Design of Optical and Radiative Properties of Surfaces

  • Bo Zhao
  • Zhuomin M. ZhangEmail author
Reference work entry


Tailoring optical and radiative properties has attracted a great deal of attention in recent years due to its importance in advanced energy systems, nanophotonics, electro-optics, and nanomanufacturing. Micro-/nanostructured surfaces can interact with electromagnetic waves in a unique way by excitation of various optical resonances or polaritons that can modify the polarization-dependent directional and spectral radiative properties. Latest advances in graphene and other two-dimensional (2D) materials offer enormous potentials to revolutionize current microelectronic, optoelectronic, and energy harvesting systems. This chapter summarizes the recent advances in the design of optical and radiative properties of micro-/nanostructures and 2D materials. The physical mechanisms that are behind the exotic behaviors are discussed, with an emphasis on various plasmonic and phononic polaritons. Anisotropic rigorous coupled-wave analysis is presented as a modeling technique that is suitable to simulate periodic multilayer structures involving anisotropic materials. The insights gained from this chapter may benefit the future development of energy harvesting systems, photodetectors, thermal management, local thermal management, and high-resolution thermal sensing.



The research was supported by the National Science Foundation (CBET-1235975; CBET-1603761) and the US Department of Energy, Office of Science, Basic Energy Science (DE-FG02-06ER46343).


  1. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213CrossRefGoogle Scholar
  2. Baida FI, Van Labeke D (2002) Light transmission by subwavelength annular aperture arrays in metallic films. Opt Commun 209:17–22CrossRefGoogle Scholar
  3. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830CrossRefGoogle Scholar
  4. Basov DN, Fogler MM, Lanzara A, Wang F, Zhang Y (2014) Colloquium: graphene spectroscopy. Rev Mod Phys 86:959–994CrossRefGoogle Scholar
  5. Basu S, Chen Y-B, Zhang ZM (2007) Microscale radiation in thermophotovoltaic devices—a review. Int J Energy Res 31:689–716CrossRefGoogle Scholar
  6. Baxter J, Bian Z, Chen G, Danielson D, Dresselhaus MS, Fedorov AG, Fisher TS, Jones CW, Maginn E, Kortshagen U, Manthiram A, Nozik A, Rolison DR, Sands T, Shi L, Sholl D, Wu Y (2009) Nanoscale design to enable the revolution in renewable energy. Energy Environ Sci 2:559–588CrossRefGoogle Scholar
  7. Biehs SA, Tschikin M, Ben-Abdallah P (2012) Hyperbolic metamaterials as an analog of a blackbody in the near field. Phys Rev Lett 109:104301CrossRefGoogle Scholar
  8. Bierman DM, Lenert A, Chan WR, Bhatia B, Celanović I, Soljačić M, Wang EN (2016) Enhanced photovoltaic energy conversion using thermally based spectral shaping. Nat Energy 1:16068CrossRefGoogle Scholar
  9. Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Ferrari AC, Ruoff RS, Pellegrini V (2015) Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347:1246501CrossRefGoogle Scholar
  10. Boriskina SV, Ghasemi H, Chen G (2013) Plasmonic materials for energy: from physics to applications. Mater Today 16:375–386CrossRefGoogle Scholar
  11. Bouchon P, Koechlin C, Pardo F, Haïdar R, Pelouard J-L (2012) Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas. Opt Lett 37:1038–1040CrossRefGoogle Scholar
  12. Brar VW, Jang MS, Sherrott M, Kim S, Lopez JJ, Kim LB, Choi M, Atwater H (2014) Hybrid surface-phonon-plasmon polariton modes in graphene/monolayer h-BN heterostructures. Nano Lett 14:3876–3880CrossRefGoogle Scholar
  13. Brar VW, Jang MS, Sherrott M, Lopez JJ, Atwater HA (2013) Highly confined tunable mid-infrared plasmonics in graphene nanoresonators. Nano Lett 13:2541–2547CrossRefGoogle Scholar
  14. Bräuer R, Bryngdahl O (1993) Electromagnetic diffraction analysis of two-dimensional gratings. Opt Commun 100:1–5CrossRefGoogle Scholar
  15. Cai W, Chettiar UK, Kildishev AV, Shalaev VM (2007) Optical cloaking with metamaterials. Nat Photonics 1:224–227CrossRefGoogle Scholar
