanosecond pulsed electric field as a local therapy for human malignancies. Int J Cancer 121(3):675–682. Scholar
  32. Gascoyne PR, Vykoukal J (2002) Particle separation by dielectrophoresis. Electrophoresis 23(13):1973–1983. Scholar
  33. Ge H, Liu J (2012) Phase change effect of low melting point metal for an automatic cooling of USB flash memory. Front Energy 6(3):207–209. Scholar
  34. Gehl J (2003) Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiol Scand 177(4):437–447. Scholar
  35. Glaser RW, Leikin SL, Chernomordik LV, Pastushenko VF, Sokirko AI (1988) Reversible electrical breakdown of lipid bilayers: formation and evolution of pores. Biochim Biophys Acta 940:275–287CrossRefGoogle Scholar
  36. Golberg A, Yarmush ML (2013) Nonthermal irreversible electroporation: fundamentals, applications, and challenges. IEEE Trans Biomed Eng 60(3):707–714. Scholar
  37. Golzio M, Mazzolini L, Ledoux A, Paganin A, Izard M, Hellaudais L, Bieth A et al (2007) In vivo gene silencing in solid tumors by targeted electrically mediated siRNA delivery. Gene Ther 14(9):752–759. Scholar
  38. Granot Y, Rubinsky B (2009) Mass transfer model for drug delivery in tissue cells with reversible electroporation. Int J Heat Mass Transf 5(6):611–618. Scholar
  39. Guo Y, Zhang Y, Klein R, Nijm GM, Sahakian AV, Omary RA, Yang GY, Larson AC (2010) Irreversible electroporation therapy in the liver: longitudinal efficacy studies in a rat model of hepatocellular carcinoma. Cancer Res 70(4):1555–1563. Scholar
  40. Hanna E, Zhang X, Woodlis J, Breau R, Suen J, Li S (2001) Intramusclar electroporation delivery of IL-12 gene for treatment of squamous cell carcinoma located at distant site. Cancer Gene Ther 8(3):151–157CrossRefGoogle Scholar
  41. Hasgall PA, Di Gennaro F, Baumgartner C, Neufeld E, Gosselin MC, Payne D, Klingenbock A, Kuster N (2015) IT’IS database for thermal and electromagnetic parameters of biological tissues, Version 3.0.
  42. Jiang C, Davalos RV, Bischof JC (2015) A review of basic to clinical studies of irreversible electroporation therapy. IEEE Trans Biomed Eng 62(1):4–20CrossRefGoogle Scholar
  43. Kandasamy R, Wang X-Q, Mujumdar AS (2007) Application of phase change materials in thermal management of electronics. Appl Therm Eng 27(17–18):2822–2832. Scholar
  44. Karlessi T, Santamouris M, Synnefa A, Assimakopoulos D, Didaskalopoulos P, Apostolakis K (2011) Development and testing of PCM doped cool colored coatings to mitigate urban Heat Island and Cool Buildings. Build Environ 46(3):570–576. Elsevier LtdCrossRefGoogle Scholar
  45. Kos B, Zupanic A, Kotnik T, Snoj M, Sersa G, Miklavcic D (2010) Robustness of treatment planning for electrochemotherapy of deep-seated tumors. J Membr Biol 236(1):147–153. Scholar
  46. Kuznik F, David D, Johannes K, Roux JJ (2011) A review on phase change materials integrated in building walls. Renew Sust Energ Rev 15(1):379–391. Scholar
  47. Li S, Xia X, Zhang X, Suen J (2002) Regression of tumors by IFN-alpha electroporation gene therapy and analysis of the responsible genes by cDNA array. Gene Ther 9(6):390–397. Scholar
  48. Long G, Shires PK, Plescia D, Beebe SJ, Kolb JF, Schoenbach KH (2011) Targeted tissue ablation with nanosecond pulses. IEEE Trans Biomed Eng 58(8):2161–2167. Scholar
  49. Mesalhy O, Lafdi K, Elgafy A (2006) Carbon foam matrices saturated with PCM for thermal protection purposes. Carbon 44(10):2080–2088. Scholar
  50. Miklavcic D, Basu S, Hassenplug JC, Kramer DB, Xu S, Kesselheim AS (2014) Electrochemotherapy: from the drawing board into medical practice. Biomed Eng Online 13(1):29. Scholar
  51. Miklavcic D, Sel D, Cukjati D, Batiuskaite D, Slivnik T, Mir L (2004) Sequential finite element model of tissue electropermeabilisation. Conference proceedings: annual international conference of the IEEE engineering in medicine and biology society. IEEE Engineering in Medicine and Biology Society Conference, vol 5(5):3551–3554.
