Advertisement

Radiative Properties of Gases

  • Vladimir P. Solovjov
  • Brent W. Webb
  • Frederic Andre
Reference work entry

Abstract

Radiation transfer in high-temperature gas systems is critical in many engineering applications. Understanding the fundamental physical phenomena associated with radiative transfer in these environments is thus critical to predicting the physical phenomena. This chapter seeks to present the fundamental physics of radiative transfer in high-temperature gases and review the viable methods for predicting the associated radiative transfer. The general physical statements of gas radiation are first formulated. It is shown that the principal properties of molecular gases needed for the radiative transfer equation are the gas spectral absorption cross section and the spectral absorption coefficient. Radiation constants and equations are explicitly written in terms of wavenumber for gas radiation.

The fundamentals of the physical nature of gas radiation are presented to contextualize the spectral properties – what defines positions, strength, and shape of spectral lines at given temperature and pressure. The chapter provides the information needed to find and to read spectroscopic databases such as HITRAN and HITEMP and how to use the compiled data to assemble the gas absorption spectra for both the gas absorption cross section and the gas absorption coefficient.

The principles of narrow band models and global models of gas radiation are formulated. The statistical narrow band model with Malkmus’ distribution function of line strength for an array of Lorentz lines is presented, and its application for modeling of radiation transfer in nonuniform media is explained. The wide range of global models of gas radiation starting from gray model and weighted-sum-of-gray-gases model and their development into more advanced models such as SLW, ADF, and FSK is described. While more detailed attention is given to the SLW model, its relation to the FSK and ADF models is outlined. Finally, the application of global models for prediction of radiative transfer in nonuniform gaseous medium is presented.