  16. Cai W, Gao T, Hong H, Sun J (2008) Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol Sci Appl.
  17. Cai W, Shalaev V (2009) Optical metamaterials: fundamentals and applications. Springer, New YorkGoogle Scholar
  18. Caldwell JD, Kretinin AV, Chen Y, Giannini V, Fogler MM, Francescato Y, Ellis CT, Tischler JG, Woods CR, Giles AJ, Hong M, Watanabe K, Taniguchi T, Maier SA, Novoselov KS (2014) Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nat Commun 5:5221CrossRefGoogle Scholar
  19. Chang C-C, Sharma YD, Kim Y-S, Bur JA, Shenoi RV, Krishna S, Huang D, Lin S-Y (2010) A surface plasmon enhanced infrared photodetector based on InAs quantum dots. Nano Lett 10:1704–1709CrossRefGoogle Scholar
  20. Chen Y-B, Chen C-J (2013) Interaction between the magnetic polariton and surface plasmon polariton. Opt Commun 297:169–175CrossRefGoogle Scholar
  21. Chen J, Nesterov ML, Nikitin AY, Thongrattanasiri S, Alonso-González P, Slipchenko TM, Speck F, Ostler M, Seyller T, Crassee I, Koppens FHL, Martin-Moreno L, García de Abajo FJ, Kuzmenko AB, Hillenbrand R (2013) Strong plasmon reflection at nanometer-size gaps in monolayer graphene on SiC. Nano Lett 13:6210–6215CrossRefGoogle Scholar
  22. Chen Y-B, Tan KH (2010) The profile optimization of periodic nano-structures for wavelength-selective thermophotovoltaic emitters. Int J Heat Mass Transf 53:5542–5551zbMATHCrossRefGoogle Scholar
  23. Chen Y-B, Zhang ZM (2007) Design of tungsten complex gratings for thermophotovoltaic radiators. Opt Commun 269:411–417CrossRefGoogle Scholar
  24. Cheng F, Gao J, Luk TS, Yang X (2015) Structural color printing based on plasmonic metasurfaces of perfect light absorption. Sci Rep 5:11045CrossRefGoogle Scholar
  25. Cui Y, Fung KH, Xu J, Ma H, Jin Y, He S, Fang NX (2012) Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano Lett 12:1443–1447CrossRefGoogle Scholar
  26. Cui Y, Kang L, Lan S, Rodrigues S, Cai W (2014) Giant chiral optical response from a twisted-arc metamaterial. Nano Lett 14:1021–1025CrossRefGoogle Scholar
  27. Cui Y, Xu J, Fung KH, Jin Y, Kumar A, He S, Fang NX (2011) A thin film broadband absorber based on multi-sized nanoantennas. Appl Phys Lett 99:253101CrossRefGoogle Scholar
  28. Dahan N, Niv A, Biener G, Gorodetski Y, Kleiner V, Hasman E (2008) Extraordinary coherent thermal emission from SiC due to coupled resonant cavities. J Heat Transf 130:112401CrossRefGoogle Scholar
  29. Dai S, Fei Z, Ma Q, Rodin AS, Wagner M, McLeod AS, Liu MK, Gannett W, Regan W, Watanabe K, Taniguchi T, Thiemens M, Dominguez G, Neto AHC, Zettl A, Keilmann F, Jarillo-Herrero P, Fogler MM, Basov DN (2014) Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343:1125–1129CrossRefGoogle Scholar
  30. Dai S, Ma Q, Andersen T, McLeod AS, Fei Z, Liu MK, Wagner M, Watanabe K, Taniguchi T, Thiemens M, Keilmann F, Jarillo-Herrero P, Fogler MM, Basov DN (2015a) Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material. Nat Commun 6:6963CrossRefGoogle Scholar
  31. Dai S, Ma Q, Liu MK, Andersen T, Fei Z, Goldflam MD, Wagner M, Watanabe K, Taniguchi T, Thiemens M, Keilmann F, Janssen GCAM, Zhu SE, Jarillo Herrero P, Fogler MM, Basov DN (2015b) Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. Nat Nanotechnol 10:682–686CrossRefGoogle Scholar
  32. Davidson DB (2010) Computational electromagnetics for RF and microwave engineering. Cambridge University Press, UKCrossRefGoogle Scholar
  33. Dean CR, Young AF, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard KL, Hone J (2010) Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol 5:722–726CrossRefGoogle Scholar
  34. Deng H, Li Z, Stan L, Rosenmann D, Czaplewski D, Gao J, Yang X (2015) Broadband perfect absorber based on one ultrathin layer of refractory metal. Opt Lett 40:2592–2595CrossRefGoogle Scholar
  35. Didari A, Menguc MP (2015) Near- to far-field coherent thermal emission by surfaces coated by nanoparticles and the evaluation of effective medium theory. Opt Express 23:A547–A552CrossRefGoogle Scholar
  36. Du L, Tang D, Yuan X (2014) Edge-reflection phase directed plasmonic resonances on graphene nano-structures. Opt Express 22:22689–22698CrossRefGoogle Scholar
  37. Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391:667–669CrossRefGoogle Scholar
