Advertisement

Phase Change Materials

  • Navin Kumar
  • Debjyoti Banerjee
Reference work entry

Abstract

Phase change materials (PCMs) primarily leverage latent heat during phase transformation processes to minimize material usage for thermal energy storage (TES) or thermal management applications (TMA). PCMs effectively serve as thermal capacitors that help to mitigate the imbalance between energy demand and supply, to address the inherently transient nature of applications that require TES or TMA. PCMs provide higher energy storage density, since latent heat values are significantly higher than sensible heat. PCMs can enable the realization of isothermal reservoirs which serve as a heat source or heat sink. Reliability of PCM for TES or TMA is typically tested by their ability to withstand multiple charging and discharging cycles. In numerous literature reports, PCMs were explored for TES or TMA – ranging from solar power harvesting to thermal management of buildings. The wide range of information on PCMs are culled from the literature reports and summarized in this study. The culled information is categorized into history of PCMs, types (organic/inorganic), analytical formulations (for charging/discharging cycles), protocols for thermophysical property measurements (microscale/macroscale), reliability issues, applications, and identification of future research directions.

Nomenclature

Cp

Specific heat capacity (J/(g.K))

T

Temperature (K)

ΔT

Change in temperature (K)

m

Mass (g)

q

Per unit heat transfer rate (W/m2)

\( \dot{Q} \)

Total heat transfer rate (W)

K

Thermal conductivity (W/(m. K))

h

Heat transfer coefficient (W/(m2. K))

ρ

Density (g/m3)

x

Axial location (m)

L

Total length (m)

α

Thermal diffusivity (m2/s)

t

Time (s)

ω

Shape factor (–)

r

Radial location (m)

R

Radius (m)

Volume fraction (–)

Qr

Total thermal energy extracted (J)

Qs

Total thermal energy stored (J)

φr

Availability removed (J)

φs

Availability added (J)

Hsf

Latent heat capacity (J/g)

A

Heat transfer area (m2)

Ste

Stefan number (–)

ET,PCM

Total energy capacity of PCM (J)

S

Interface location (m)

η

Similarity variables for axial location (–)

Bi

Biot number (–)