References

  1. André F (2016a) The -distribution method for modeling non-gray absorption in uniform and non-uniform gaseous media. J Quant Spectrosc Radiat Transf 179:19–32CrossRefGoogle Scholar
  2. André F (2016b) A polynomial chaos approach to narrow band modeling of radiative heat transfer in non-uniform gaseous media. J Quant Spectrosc Radiat Transf 175:17–29CrossRefGoogle Scholar
  3. André F (2017) Symmetry issues in the -distribution method for modeling of non-gray absorption in uniform and non-uniform gaseous medium. J Quant Spectrosc Radiat Transf 190:78–87CrossRefGoogle Scholar
  4. André F, Vaillon R (2007) The k-moment method for modeling the blackbody weighted transmission function for narrow and wide band radiative properties of gases. J Quant Spectrosc Radiat Transf 108:1–16CrossRefGoogle Scholar
  5. Andre F, Vaillon R (2008) The spectral-line moment-based (SLMB) modeling of the wide band and global blackbody-weighted transmission function and cumulative distribution function of the absorption coefficient in uniform gaseous media. J Quant Spectrosc Radiat Transf 109:2401–2416CrossRefGoogle Scholar
  6. André F, Vaillon R (2012) Generalization of the k-moment method using the maximum entropy principle. Application to the NBKM and full spectrum SLMB gas radiation models. J Quant Spectrosc Radiat Transf 113:1508–1520CrossRefGoogle Scholar
  7. André F, Vaillon R, Galizzi C, Guo H, Gicquel O (2011) A multi-spectral reordering technique for the full spectrum SLMB modeling of radiative heat transfer in nonuniform media. J Quant Spectrosc Radiat Transf 112:394–411CrossRefGoogle Scholar
  8. André F, Hou L, Roger M, Vaillon R (2014) The multispectral gas radiation modeling: a new theoretical framework based on a multidimensional approach to k-distribution methods. J Quant Spectrosc Radiat Transf 147:178–195CrossRefGoogle Scholar
  9. Andre F, Solovjov VP, Lemonnier D, Webb BW (2017) Comonotonic global spectral models of gas radiation in non-uniform media based on arbitrary probability measures. Appl Math Model 50:741–754MathSciNetCrossRefGoogle Scholar
  10. Berk A (2013) Voigt equivalent widths. J Quant Spectrosc Radiat Transf 118:102–120CrossRefGoogle Scholar
  11. Bernath PF (2005) Spectra of atoms and molecules. Oxford University Press, New YorkGoogle Scholar
  12. Centeno FR, Brittes R, França FHR, Ofodike, Ezekoye OA (2015) Evaluation of gas radiation heat transfer in a 2D axisymmetric geometry using the line-by-line integration and WSGG models. J Quant Spectrosc Radiat Transf 156:1–11CrossRefGoogle Scholar
  13. Denison MK, Webb BW (1993a) A spectral line based weighted-sum-of-gray-gases model for arbitrary RTE solvers. ASME J Heat Transfer 115:1004–1012CrossRefGoogle Scholar
  14. Denison MK, Webb BW (1993b) An absorption-line blackbody distribution function for efficient calculation of total gas radiative transfer. J Quant Spectrosc Radiat Transf 50:499–510CrossRefGoogle Scholar
  15. Denison MK, Webb BW (1994) k-distributions and weighted-sum-of-gray-gases – a hybrid Model. ASME J Heat Transfer 2:19–24Google Scholar
  16. Denison MK, Webb BW (1995a) The spectral line based weighted-sum-of-gray-gases model in non-isothermal non-homogeneous media. ASME J Heat Transfer 117:359–365CrossRefGoogle Scholar
  17. Denison MK, Webb BW (1995b) Development and application of an absorption-line blackbody distribution function for CO2. Int J Heat Mass Transfer 38:1813–1821CrossRefGoogle Scholar
  18. Denison MK, Webb BW (1995c) The spectral-line weighted-sum-of-gray-gases model for H2O/CO2 mixtures. ASME J Heat Transfer 117:788–792CrossRefGoogle Scholar
  19. Domoto GA (1974) Frequency integration for radiative transfer problems involving homogeneous non-gray gases: the inverse transmission function. J Quant Spectrosc Radiat Transf 14:935–942CrossRefGoogle Scholar
  20. Godson WL (1953) The evaluation of infrared radiative fluxes due to atmospheric water vapour. Q J R Meteorol Soc 79:367–379CrossRefGoogle Scholar
  21. Goody RM, Yung YL (1989) Atmospheric radiation. Oxford University Press, New YorkGoogle Scholar
  22. Harris CH, Bertolucci MD (1978) Symmetry and spectroscopy. Oxford University Press, New YorkGoogle Scholar