  38. Echtermeyer TJ, Britnell L, Jasnos PK, Lombardo A, Gorbachev RV, Grigorenko AN, Geim AK, Ferrari AC, Novoselov KS (2011) Strong plasmonic enhancement of photovoltage in graphene. Nat Commun 2:458CrossRefGoogle Scholar
  39. Engel M, Steiner M, Lombardo A, Ferrari AC, Löhneysen H, Avouris P, Krupke R (2012) Light–matter interaction in a microcavity-controlled graphene transistor. Nat Commun 3:906CrossRefGoogle Scholar
  40. Engheta N (2007) Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. Science 317:1698–1702CrossRefGoogle Scholar
  41. Falkovsky LA (2008) Optical properties of graphene. J Phys Conf Ser 129:012004CrossRefGoogle Scholar
  42. Fallahi A, Perruisseau-Carrier J (2012) Design of tunable biperiodic graphene metasurfaces. Phys Rev B 86:195408CrossRefGoogle Scholar
  43. Fan S (2014) Photovoltaics: an alternative ‘Sun’ for solar cells. Nat Nanotechnol 9:92–93CrossRefGoogle Scholar
  44. Fang Z, Liu Z, Wang Y, Ajayan PM, Nordlander P, Halas NJ (2012) Graphene-antenna sandwich photodetector. Nano Lett 12:3808–3813CrossRefGoogle Scholar
  45. Fang Z, Thongrattanasiri S, Schlather A, Liu Z, Ma L, Wang Y, Ajayan PM, Nordlander P, Halas NJ, García de Abajo FJ (2013a) Gated tunability and hybridization of localized plasmons in nanostructured graphene. ACS Nano 7:2388–2395CrossRefGoogle Scholar
  46. Fang Z, Wang Y, Schlather AE, Liu Z, Ajayan PM, García de Abajo FJ, Nordlander P, Zhu X, Halas NJ (2013b) Active tunable absorption enhancement with graphene nanodisk arrays. Nano Lett 14:299–304CrossRefGoogle Scholar
  47. Freitag M, Chiu H-Y, Steiner M, Perebeinos V, Avouris P (2010) Thermal infrared emission from biased graphene. Nat Nanotechnol 5:497–501CrossRefGoogle Scholar
  48. Furchi M, Urich A, Pospischil A, Lilley G, Unterrainer K, Detz H, Klang P, Andrews AM, Schrenk W, Strasser G, Mueller T (2012) Microcavity-integrated graphene photodetector. Nano Lett 12:2773–2777CrossRefGoogle Scholar
  49. García de Abajo FJ (2014) Graphene plasmonics: challenges and opportunities. ACS Photon 1:135–152CrossRefGoogle Scholar
  50. Garcia-Pomar JL, Nikitin AY, Martin-Moreno L (2013) Scattering of graphene plasmons by defects in the graphene sheet. ACS Nano 7:4988–4994CrossRefGoogle Scholar
  51. Geim AK, Grigorieva IV (2013) Van der Waals heterostructures. Nature 499:419–425CrossRefGoogle Scholar
  52. Ghaemi HF, Thio T, Grupp DE, Ebbesen TW, Lezec HJ (1998) Surface plasmons enhance optical transmission through subwavelength holes. Phys Rev B 58:6779–6782CrossRefGoogle Scholar
  53. Glytsis EN, Gaylord TK (1990) Three-dimensional (vector) rigorous coupled-wave analysis of anisotropic grating diffraction. J Opt Soc Am A 7:1399–1420CrossRefGoogle Scholar
  54. Grady NK, Heyes JE, Chowdhury DR, Zeng Y, Reiten MT, Azad AK, Taylor AJ, Dalvit DAR, Chen H-T (2013) Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science 340:1304–1307CrossRefGoogle Scholar
  55. Greffet J-J, Carminati R, Joulain K, Mulet J-P, Mainguy S, Chen Y (2002) Coherent emission of light by thermal sources. Nature 416:61–64CrossRefGoogle Scholar
  56. Grigorenko AN, Polini M, Novoselov KS (2012) Graphene plasmonics. Nat Photonics 6:749–758CrossRefGoogle Scholar
  57. Heinzel A, Boerner V, Gombert A, Bläsi B, Wittwer V, Luther J (2000) Radiation filters and emitters for the NIR based on periodically structured metal surfaces. J Mod Opt 47:2399–2419CrossRefGoogle Scholar
  58. Hendrickson J, Guo J, Zhang B, Buchwald W, Soref R (2012) Wideband perfect light absorber at midwave infrared using multiplexed metal structures. Opt Lett 37:371–373CrossRefGoogle Scholar
  59. Hesketh PJ, Zemel JN, Gebhart B (1986) Organ pipe radiant modes of periodic micromachined silicon surfaces. Nature 324:549–551CrossRefGoogle Scholar
  60. Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108:462–493CrossRefGoogle Scholar
  61. Hou-Tong C, Antoinette JT, Nanfang Y (2016) A review of metasurfaces: physics and applications. Rep Prog Phys 79:076401CrossRefGoogle Scholar
  62. Howell JR, Menguc MP, Siegel R (2016) Thermal radiation heat transfer, 6th edn. CRC Press, FloridaGoogle Scholar
  63. Jacob Z (2014) Nanophotonics: hyperbolic phonon-polaritons. Nat Mater 13:1081–1083CrossRefGoogle Scholar
  64. Jacob Z, Smolyaninov II, Narimanov EE (2012) Broadband Purcell effect: radiative decay engineering with metamaterials. Appl Phys Lett 100:181105CrossRefGoogle Scholar