Subscripts

s

Solid

l and f

Liquid

m

Melting

i

Initial

References

  1. Abduljalil A, Sohif M, Sopian K, Sulaiman MY, Mohammad TA (2014) Experimental study of melting and solidification of PCM in a triplex tube heat exchanger with fins. Energy Build 68:33–41CrossRefGoogle Scholar
  2. Abhat A (1983) Low temperature latent heat temperature energy storage: heat storage materials. Sol Energy 30(4):313–332CrossRefGoogle Scholar
  3. Agyenim F, Hewitt N, Eames P, Smyth M (2010) A review of material, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renew Sustain Energy Rev 14:615–628CrossRefGoogle Scholar
  4. Akhilesh R, Narasimhan A, Balaji C (2005) Method to improve geometry for heat transfer enhancement in PCM composite heat sinks. Int J Heat Mass Trans 48(13):2759–2770zbMATHCrossRefGoogle Scholar
  5. Alkan C, Sari A, Karaipekli A, Uzun O (2009) Preparation, characterization, and thermal properties of microencapsulated phase change material for thermal energy storage. Sol Energy Mater Sol Cells 93(1):143–147CrossRefGoogle Scholar
  6. Amon C, Vesligaj M (1999) Transient thermal management of temperature fluctuations during time varying workloads on portable electronics. IEEE Trans Component Packag Technol 22:541–550CrossRefGoogle Scholar
  7. Anon (2016) EGR aerosapce. [Online] [Figure]. Available at: http://www.ergaerospace.com/project-gallery.htm. Accessed 29 Apr 2016
  8. Araki N, Futamura M, Makino A, Shibata H (1995) Measurement of thermophysical properties of sodium acetate hydrate. Int J Thermophys 16(6):1455–1466CrossRefGoogle Scholar
  9. Bareiss M, Beer H (1984) An analytical solution of the heat transfer process during melting of an unfixed solid phase change material inside a horizontal tube. Int J Heat Mass Trans 27(5):739–746CrossRefGoogle Scholar
  10. Barz T, Zauner C, Lager D, Cardenas D, Hengstberger F, Bournazou NC, Marx K (2016) Experimental analysis and numerical modeling of a shell and tube heat storage unit with phase change materials. Ind Eng Chem Res 55:8154–8164CrossRefGoogle Scholar
  11. Beckermann C, Viskanta R (1988) Natural convection solid/liquid phase change in porous media. Int J Heat Mass Trans 31:35–46CrossRefGoogle Scholar
  12. Biswas DR (1977) Thermal energy storage using sodium sulfate decahydrate and water. Sol Energy 19:99–100CrossRefGoogle Scholar
  13. Brousseau P, Lacroix M (1998) Numerical simulation of a multi-layer latent heat thermal energy storage system. Int J Energy Res 22:1–15CrossRefGoogle Scholar
  14. Cabeza LF, Svensson G, Hiebler S, Hiebler S, Mehling H (2003) Thermal performance of sodium acetate trihydrate thickened with different materials as phase change storage material. Appl Therm Eng 23(13):1697–1704CrossRefGoogle Scholar
  15. Campardo G (2011) Memory mass storage. Springer, BerlinCrossRefGoogle Scholar
  16. Chintakrinda K, Weinstein R, Fleischer AS (2011) A direct comparison of three different material enhancement methods on the transient thermal response of paraffin phase change material exposed to high heat fluxes. Int J Therm Sci 50:1639–1647CrossRefGoogle Scholar
  17. Costa M, Oliva A, Ferez-Searra CD, Alba R (1991) Numerical simulation of solid-liquid phase change phenomena. Comput Methods Appl Mech Eng 91:1123–1134CrossRefGoogle Scholar
  18. Delaunay D, Carre P (1982) Dispositif de mesure automatique de la conductivité thermique des matériaux à changement de phase. Rev Phys Appl 17:209–215CrossRefGoogle Scholar
  19. Delgado M, Lazaro A, Mazo J, Zalba B (2012) Review on phase change material emulsions and microencapsulated phase change material slurries: materials, heat transfer studies and applications. Renew Sust Energ Rev 16(1):253–273CrossRefGoogle Scholar