  23. Herzberg G (1950) Molecular spectra and molecular structure. D. Van Nostrand, PrincetonGoogle Scholar
  24. Hill C, Gordon IE, Kochanov RV, Barrett L, Wilzewski JS, Rothman LS (2016) HITANonline: an online interface and the flexible representation of spectroscopic data in the HITRAN database. J Quant Spectrosc Radiat Transf 177:4–14CrossRefGoogle Scholar
  25. http://albdf.byu.edu. Accessed 3 Aug 2016
  26. http://www.cfa.harvard.edu/hitran/. HITRAN and HITEMP spectral databases website. Accessed 3 Aug 2016
  27. Hottel HC (1954) Radiant heat transmission. In: McAdams WH (ed) Heat transmission. McGraw-Hill Book Company, New YorkGoogle Scholar
  28. Hottel HC, Sarofim AF (1967) Radiative transfer. McGraw-Hill, New YorkGoogle Scholar
  29. Howell JR, Siegel R, Mengüç MP (2011) Thermal radiation heat transfer, 5th edn. CRC Press, New YorkGoogle Scholar
  30. Howell JR, Mengüç MP, Siegel R (2016) Thermal radiation heat transfer, 6th edn. CRC Press, New YorkGoogle Scholar
  31. Kochanov RV, Gordon IE, Rothman LS, Wcislo P, Wilzewski JS (2016) HITRAN Application Programming Interface (HAPI): a comprehensive approach to working with spectroscopic data. J Quant Spectrosc Radiat Transf 177:15–30CrossRefGoogle Scholar
  32. Lacis A, Oinas V (1991) A description of the correlated k-distribution method for modeling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres. J Geophys Res 96:9027–9063CrossRefGoogle Scholar
  33. Letchworth KL, Benner DC (2007) Rapid and accurate calculation of the Voigt function. J Quant Spectrosc Radiat Transf 107:173–192CrossRefGoogle Scholar
  34. Levi Di Leon R, Taine J (1986) A fictive gas-method for accurate computations of low-resolution IR gas transmissivities: application to the 4.3 μm CO2 band. Rev Phys Appl 21:825–531CrossRefGoogle Scholar
  35. Levine IN (1975) Molecular spectroscopy. Wiley, New YorkGoogle Scholar
  36. Lindquist GH, Simmons FS (1972) A band model formulation for very nonuniform paths. J Quant Spectrosc Radiat Transf 12:807–820CrossRefGoogle Scholar
  37. Liu F, Smallwood GJ, Gülder ÖL (2001) Application of the statistical narrow-band correlated-k method to non-grey radiation in CO2-H2O mixtures: approximate treatment of overlapping bands. J Quant Spectrosc Radiat Transf 68:401–417CrossRefGoogle Scholar
  38. Ludwig CB, Malkmus W, Reardon JE, Thomson JAL (1973) Handbook of infrared radiation from combustion gases. Technical report NASA SP-3080, Washington, DCGoogle Scholar
  39. Malkmus W (1967) Random Lorentz band model with exponential-tailed S-1 line intensity distribution function. J Opt Soc Am 57:323–329CrossRefGoogle Scholar
  40. Mlawer EJ, Payne VH, Moncet J-L, Delamere JS, Alvarado MJ, Tobin DC (2012) Development and recent evaluation of the MT-CKD model of continuum absorption. Philos Trans R Soc A 370:2520–2556CrossRefGoogle Scholar
  41. Modest MF (2013) Radiative heat transfer, 3rd edn. Academic, ASME, New YorkGoogle Scholar
  42. Modest MF, Haworth DC (2016) Radiative heat transfer in turbulent combustion systems. Theory and applications. Springer, New YorkCrossRefGoogle Scholar
  43. Modest MF, Zhang H (2000) The full-spectrum correlated-k distribution and its relationship to the weighted-sum-of-gray-gases method. In: Proceedings of 2000 IMECE HTD-366-1 Orlando, New York, pp 75–84Google Scholar
  44. Pearson JT (2013) The development of updated and improved SLW model parameters and its application to comprehensive combustion prediction. PhD dissertation, Brigham Young University, Provo, Utah, USAGoogle Scholar
  45. Pearson JT, Webb BW, Solovjov VP, Ma J (2014) Efficient representation of the absorption line blackbody distribution function for H2O, CO2, and CO at variable temperature, mole fraction, and total pressure. J Quant Spectrosc Radiat Transf 138:82–96CrossRefGoogle Scholar
  46. Penner SS (1959) Quantitative molecular spectroscopy and gas emissivities. Addison-Wesley Publishing Company, LondonGoogle Scholar
  47. Perrin MY, Hartmann JM (1989) Temperature-dependent measurements and modeling of absorption by CO2-N2 mixtures in the far line-wings of the 4.3 μm CO2 band. J Quant Spectrosc Radiat Transf 42:311–317CrossRefGoogle Scholar