  65. Kane Y (1966) Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media. IEEE Trans Antennas Propag 14:302–307zbMATHCrossRefGoogle Scholar
  66. Khodasevych IE, Wang L, Mitchell A, Rosengarten G (2015) Micro- and nanostructured surfaces for selective solar absorption. Adv Opt Mater 3:852–881CrossRefGoogle Scholar
  67. Koppens FHL, Chang DE, García de Abajo FJ (2011) Graphene plasmonics: a platform for strong light–matter interactions. Nano Lett 11:3370–3377CrossRefGoogle Scholar
  68. Koppens FHL, Mueller T, Avouris P, Ferrari AC, Vitiello MS, Polini M (2014) Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat Nanotechnol 9:780–793CrossRefGoogle Scholar
  69. Krishnamoorthy HNS, Jacob Z, Narimanov E, Kretzschmar I, Menon VM (2012) Topological transitions in metamaterials. Science 336:205–209MathSciNetzbMATHCrossRefGoogle Scholar
  70. Kulkarni AP, Noone KM, Munechika K, Guyer SR, Ginger DS (2010) Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms. Nano Lett 10:1501–1505CrossRefGoogle Scholar
  71. Kumar A, Low T, Fung KH, Avouris P, Fang NX (2015) Tunable light–matter interaction and the role of hyperbolicity in graphene–hBN system. Nano Lett 15:3172–3180CrossRefGoogle Scholar
  72. Lee BJ, Chen Y-B, Zhang ZM (2008a) Transmission enhancement through nanoscale metallic slit arrays from the visible to mid-infrared. J Comput Theor Nanosci 5:201–213CrossRefGoogle Scholar
  73. Lee BJ, Fu CJ, Zhang ZM (2005) Coherent thermal emission from one-dimensional photonic crystals. Appl Phys Lett 87:071904CrossRefGoogle Scholar
  74. Lee JH, Kim YS, Constant K, Ho KM (2007) Woodpile metallic photonic crystals fabricated by using soft lithography for tailored thermal emission. Adv Mater 19:791–794CrossRefGoogle Scholar
  75. Lee BJ, Wang LP, Zhang ZM (2008b) Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film. Opt Express 16:11328–11336CrossRefGoogle Scholar
  76. Lévêque G, Martin OJF (2006) Tunable composite nanoparticle for plasmonics. Opt Lett 31:2750–2752CrossRefGoogle Scholar
  77. Li L (1996) Use of Fourier series in the analysis of discontinuous periodic structures. J Opt Soc Am A 13:1870–1876CrossRefGoogle Scholar
  78. Li L (1998) Reformulation of the fourier modal method for surface-relief gratings made with anisotropic materials. J Mod Opt 45:1313–1334CrossRefGoogle Scholar
  79. Li L (2003) Fourier modal method for crossed anisotropic gratings with arbitrary permittivity and permeability tensors. J Opt A Pure Appl Opt 5:345CrossRefGoogle Scholar
  80. Li ZQ, Henriksen EA, Jiang Z, Hao Z, Martin MC, Kim P, Stormer HL, Basov DN (2008) Dirac charge dynamics in graphene by infrared spectroscopy. Nat Phys 4:532–535CrossRefGoogle Scholar
  81. Li P, Lewin M, Kretinin AV, Caldwell JD, Novoselov KS, Taniguchi T, Watanabe K, Gaussmann F, Taubner T (2015) Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing. Nat Commun 6:7507CrossRefGoogle Scholar
  82. Li W, Valentine J (2014) Metamaterial perfect absorber based hot electron photodetection. Nano Lett 14:3510–3514CrossRefGoogle Scholar
  83. Li X, Zhu J, Wei B (2016) Hybrid nanostructures of metal/two-dimensional nanomaterials for plasmon-enhanced applications. Chem Soc Rev 45:3145–3187CrossRefGoogle Scholar
  84. Lin Y, Connell JW (2012) Advances in 2D boron nitride nanostructures: nanosheets, nanoribbons, nanomeshes, and hybrids with graphene. Nanoscale 4:6908–6939CrossRefGoogle Scholar
  85. Lin C-H, Leung KM, Tamir T (2002) Modal transmission-line theory of three-dimensional periodic structures with arbitrary lattice configurations. J Opt Soc Am A 19:2005–2017CrossRefGoogle Scholar
  86. Linden S, Enkrich C, Wegener M, Zhou J, Koschny T, Soukoulis CM (2004) Magnetic response of metamaterials at 100 terahertz. Science 306:1351–1353CrossRefGoogle Scholar
  87. Ling X, Wang H, Huang S, Xia F, Dresselhaus MS (2015) The renaissance of black phosphorus. Proc Natl Acad Sci 112:4523–4530CrossRefGoogle Scholar
  88. Liu V, Fan S (2012) S4: a free electromagnetic solver for layered periodic structures. Comput Phys Commun 183:2233–2244MathSciNetzbMATHCrossRefGoogle Scholar
  89. Liu Z, Gong Y, Zhou W, Ma L, Yu J, Idrobo JC, Jung J, MacDonald AH, Vajtai R, Lou J, Ajayan PM (2013) Ultrathin high-temperature oxidation-resistant coatings of hexagonal boron nitride. Nat Commun 4:2541CrossRefGoogle Scholar
  90. Liu R, Ji C, Mock JJ, Chin JY, Cui TJ, Smith DR (2009) Broadband ground-plane cloak. Science 323:366–369CrossRefGoogle Scholar