  52. Miklavcic D, Snoj M, Zupanic A, Kos B, Cemazar M, Kropivnik M, Bracko M, Pecnik T, Gadzijev E, Sersa G (2010) Towards treatment planning and treatment of deep-seated solid tumors by electrochemotherapy. Biomed Eng Online 9:10. Scholar
  53. Mondieig D, Rajabalee F, Laprie A, Oonk HAJ, Calvet T, Cuevas-Diarte MA (2003) Protection of temperature sensitive biomedical products using molecular alloys as phase change material. Transfus Apher Sci 28(2):143–148. Scholar
  54. Neal RE, Smith RL, Kavnoudias H, Rosenfeldt F, Ruchong O, McLean CA, Davalos RV, Thomson KR (2013) The effects of metallic implants on electroporation therapies: feasibility of irreversible electroporation for brachytherapy salvage. Cardiovasc Intervent Radiol 36(6):1638–1645. Scholar
  55. Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1(7):841–845. Scholar
  56. Nuccitelli R, Tran K, Sheikh S, Athos B, Kreis M, Nuccitelli P (2010) Optimized nanosecond pulsed electric field therapy can cause murine malignant melanomas to self-destruct with a single treatment. Int J Cancer 127(7):1727–1736. Scholar
  57. Osterman E, Tyagi VV, Butala V, Rahim NA, Stritih U (2012) Review of PCM based cooling technologies for buildings. Energ Buildings 49:37–49. Elsevier B.V.CrossRefGoogle Scholar
  58. Pavliha D, Kos B, Županič A, Marčan M, Serša G, Miklavčič D (2012) Patient-specific treatment planning of electrochemotherapy: procedure design and possible pitfalls. Bioelectrochemistry 87:265–273. Scholar
  59. Pearce JA (2009) Relationship between Arrhenius models of thermal damage and the CEM 43 thermal dose. Proc SPIE 7181(2):1–15. Scholar
  60. Pennes H (1948) Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol 85:5–34. doi:9714612CrossRefGoogle Scholar
  61. Pliquett U (1999) Mechanistic studies of molecular transdermal transport due to skin electroporation. Adv Drug Deliv Rev 35(1):41–60. Scholar
  62. Pliquett U, Gusbeth C, Nuccitelli R (2008) A Propagating Heat Wave Model of Skin Electroporation. J Theor Biol 251(2):195–201. Scholar
  63. Prakash J, Garg HP, Datta G (1985) A solar water heater with a built-in latent heat storage. Energy Convers Manag 25(1):51–56. Scholar
  64. Predel B (1960) Die Zustandsbilder Gallium - Wismut und Gallium - Quecksilber, Vergleich der Koexistenzkurven mit den Theorien der Entmischung. Z Phys Chem 24(3-4):206–216CrossRefGoogle Scholar
  65. Roman KK, O’Brien T, Alvey JB, Woo OJ (2016) Simulating the effects of cool roof and PCM (Phase Change Materials) based roof to mitigate UHI (Urban Heat Island) in prominent US cities. Energy 96:103–117. Elsevier LtdCrossRefGoogle Scholar
  66. Rubinsky J, Onik G, Mikus P, Rubinsky B (2008) Optimal parameters for the destruction of prostate cancer using irreversible electroporation. J Urol 180(6):2668–2674. American Urological AssociationCrossRefGoogle Scholar