  20. Deng Y (2016) Thermal conductivity enhancement of polyethylene glycol/expanded vermiculite shape-stabilized composite phase change material with silver nanowire for thermal energy storage. Chem Eng J 295:427–435CrossRefGoogle Scholar
  21. Desgrosseilliers L, Groulx D, White MA (2013) Heat conduction in laminate multilayer bodies with applied finite heat source. Int J Thermal Sci 72:47–59CrossRefGoogle Scholar
  22. Duan X, Naterer G (2010) Heat transfer in phase change materials for thermal management of electric vehicle battery modules. Int J Heat Mass Trans 53:5176–5182CrossRefGoogle Scholar
  23. Elgafy A, Lafdi K (2005) Effect of carbon nanofiber additives on thermal behaviour of phase change materials. Carbon 43:3067–3074CrossRefGoogle Scholar
  24. Esen M, Ayhan T (1996) Development of a model compatible with solar assisted cylindrical energy storage tank and variation of stored energy with time for different phase change materials. Energy Convers Manag 37(12):1775–1785CrossRefGoogle Scholar
  25. Fan LW, Fang X, Wang X, Zeng Y, Xiao YQ, Yu ZT, Xu X, Hu YC, Cen KF (2013) Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials. Appl Energy 110:163–172CrossRefGoogle Scholar
  26. Fedden A (2006) Graphitized carbon foam with phase change material. Air Force Insitute of Technology, DaytonGoogle Scholar
  27. Fleischer AS (2015) Thermal energy storage using phase change materials fundamentals and applications, SpringerBriefs in thermal engineering and applied science. Springer, New YorkCrossRefGoogle Scholar
  28. Fok S, Shen W, Tan F (2010) Cooling of portable hand-held electronic devices using phase change materials in finned heat sinks. Int J Thermal Sci 49(1):109–117CrossRefGoogle Scholar
  29. Gong Z, Mujumdar A (1997) Finite-element analysis of cyclic heat transfer in a shell and tube latent heat energy storage exchanger. Appl Thermal Energy 17(6):583–591CrossRefGoogle Scholar
  30. Hasan A (1994) Phase change material energy storage system employing palmitic acid. Sol Energy 52:143–154CrossRefGoogle Scholar
  31. He Y (2005) Rapid thermal conductivity measurement with a hot-disk sensor: part 1. Theoretical considerations. Thermochim Acta 436:122–129CrossRefGoogle Scholar
  32. Hosseini MJ, Rahimil M, Bahrampoury R (2015) Thermal analysis of PCM containing heat exchanger. Mech Sci 6:221–234CrossRefGoogle Scholar
  33. Huang J, Wang T, Wang CH, Rao ZH (2013) Molecular dynamics simulations of melting behaviour of n-hexacosane as phase change material for thermal energy storage. Asian J Chem 25(4):1839–1841Google Scholar
  34. Humphries W (1978) Performance of finned thermal capacitors. NASA Tech Note, NASA-TN-D-7690Google Scholar
  35. Humphries W, Griggs E (1977) A design handbook for phase change thermal control and energy storage devices. NASA Technical Ppr, NASA-TP-1074Google Scholar
  36. Inaba H, Tu P (1997) Evaluation of thermophysical characteristics on shape-stabilized paraffin as a solid-liquid phase change material. Heat Mass Transf 32:307–312CrossRefGoogle Scholar
  37. Ismail K, Henriquez J (2000) Solidification of PCM inside a spherical capsule. Energy Convers Manag 41:179–187Google Scholar
  38. Jameskhorshid A, Sadrameli S, Farid M (2014) A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium. Renew Sustain Energy Rev 31:531–542CrossRefGoogle Scholar
  39. Johansson P, Kalagasidis AS, Jansson H (2015) Investigating PCM activation using transient plane source method. Energy Procedia 78:800–805CrossRefGoogle Scholar
  40. Joshi Y, Pal D (1997) Application of phase change materials to thermal control of electronics modules: a computational study. Trans ASME J Elect Packag 119:40–50CrossRefGoogle Scholar
  41. Kandasamy R, Wang XQ, Mujumdar A (2008) Transient cooling of electronics using phase change material (PCM)-based heat sinks. Appl Thermal Eng 28:1047–1057CrossRefGoogle Scholar