  91. Liu B, Liu Y, Shen S (2014) Thermal plasmonic interconnects in graphene. Phys Rev B 90:195411CrossRefGoogle Scholar
  92. Liu N, Mesch M, Weiss T, Hentschel M, Giessen H (2010) Infrared perfect absorber and its application as plasmonic sensor. Nano Lett 10:2342–2348CrossRefGoogle Scholar
  93. Liu X, Tyler T, Starr T, Starr AF, Jokerst NM, Padilla WJ (2011a) Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys Rev Lett 107:045901CrossRefGoogle Scholar
  94. Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X (2011b) A graphene-based broadband optical modulator. Nature 474:64–67CrossRefGoogle Scholar
  95. Luo C, Narayanaswamy A, Chen G, Joannopoulos JD (2004) Thermal radiation from photonic crystals: a direct calculation. Phys Rev Lett 93:213905CrossRefGoogle Scholar
  96. Marquier F, Laroche M, Carminati R, Greffet JJ (2007) Anisotropic polarized emission of a doped silicon lamellar grating. J Heat Transf 129:11–16CrossRefGoogle Scholar
  97. Mattiucci N, D'Aguanno G, Alu A, Argyropoulos C, Foreman JV, Bloemer MJ (2012) Taming the thermal emissivity of metals: a metamaterial approach. Appl Phys Lett 100:201109–201104CrossRefGoogle Scholar
  98. Messina R, Ben-Abdallah P (2013) Graphene-based photovoltaic cells for near-field thermal energy conversion. Sci Rep 3:1383CrossRefGoogle Scholar
  99. Miao X, Tongay S, Petterson MK, Berke K, Rinzler AG, Appleton BR, Hebard AF (2012) High efficiency graphene solar cells by chemical doping. Nano Lett 12:2745–2750CrossRefGoogle Scholar
  100. Mics Z, Tielrooij K-J, Parvez K, Jensen SA, Ivanov I, Feng X, Mullen K, Bonn M, Turchinovich D (2015) Thermodynamic picture of ultrafast charge transport in graphene. Nat Commun 6:7655CrossRefGoogle Scholar
  101. Modest MF (2013) Radiative heat transfer, 3rd edn. Elsevier/Academic, New YorkGoogle Scholar
  102. Moharam MG, Gaylord TK (1981) Rigorous coupled-wave analysis of planar-grating diffraction. J Opt Soc Am 71:811–818CrossRefGoogle Scholar
  103. Mueller T, Xia F, Avouris P (2010) Graphene photodetectors for high-speed optical communications. Nat Photonics 4:297–301CrossRefGoogle Scholar
  104. Nagpal P, Han SE, Stein A, Norris DJ (2008) Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals. Nano Lett 8:3238–3243CrossRefGoogle Scholar
  105. Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008) Fine structure constant defines visual transparency of graphene. Science 320:1308CrossRefGoogle Scholar
  106. Narayanaswamy A, Chen G (2004) Thermal emission control with one-dimensional metallodielectric photonic crystals. Phys Rev B 70:125101CrossRefGoogle Scholar
  107. Nefedov IS, Valagiannopoulos CA, Hashemi SM, Nefedov EI (2013) Total absorption in asymmetric hyperbolic media. Sci Rep 3:2662CrossRefGoogle Scholar
  108. Nguyen-Huu N, Chen Y-B, Lo Y-L (2012) Development of a polarization-insensitive thermophotovoltaic emitter with a binary grating. Opt Express 20:5882–5890CrossRefGoogle Scholar
  109. Nikitin AY, Guinea F, Garcia-Vidal FJ, Martin-Moreno L (2012) Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons. Phys Rev B 85:081405CrossRefGoogle Scholar
  110. Nikitin AY, Low T, Martin-Moreno L (2014) Anomalous reflection phase of graphene plasmons and its influence on resonators. Phys Rev B 90:041407CrossRefGoogle Scholar
  111. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRefGoogle Scholar
  112. Oskooi AF, Roundy D, Ibanescu M, Bermel P, Joannopoulos JD, Johnson SG (2010) Meep: a flexible free-software package for electromagnetic simulations by the FDTD method. Comput Phys Commun 181:687–702zbMATHCrossRefGoogle Scholar
  113. Othman MAK, Guclu C, Capolino F (2013) Graphene–dielectric composite metamaterials: evolution from elliptic to hyperbolic wave vector dispersion and the transverse epsilon-near-zero condition. J Nanophotonics 7:073089–073089CrossRefGoogle Scholar
  114. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189–193CrossRefGoogle Scholar
  115. Palik ED (1985) Handbook of optical constants of solids. Academic, San DiegoGoogle Scholar
  116. Papasimakis N, Luo Z, Shen ZX, De Angelis F, Di Fabrizio E, Nikolaenko AE, Zheludev NI (2010) Graphene in a photonic metamaterial. Opt Express 18:8353–8359CrossRefGoogle Scholar