  48. Pierrot L (1997) Développent, étude critique et validation de modèles de propriétés radiatives infrarouges de CO2 et H2O à hautes températures. Application au calcul des transferts dans les chambres aéronautiques et à la télédétection. PhD thesis, Ecole Centrale ParisGoogle Scholar
  49. Pierrot L, Rivière PH, Soufiani A, Taine J (1999) A fictitious-gas-based absorption distribution function global model for radiative transfer in hot gases. J Quant Spectrosc Radiat Transf 62:609–624CrossRefGoogle Scholar
  50. Rivière PH, Soufiani A (2012) Updated band model parameters for H2O, CO2, CH4 and CO radiation at high temperature. J Quant Spectrosc Radiat Transf 55:3349–3358Google Scholar
  51. Rivière PH, Soufiani A, Taine J (1992) Correlated-k and fictitious gas methods for H2O near 2.7 μm. J Quant Spectrosc Radiat Transf 48:187–203CrossRefGoogle Scholar
  52. Rothman LS, Gamache RR, Tipping RH, Rinsland CP, Smith MAH, Chris Benner D, Malathy Devi V, Flaud JM, Camy-Peyret C, Perrin A, Goldman A, Massie ST, Brown LR (1992) The HITRAN molecular database: editions of 1991 and 1992a. J Quant Spectrosc Radiat Transf 48:469–507CrossRefGoogle Scholar
  53. Rothman LS, Rinsland CP, Goldman A, Massie ST, Edwards DP, Flaud JM, Perrin A, Camy-Peyret C, Dana V, Mandin JY, Schroeder J, Mccann A, Gamache RR, Wattson RB, Yoshino K, Chance KV, Jucks KW, Brown LR, Nemtchinov V, Varanasi P (1998) The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition. J Quant Spectrosc Radiat Transf 60:665–710CrossRefGoogle Scholar
  54. Rothman LS, Gordon IE, Barbe A, ChrisBenner D, Bernath PF, Birk M, Boudon V, Brown LR, Campargue A, Champion J-P, Chance K, Coudert LH, Danaj V, Devi VM, Fally S, Flaud J-M, Gamache RR, Goldmanm A, Jacquemart D, Kleiner I, Lacome N, Lafferty WJ, Mandin J-Y, Massie ST, Mikhailenko SN, Miller CE, Moazzen-Ahmadi N, Naumenko OV, Nikitin AV, Orphal J, Perevalov VI, Perrin A, Predoi-Cross A, Rinsland CP, Rotger M, Simeckova M, Smith MAH, Sung K, Tashkun SA, Tennyson J, Toth RA, Vandaele AC, VanderAuwera J (2009) The HITRAN 2008 molecular spectroscopic database. J Quant Spectrosc Radiat Transf 110:533–572CrossRefGoogle Scholar
  55. Rothman LS, Gordon LE, Barber RJ, Dothe H, Gamache RR, Goldman A, Perevalov VI, Tashkun SA, Tennyson J (2010) HITEMP, the high-temperature molecular spectroscopic database. J Quant Spectrosc Radiat Transf 111:2139–2150CrossRefGoogle Scholar
  56. Rothman LS, Gordon IE, Babikov Y, Barbe A, ChrisBenner D, Bernath PF, Birk M, Bizzocchi L, Boudon V, Brown LR, Campargue A, Chance K, Cohen EA, Coudert LH, Devi VM, Drouin BJ, Fayt A, Flaud J-M, Gamache RR, Harrison JJ, Hartmann J-M, Hill C, Hodges JT, Jacquemart D, Jolly A, Lamouroux J, LeRoy RJ, Li G, Long DA, Lyulin OM, Mackie CJ, Massie ST, Mikhailenko S, Müller HSP, Naumenko OV, Nikitin AV, Orphal J, Perevalov V, Perrin A, Polovtseva ER, Richard C, Smith MAH, Starikova E, Sung K, Tashkun S, Tennyson J, Toon GC, Tyuterev VG, Wagner G (2013) The HITRAN2012 molecular spectroscopic database. J Quant Spectrosc Radiat Transf 130:4–50CrossRefGoogle Scholar
  57. Smith TF, Shen ZF, Friedman JN (1982) Evaluation of coefficients for the weighted sum of gray gases model. ASME J Heat Transfer 104:602–608CrossRefGoogle Scholar
  58. Solovjov VP, Webb BW (1998) Radiative transfer model parameters for carbon monoxide at high temperature. J Proc11th Int Heat Transfer Conf Kyongju, Korea 7:445–450Google Scholar
  59. Solovjov VP, Webb BW (2000) SLW modeling of radiative transfer in multicomponent gas mixtures. J Quant Spectrosc Radiat Transf 65:655–672CrossRefGoogle Scholar
  60. Solovjov VP, Webb BW (2001) An efficient method for modeling of radiative transfer in multicomponent gas mixtures with soot particles. ASME J Heat Transfer 123:450–457CrossRefGoogle Scholar
  61. Solovjov VP, Webb BW (2005) The cumulative wavenumber method for modeling radiative transfer in gas mixtures with soot. J Quant Spectrosc Radiat Transf 93:273–287CrossRefGoogle Scholar
  62. Solovjov VP, Webb BW (2008) Multilayer modeling of radiative transfer by SLW and CW methods in non-isothermal gaseous media. J Quant Spectrosc Radiat Transf 109:245–257CrossRefGoogle Scholar
  63. Solovjov VP, Webb BW (2011) Global spectral methods in gas radiation: the exact limit of the SLW model and its relationship to the ADF and FSK methods. ASME J Heat Transfer 133:88–798Google Scholar