  42. Kaul RK (2002) Thermal insulating coating for spacecrafts. US Patent 6939610 B1Google Scholar
  43. Kerkamm I (2014) Battery thermal management using phase change material. US Patent 20140004394 A1Google Scholar
  44. Khan Z, Khan Z, Ghafoor A (2016) A review of performance enhancement of PCM based latent heat storage system within the context of materials, thermal stability and compatibility. Energy Convers Manag 115:132–158CrossRefGoogle Scholar
  45. Khobadadi J, Zhang Y (1999) Effects of buoyancy driven convection on melting within spherical containers. Int J Heat Mass Trans 44:4197–4205Google Scholar
  46. Khudhair AM, Farid MM (2004) A review on energy conversion in building applications with thermal storage by latent heat using phase change materials. Energy Convers Manag 45(2):263–275CrossRefGoogle Scholar
  47. Kravvaritis ED, Antonopoulos KA, Tzivanidis C (2010) Improvements to the measurement of the thermal properties of phase change materials. Meas Sci Technol 21:91–99CrossRefGoogle Scholar
  48. Kurkulu A, Wheldon A, Hadley P (1996) Mathematical modelling of the thermal performance of a phase change material storage: cooling cycle. Appl Thermal Energy 16(7):615–623Google Scholar
  49. Kuznik F, David D, Roux JJ (2011) A review on phase change materials integrated in building walls. Renew Sust Energ Rev 5(1):379–391CrossRefGoogle Scholar
  50. Kwon H, Kim J (2015) Preparation of n-octadecane nanocapsules by using interfacial redox initiation in miniemulsion polymerization. Macromol Res 18:923–926CrossRefGoogle Scholar
  51. Lane GA (1983) Background and scientific principles, solar heat storage: latent heat material, vol I. CRC Press, Boca RatonGoogle Scholar
  52. Lane GA (1992) Phase change materials for energy storage nucleation to prevent supercooling. Sol Energy Mater Sol Cells 27(2):135–180CrossRefGoogle Scholar
  53. Latibari S, Mehrali M, Mahlia T (2013) Synthesis, characterization and thermal properties of nanoencapsulated phase change materials via sol-gel method. Sol Energy 61:664–672Google Scholar
  54. Lazaro A, Gunther E, Mehling H, Hiebler S, Marin MJ, Zalba B (2006) Verification of a T-history installation to measure enthalpy versus temperature curves of phase change materials. Meas Sci Technol 17:2168–2174CrossRefGoogle Scholar
  55. Li J, Zeng Y, Luo Z (2014) Simultaneous enhancement of latent heat and thermal conductivity of docoasane based phase change materials in the presence of spongy graphene. Sol Energy Mater Sol Cells 66:48–51CrossRefGoogle Scholar
  56. Long J (2008) Numerical and experimental investigation for heat transfer in triplex concentric tube with phase change material for thermal energy storage. Sol Energy 82:977–985CrossRefGoogle Scholar
  57. Marin J, Zalba B, Cabeza LF, Mehling H (2003) Determination of enthalpy-temperature curves of phase change materials with temperature-history method: improvement to temperature dependent properties. Meas Sci Technol 14:184–189CrossRefGoogle Scholar
  58. Marks SB (1982) The effects of crystal size on the thermal energy storage capacity of thickened Glauber’s salt. Sol Energy 30(1):45–49CrossRefGoogle Scholar
  59. Mehling H, Cabeza LF (2008) Heat and cold storage with PCM. Springer, BerlinGoogle Scholar
  60. Mehling H, Heibler S, Ziegler F (2000) Latent heat storage using a PCM-graphite composite material. In: Proceedings of Terrastock conference, StuttgartGoogle Scholar
  61. Modal S (2008) Phase change materials for smart textiles – an overview. Appl Thermal Eng 28:1536–1550CrossRefGoogle Scholar
  62. Nabil M, Khodadadi J (2013) Experimental determination of temperature-dependent thermal conductivity of solid eicosane-based nanostructure-enhanced phase change materials. Int J Heat Mass Trans 67:301–310CrossRefGoogle Scholar