  117. Pardo F, Bouchon P, Haïdar R, Pelouard J-L (2011) Light funneling mechanism explained by magnetoelectric interference. Phys Rev Lett 107:093902CrossRefGoogle Scholar
  118. Pendry JB (2000) Negative refraction makes a perfect lens. Phys Rev Lett 85:3966–3969CrossRefGoogle Scholar
  119. Pendry JB, Schurig D, Smith DR (2006) Controlling electromagnetic fields. Science 312:1780–1782MathSciNetzbMATHCrossRefGoogle Scholar
  120. Piper JR, Fan S (2014) Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance. ACS Photonics 1:347–353CrossRefGoogle Scholar
  121. Poddubny A, Iorsh I, Belov P, Kivshar Y (2013) Hyperbolic metamaterials. Nat Photonics 7:948–957CrossRefGoogle Scholar
  122. Podolskiy VA, Sarychev AK, Shalaev VM (2002) Plasmon modes in metal nanowires and left-handed materials. J Nonlinear Opt Phys 11:65–74CrossRefGoogle Scholar
  123. Pop E, Varshney V, Roy AK (2012) Thermal properties of graphene: fundamentals and applications. MRS Bull 37:1273–1281CrossRefGoogle Scholar
  124. Popov E, Nevière M (2001) Maxwell equations in Fourier space: fast-converging formulation for diffraction by arbitrary shaped, periodic, anisotropic media. J Opt Soc Am A 18:2886–2894MathSciNetCrossRefGoogle Scholar
  125. Porto JA, García-Vidal FJ, Pendry JB (1999) Transmission resonances on metallic gratings with very narrow slits. Phys Rev Lett 83:2845–2848CrossRefGoogle Scholar
  126. Pralle MU, Moelders N, McNeal MP, Puscasu I, Greenwald AC, Daly JT, Johnson EA, George T, Choi DS, El-Kady I, Biswas R (2002) Photonic crystal enhanced narrow-band infrared emitters. Appl Phys Lett 81:4685–4687CrossRefGoogle Scholar
  127. Puscasu I, Schaich WL (2008) Narrow-band, tunable infrared emission from arrays of microstrip patches. Appl Phys Lett 92:233102–233103CrossRefGoogle Scholar
  128. Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings. Springer-Verlag, BerlinCrossRefGoogle Scholar
  129. Raman AP, Anoma MA, Zhu L, Rephaeli E, Fan S (2014) Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515:540–544CrossRefGoogle Scholar
  130. Sai H, Kanamori Y, Yugami H (2003) High-temperature resistive surface grating for spectral control of thermal radiation. Appl Phys Lett 82:1685–1687CrossRefGoogle Scholar
  131. Sai H, Kanamori Y, Yugami H (2005) Tuning of the thermal radiation spectrum in the near-infrared region by metallic surface microstructures. J Micromech Microeng 15:S243CrossRefGoogle Scholar
  132. Sai H, Yugami H (2004) Thermophotovoltaic generation with selective radiators based on tungsten surface gratings. Appl Phys Lett 85:3399–3401CrossRefGoogle Scholar
  133. Sakurai A, Zhao B, Zhang Z (2014) Prediction of the resonance condition of metamaterial emitters and absorbers using LC circuit model. In: Proceedings of 15th international heat transfer conference. pp 1–10Google Scholar
  134. Sakurai A, Zhao B, Zhang ZM (2015) Effect of polarization on dual-band infrared metamaterial emitters or absorbers. J Quant Spectrosc Radiat Transf 158:111–118CrossRefGoogle Scholar
  135. Schubert M (1996) Polarization-dependent optical parameters of arbitrarily anisotropic homogeneous layered systems. Phys Rev B 53:4265–4274CrossRefGoogle Scholar
  136. Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB, Starr AF, Smith DR (2006) Metamaterial electromagnetic cloak at microwave frequencies. Science 314:977–980CrossRefGoogle Scholar
  137. Sergeant NP, Agrawal M, Peumans P (2010) High performance solar-selective absorbers using coated sub-wavelength gratings. Opt Express 18:5525–5540CrossRefGoogle Scholar
  138. Shalaev VM, Cai W, Chettiar UK, Yuan H-K, Sarychev AK, Drachev VP, Kildishev AV (2005) Negative index of refraction in optical metamaterials. Opt Lett 30:3356–3358CrossRefGoogle Scholar
  139. Shelby RA, Smith DR, Schultz S (2001) Experimental verification of a negative index of refraction. Science 292:77–79CrossRefGoogle Scholar
  140. Smith DR, Pendry JB, Wiltshire MCK (2004) Metamaterials and negative refractive index. Science 305:788–792CrossRefGoogle Scholar
  141. Solymar L, Shamonina E (2009) Waves in metamaterials. Oxford University Press, OxfordGoogle Scholar
  142. Song J, Si M, Cheng Q, Luo Z (2016) Two-dimensional trilayer grating with a metal/insulator/metal structure as a thermophotovoltaic emitter. Appl Opt 55:1284–1290CrossRefGoogle Scholar
  143. Srituravanich W, Fang N, Sun C, Luo Q, Zhang X (2004) Plasmonic nanolithography. Nano Lett 4:1085–1088CrossRefGoogle Scholar