  67. Sano MB, Neal RE, Garcia PA, Gerber D, Robertson J, Davalos RV (2010) Towards the creation of decellularized organ constructs using irreversible electroporation and active mechanical perfusion. Biomed Eng Online 9(1):1–16. BioMed Central Ltd: 83CrossRefGoogle Scholar
  68. Scheffer HJ, Vogel JA, Van Den Bos W, Neal RE, Van Lienden KP, Besselink MGH, Van Gemert MJC et al (2016) The influence of a metal stent on the distribution of thermal energy during irreversible electroporation. PLoS One 11(2):1–13. Scholar
  69. Shafiee H, Garcia P, Davalos RV (2009) A preliminary study to delineate irreversible electroporation from thermal damage using the Arrhenius equation. J Biomech Eng 131(7):074509. Scholar
  70. Sharma A, Tyagi VV, Chen CR, Buddhi D (2009) Review on thermal energy storage with phase change materials and applications. Renew Sust Energ Rev 13(2):318–345. Scholar
  71. Sheeran PS, Luois SH, Mullin LB, Matsunaga TO, Dayton PA (2012) Design of ultrasonically-activatable nanoparticles using low boiling point perfluorocarbons. Biomaterials 33(11):3262–3269. Elsevier LtdCrossRefGoogle Scholar
  72. Shim H, McCullough EA, Jones BW (2001) Using phase change materials in clothing. Text Res J 71(6):495–502. Scholar
  73. Stacey M, Stickley J, Fox P, Statler V, Schoenbach K, Beebe SJ, Buescher S (2003) Differential effects in cells exposed to ultra-short, high intensity electric fields: cell survival, DNA damage, and cell cycle analysis. Mutat Res 542(1–2):65–75. Scholar
  74. Tracy CR, Kabbani W, Cadeddu JA (2011) Irreversible Electroporation (IRE): a novel method for renal tissue ablation. BJU Int 107(12):1982–1987. Scholar
  75. Tropea BI, Lee RC (1992) Thermal injury kinetics in electrical trauma. J Biomech Eng 114(2):241–250. Scholar
  76. Vernier PT, Sun Y, Gundersen MA (2006) Nanoelectropulse-driven membrane perturbation and small molecule permeabilization. BMC Cell Biol 7(1):37. Scholar
  77. Wandel A, Ben-David E, Said Ulusoy B, Neal R, Faruja M, Nissenbaum I, Gourovich S, Nahum Goldberg S (2016) Optimizing irreversible electroporation ablation with a bipolar electrode. J Vasc Interv Radiol 7:1–12. ElsevierCrossRefGoogle Scholar
  78. Weaver JC (1994) Molecular Basis for Cell Membrane Electroporation. Ann N Y Acad Sci 720(1):141–152. Scholar
  79. Weaver JC (1995) Electroporation in cells and tissues: a biophysical phenomenon due to electromagnetic fields ions medium. 30(1):205–221.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Timothy J. O’Brien
    • 1
  • Christopher B. Arena
    • 2
  • Rafael V. Davalos
    • 1
  1. 1.Bioelectromechanical Systems Laboratory, ICTAS Center for Engineered Health, Department of Biomedical Engineering and MechanicsVirginia Tech - Wake Forest School of Biomedical Engineering and SciencesBlacksburgUSA
  2. 2.Laboratory for Therapeutic Directed Energy, Department of PhysicsElon UniversityElonUSA

Section editors and affiliations

  • Ram Devireddy
    • 1
  1. 1.Department of Mechanical and Industrial EngineeringLouisiana State UniversityBaton RougeUSA

Personalised recommendations