  64. Solovjov VP, Lemonnier D, Webb BW (2011a) The SLW-1 model for efficient prediction of radiative transfer in high temperature gases. J Quant Spectrosc Radiat Transf 112:1205–1212CrossRefGoogle Scholar
  65. Solovjov VP, Lemonnier D, Webb BW (2011b) SLW-1 modeling of radiative heat transfer in nonisothermal nonhomogeneous gas mixtures with soot. ASME J Heat Transfer 133:102701–3-9CrossRefGoogle Scholar
  66. Solovjov VP, Lemonnier D, Webb BW (2013) Efficient cumulative wavenumber method – the CW-1 Model of radiative transfer in the gaseous medium bounded by non-gray walls. J Quant Spectrosc Radiat Transf 63:2–9eGoogle Scholar
  67. Solovjov VP, Lemonnier D, Webb BW (2014) Extension of the exact SLW model to non- isothermal gaseous media. J Quant Spectrosc Radiat Transf 143:83–91CrossRefGoogle Scholar
  68. Solovjov VP, Andre F, Lemonnier D, Webb BW (2016a) The rank correlated SLW model of gas radiation in non uniform media. In: Proceedings of RAD-16, Begell HouseGoogle Scholar
  69. Solovjov VP, Andre F, Lemonnier D, Webb BW (2016b) The generalized SLW model. Eurotherm conference 105: computational thermal radiation in participating media V. J Phys Conf Ser 676:1–36. 012022CrossRefGoogle Scholar
  70. Solovjov VP, Andre F, Lemonnier D, Webb BW (2017a) The rank correlated SLW model of gas radiation in non uniform media. J Quant Spectrosc Radiat Transf.  https://doi.org/10.1016/j.jqsrt.2017.01.034
  71. Solovjov VP, Andre F, Lemonnier D, Webb BW (2017b) The scaled SLW model of gas radiation in non uniform media. In: Proceedings of CHT-17. ICHMT international symposium on advances in computational heat transfer. May 28–June 1, 2017, NapoliGoogle Scholar
  72. Song TH, Viskanta R (1986) Development of application of a spectral-group model to radiative heat transfer. ASME Paper No. 86-WA/HT-36Google Scholar
  73. Soufiani A, Taine J (1999) High temperature gas radiative property parameters of statistical narrow-band model for H2O, CO2 and CO and correlated-k (CK) model for H2O and CO2. Int J Heat Mass Transf 40:987–991CrossRefGoogle Scholar
  74. Soufiani A, Hartmann J-M, Taine J (1985) Validity of band-model calculations for CO2 and H2O applied to radiative properties and conductive-radiative transfer. J Quant Spectrosc Radiat Transf 33:243–257CrossRefGoogle Scholar
  75. Soufiani A, André F, Taine J (2002) A fictitious-gas based statistical narrow-band model for IR long-range sensing of H2O at high temperature. J Quant Spectrosc Radiat Transf 73:339–347CrossRefGoogle Scholar
  76. Taine J, Soufiani A (1999) Gas IR radiative properties: from spectroscopic data to approximate models. Adv Heat Transfer 33:295–414CrossRefGoogle Scholar
  77. Vidler M, Tennyson J (2000) Accurate partition function and thermodynamic data for water. J Chem Phys 113:9766–9771CrossRefGoogle Scholar
  78. Viskanta R (2005) Radiative transfer in combustion systems: fundamentals and application. Begell House, New YorkGoogle Scholar
  79. Wang C, Modest MF, He B (2016) Full-spectrum k-distribution look-up table for nonhomogeneous gas–soot mixtures. J Quant Spectrosc Radiat Transf 176:129–136CrossRefGoogle Scholar
  80. West R, Crisp D, Chen L (1990) Mapping transformations for broadband atmospheric radiation calculations. J Quant Spectrosc Radiat Transf 43:191–199CrossRefGoogle Scholar
  81. Young SJ (1975) Band model formulation for inhomogeneous optical paths. J Quant Spectrosc Radiat Transf 15:483–501CrossRefGoogle Scholar
  82. Young SJ (1977) Non isothermal band model theory. J Quant Spectrosc Radiat Transf 18:1–28CrossRefGoogle Scholar
  83. Zhang H, Modest MF (2003) Scalable multi-group full-spectrum correlated-k distributions for radiative transfer calculations. ASME J Heat Transfer 125:454–461CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Vladimir P. Solovjov
    • 1
  • Brent W. Webb
    • 1
  • Frederic Andre
    • 2
  1. 1.Mechanical Engineering DepartmentBrigham Young UniversityProvoUSA
  2. 2.Centre de Thermique et d’Energétique de LyonINSA de LyonVilleurbanneFrance

Section editors and affiliations

  • Pinar Mengüç
    • 1
  1. 1.Çekmeköy CampusÖzyeğin UniversityÇekmeköy - IstanbulTurkey

Personalised recommendations