  63. Naumann R, Emons HH (1989) Results of thermal analysis for investigation of salt hydrates as latent heat-storage materials. Thermal Anal 35:1009–1031CrossRefGoogle Scholar
  64. Nie C, Tong X, Wu S, Gong S, Peng D (2015) Paraffin confined in carbon nanotubes as nano-encapsulated phase change materials: experimental and molecular dynamics studies. Roy Soc Chem 5:92812–92817Google Scholar
  65. Nithyanandam K, Pitchumani R (2014) Cost and performance analysis of concentrating solar power systems with integrated latent thermal energy storage. Energy 64:793–810CrossRefGoogle Scholar
  66. Ovshinsky SR (1996) Memory element with memory material comprising phase-change material and dielectric material. US Patent 6087674 AGoogle Scholar
  67. Papadimitratos A, Hassanipour F, Pozdin V (2016) Evacuated tube solar collectors integrated with phase change materials. Sol Energy 84:10–19CrossRefGoogle Scholar
  68. Park G, Lee J, Kang S, Kim M, Kang S, Choi W (2016) Design principle of super resolution near-field structure using thermally responsive optical phase change materials for nanolithography application. Mat Des 102:45–55Google Scholar
  69. Pendyala S (2012) Macroencapsulation of phase change materials for thermal energy storage. University of South Florida, TampaGoogle Scholar
  70. RAL (2009) Phase change material [quality assurance]. RAL Deutsches Institut, BerlinGoogle Scholar
  71. Rao Z, Wang S, Wu M, Zhang Y, Li F (2012) Molecular dynamics simulations of melting behaviour of alkane as phase change slurry. Energy Convers Manag 64:152–156CrossRefGoogle Scholar
  72. Rao Z, Wang S, Peng F (2013) Molecular dynamics simulations of nano-encapsulated and nanoparticle-enhanced thermal energy storage phase change materials. Int J Heat Mass Trans 66:575–584CrossRefGoogle Scholar
  73. Riley D, Smith F, Poots G (1974) The inward melting of spheres and circular cylinders. Int J Heat Mass Trans 17:1507–1516CrossRefGoogle Scholar
  74. Robak C, Bergman T, Faghri A (2011) Economic evaluation of latent heat thermal energy storage using embedded thermosyphons for concentrating solar power applications. Sol Energy 85:2461–2473CrossRefGoogle Scholar
  75. Romero AG, Diarce G, Ibarretxe J (2012) Influence of the experimental conditions on the subcooling of Glauber’s salt when used as PCM. Sol Energy Mater Sol Cells 102:189–195CrossRefGoogle Scholar
  76. Rosen M, Dincer I (2002) Thermal energy storage, systems, and application. Wiley, ChichesterGoogle Scholar
  77. Ryu H, Woo W, Shin BC, Kim DS (1992) Prevention of supercooling and stabilization of inorganic salt hydrates as latent heat storage materials. Sol Energy Mater Sol Cells 27:161–172CrossRefGoogle Scholar
  78. Sabbah R, Kizilel R, Selman J, Hallaj A (2008) Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: limitation of temperature rise and uniformity of temperature distribution. J Power Sources 182(2):630–638CrossRefGoogle Scholar
  79. Sanusi O, Warzoha R, Fieischer AS (2011) Energy storage and solidification of paraffin phase change material embedded with graphite nanofibers. Int J Heat Mass Trans 54:4429–4436CrossRefGoogle Scholar
  80. Sari A, Alkan C, Karaipekli A, Uzun O (2009) Microencapsulated n-octadecane as phase change material for thermal energy storage. Trans ASME J Sol Eng 83:1757–1763Google Scholar
  81. Sarier N, Onder E (2012) Organic phase change material and their textile applications: an overview. Thermochem Acta 540:7–60CrossRefGoogle Scholar
  82. Shamberger PJ, O’Malley MJ (2015) Heterogeneous nucleation of thermal storage material LiNO3.3H2O from stable lattice-matched nucleation catalysts. Acta Mater 84:265–274CrossRefGoogle Scholar
  83. Shamberger PJ, Reid T (2012) Thermophysical properties of lithium nitrate trihydrate from 253 to 353 K. J Chem Eng Data 57:1404–1411CrossRefGoogle Scholar