  144. Stiles PL, Dieringer JA, Shah NC, Duyne RPV (2008) Surface-enhanced raman spectroscopy. Annu Rev Anal Chem 1:601–626CrossRefGoogle Scholar
  145. Strait JH, Nene P, Chan W-M, Manolatou C, Tiwari S, Rana F, Kevek JW, McEuen PL (2013) Confined plasmons in graphene microstructures: experiments and theory. Phys Rev B 87:241410CrossRefGoogle Scholar
  146. Taflove A, Hagness SC (2005) Computational electrodynamics: the finite difference time domain method, 3rd edn. Artech House, BostonzbMATHGoogle Scholar
  147. Tan Y, Liu B, Shen S, Yu Z (2016) Enhancing radiative energy transfer through thermal extraction. Nanophotonics 5:22CrossRefGoogle Scholar
  148. Thongrattanasiri S, Koppens FHL, García de Abajo FJ (2012) Complete optical absorption in periodically patterned graphene. Phys Rev Lett 108:047401CrossRefGoogle Scholar
  149. Vakil A, Engheta N (2011) Transformation optics using graphene. Science 332:1291–1294CrossRefGoogle Scholar
  150. Wang C-M, Chang Y-C, Tsai M-W, Ye Y-H, Chen C-Y, Jiang Y-W, Chang Y-T, Lee S-C, Tsai DP (2007) Reflection and emission properties of an infraredemitter. Opt Express 15:14673–14678CrossRefGoogle Scholar
  151. Wang J, Fan C, Ding P, He J, Cheng Y, Hu W, Cai G, Liang E, Xue Q (2012) Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency. Opt Express 20:14871–14878CrossRefGoogle Scholar
  152. Wang L, Haider A, Zhang Z (2014) Effect of magnetic polaritons on the radiative properties of inclined plate arrays. J Quant Spectrosc Radiat Transf 132:52–60CrossRefGoogle Scholar
  153. Wang H, Wang L (2013) Perfect selective metamaterial solar absorbers. Opt Express 21:A1078–A1093CrossRefGoogle Scholar
  154. Wang F, Wang Z, Wang Q, Wang F, Yin L, Xu K, Huang Y, He J (2015) Synthesis, properties and applications of 2D non-graphene materials. Nanotechnology 26:292001CrossRefGoogle Scholar
  155. Wang LP, Zhang ZM (2009) Resonance transmission or absorption in deep gratings explained by magnetic polaritons. Appl Phys Lett 95:111904CrossRefGoogle Scholar
  156. Wang LP, Zhang ZM (2011) Phonon-mediated magnetic polaritons in the infrared region. Opt Express 19:A126–A135CrossRefGoogle Scholar
  157. Wang LP, Zhang ZM (2012a) Measurement of coherent thermal emission by exciting magnetic polaritons in subwavelength grating structures. J Heat Transf 135:091505CrossRefGoogle Scholar
  158. Wang LP, Zhang ZM (2012b) Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics. Appl Phys Lett 100:063902CrossRefGoogle Scholar
  159. Watts CM, Liu X, Padilla WJ (2012) Metamaterial electromagnetic wave absorbers. Adv Mater 24:OP98–OP120Google Scholar
  160. Williams CR, Andrews SR, Maier SA, Fernandez-Dominguez AI, Martin Moreno L, Garcia-Vidal FJ (2008) Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces. Nat Photonics 2:175–179CrossRefGoogle Scholar
  161. Wu J, Agrawal M, Becerril HA, Bao Z, Liu Z, Chen Y, Peumans P (2009) Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano 4:43–48CrossRefGoogle Scholar
  162. Xia F, Mueller T, Lin Y-m, Valdes-Garcia A, Avouris P (2009) Ultrafast graphene photodetector. Nat Nanotechnol 4:839–843CrossRefGoogle Scholar
  163. Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A (2014) Two-dimensional material nanophotonics. Nat Photonics 8:899–907CrossRefGoogle Scholar
  164. Xuan Y (2014) An overview of micro/nanoscaled thermal radiation and its applications. Photonics Nanostruct Fundam Appl 12:93–113CrossRefGoogle Scholar
  165. Xuan Y, Zhang Y (2014) Investigation on the physical mechanism of magnetic plasmons polaritons. J Quant Spectrosc Radiat Transf 132:43–51CrossRefGoogle Scholar
  166. Yan Z, Chen L, Yoon M, Kumar S (2016) Phonon transport at the interfaces of vertically stacked graphene and hexagonal boron nitride heterostructures. Nanoscale 8:4037–4046CrossRefGoogle Scholar
  167. Yan H, Li X, Chandra B, Tulevski G, Wu Y, Freitag M, Zhu W, Avouris P, Xia F (2012) Tunable infrared plasmonic devices using graphene/insulator stacks. Nat Nanotechnol 7:330–334CrossRefGoogle Scholar
  168. Yan H, Low T, Zhu W, Wu Y, Freitag M, Li X, Guinea F, Avouris P, Xia F (2013) Damping pathways of mid-infrared plasmons in graphene nanostructures. Nat Photonics 7:394–399CrossRefGoogle Scholar
  169. Yao Y, Kats MA, Shankar R, Song Y, Kong J, Loncar M, Capasso F (2013) Wide wavelength tuning of optical antennas on graphene with nanosecond response time. Nano Lett 14:214–219CrossRefGoogle Scholar
  170. Yao Y, Shankar R, Rauter P, Song Y, Kong J, Loncar M, Capasso F (2014) High-responsivity mid-infrared graphene detectors with antenna-enhanced photocarrier generation and collection. Nano Lett 14:3749–3754CrossRefGoogle Scholar
  171. Yariv A, Yeh P (2002) Optical waves in crystals: propagation and control of laser radiation. Wiley-Interscience, New YorkGoogle Scholar
  172. Yeh P (1979) Electromagnetic propagation in birefringent layered media. J Opt Soc Am 69:742–756MathSciNetCrossRefGoogle Scholar
  173. Yi S, Zhou M, Shi X, Gan Q, Zi J, Yu Z (2015) A multiple-resonator approach for broadband light absorption in a single layer of nanostructured graphene. Opt Express 23:10081–10090CrossRefGoogle Scholar
  174. Zayats AV, Smolyaninov II, Maradudin AA (2005) Nano-optics of surface plasmon polaritons. Phys Rep 408:131–314CrossRefGoogle Scholar
  175. Zhang ZM (2007) Nano/microscale heat transfer. McGraw-Hill, New YorkGoogle Scholar
  176. Zhang ZM (2014) Accessed 15 Aug 2016
  177. Zhang S, Fan W, Panoiu NC, Malloy KJ, Osgood RM, Brueck SRJ (2005) Experimental demonstration of near-infrared negative-index metamaterials. Phys Rev Lett 95:137404CrossRefGoogle Scholar
  178. Zhang ZM, Fu CJ, Zhu QZ (2003) Optical and thermal radiative properties of semiconductors related to micro/nanotechnology. Adv Heat Tran 37:179–296CrossRefGoogle Scholar
  179. Zhang ZM, Wang LP (2013) Measurements and modeling of the spectral and directional radiative properties of micro/nanostructured materials. Int J Thermophys 34:2209–2242CrossRefGoogle Scholar
  180. Zhang ZM, Ye H (2012) Measurements of radiative properties of engineered micro/nanostructures. Ann Rev Heat Transf 12:345Google Scholar
  181. Zhao Y, Fu C (2016) Numerical simulation on the thermal radiative properties of a 2D SiO2/W/SiO2/W layered grating for thermophotovoltaic applications. J Quant Spectrosc Radiat Transf 182:35–44CrossRefGoogle Scholar
  182. Zhao B, Sakurai A, Zhang ZM (2016) Polarization dependence of the reflectance and transmittance of anisotropic metamaterials. J Thermophys Heat Transf 30:240–246CrossRefGoogle Scholar
  183. Zhao B, Wang L, Shuai Y, Zhang ZM (2013) Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure. Int J Heat Mass Transf 67:637–645CrossRefGoogle Scholar
  184. Zhao B, Zhang ZM (2014) Study of magnetic polaritons in deep gratings for thermal emission control. J Quant Spectrosc Radiat Transf 135:81–89CrossRefGoogle Scholar
  185. Zhao B, Zhang ZM (2015a) Strong plasmonic coupling between graphene ribbon array and metal gratings. ACS Photonics 2:1611–1618CrossRefGoogle Scholar
  186. Zhao JM, Zhang ZM (2015b) Electromagnetic energy storage and power dissipation in nanostructures. J Quant Spectrosc Radiat Transf 151:49–57CrossRefGoogle Scholar
  187. Zhao B, Zhang ZM (2017) Perfect mid-infrared absorption by hybrid phonon-plasmon polaritons in hBN/metal-grating anisotropic structures. Int J Heat Mass Transf 106:1025–1034CrossRefGoogle Scholar
  188. Zhao B, Zhao JM, Zhang ZM (2014) Enhancement of near-infrared absorption in graphene with metal gratings. Appl Phys Lett 105:031905CrossRefGoogle Scholar
  189. Zhao B, Zhao JM, Zhang ZM (2015) Resonance enhanced absorption in a graphene monolayer using deep metal gratings. J Opt Soc Am B 32:1176–1185CrossRefGoogle Scholar
  190. Zhou J, Economon EN, Koschny T, Soukoulis CM (2006) Unifying approach to left-handed material design. Opt Lett 31:3620–3622CrossRefGoogle Scholar
  191. Zhou Z, Sakr E, Sun Y, Bermel P (2016) Solar thermophotovoltaics: reshaping the solar spectrum. Nanophotonics 5:1CrossRefGoogle Scholar
  192. Zhu QZ, Lee HJ, Zhang ZM (2009) Radiative properties of materials with surface scattering or volume scattering: a review. Front Energy Power Eng China 3:60–79CrossRefGoogle Scholar
  193. Zhu L, Liu F, Lin H, Hu J, Yu Z, Wang X, Fan S (2016) Angle-selective perfect absorption with two-dimensional materials. Light: Sci Appl 5:e16052CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.George W. Woodruff School of Mechanical Engineering, Georgia Institute of TechnologyAtlantaUSA

Section editors and affiliations

  • Pinar Mengüç
    • 1
  1. 1.Çekmeköy CampusÖzyeğin UniversityÇekmeköy - IstanbulTurkey

Personalised recommendations