  84. Shamsundar N, Sparrow E (1976) Analysis of multidimensional conduction phase change via the enthalpy model. Trans ASME J Heat Trans 97:333–340CrossRefGoogle Scholar
  85. Sharma A, Tyagi VV, Chen CR, Buddhi D (2009) Review on thermal energy storage with phase change materials and applications. Renew Sust Energ Rev 13:318–345CrossRefGoogle Scholar
  86. Shatikian V, Ziskind G, Letan R (2008) Numerical investigation of a PCM-based heat sink with internal fins: constant heat flux. Int J Heat Mass Trans 51:1488–1493zbMATHCrossRefGoogle Scholar
  87. Shin BC, Kim SD, Park WH (1989) Phase separation and supercooling of a latent heat-storage material. Energy 14:921–930CrossRefGoogle Scholar
  88. Shi X, Memon AS, Tang W, Cui H, Xing F (2014) Experimental assessment of position of macro encapsulated phase change material in concrete walls on indoor temperatures and humidity levels. Energy and Buildings 71:80–87CrossRefGoogle Scholar
  89. Singh N, Banerjee D (2013) Nanofins: science and applications, SpringerBriefs in thermal engineering and applied science. Springer, New YorkzbMATHGoogle Scholar
  90. Sliva P, Goncalves L, Pires L (2002) Transient behaviour of a latent heat thermal energy store: numerical and experimental studies. Appl Energy 73:83–98CrossRefGoogle Scholar
  91. Solomon A (1979) Design criteria in PCM wall. Energy 4:701–709CrossRefGoogle Scholar
  92. Solomon A (1980) On the melting time of a simple body with a convection boundary condition. Lett Heat Mass Trans 7:183–188CrossRefGoogle Scholar
  93. Solomon AV (1993) Mathematical modelling of melting and freezing processes. Hemisphere, New YorkGoogle Scholar
  94. Speyer RF (1994) Thermal analysis of materials. Marcel Dekker, New YorkGoogle Scholar
  95. Swaminathan C, Voller V (1993) On the enthalpy method. Intl J Num Method Heat Fluid Flow 3:233–244CrossRefGoogle Scholar
  96. Swanson T, Birus G (2002) NASA thermal control technologies for robotic spacecraft. Appl Thermal Eng 23(9):1055–1065CrossRefGoogle Scholar
  97. Tay N, Belusko M, Bruno F (2012) An effectiveness-NTU technique for characterising tube-in-tank phase change thermal energy storage systems. Appl Energy 91:309–319CrossRefGoogle Scholar
  98. Telkes M (1952) Nucleation of supersaturated inorganic salt solutions. J Ind Eng Chem 44:1308–1310CrossRefGoogle Scholar
  99. Theunissen P, Buchlin J (1983) Numerical optimization of a solar air heating system based on encapsulated PCM storage. Sol Energy 31:271–277CrossRefGoogle Scholar
  100. Trammell MP (2013) Evaluation of the transient thermal performance of a graphite foam/phase change material composite. University of Tennessee, KnoxvilleGoogle Scholar
  101. Tseng Y, Fang M, Tsai P, Yang YM (2005) Preparation of microencapsulated phase-change materials (MCPCMs) by means of interfacial polycondensation. J Microencapsul 22(1):37–46CrossRefGoogle Scholar
  102. Tyagi V, Kaushik S, Akiyama T (2011) Development of phase change materials based microencapsulated technology for buildings: a review. Renew Sust Energ Rev 15:1373–1391CrossRefGoogle Scholar
  103. Veerappan M, KalaiselvamS IS, Goic R (2009) Phase change characteristics study of spherical PCMs in solar energy storage. Sol Energy 83:1245–1252CrossRefGoogle Scholar
  104. Vettiger P, Despont M, Drechsler U (2000) The “millipede”-more than thousand tips for future AFM storage. IBM J Res Dev 44(3):323–340CrossRefGoogle Scholar
  105. Wang JP, Zhao XP, Guo HL, Zheng Q (2004) Preparation of microcapsules containing two phase core materials. Langmuir 128:10845–10850CrossRefGoogle Scholar
  106. Wang J, Xie H, Xin Z (2009) Thermal properties of paraffin based composites containing multi-walled carbon nanotubes. Thermochim Acta 488:39–42CrossRefGoogle Scholar
  107. Wang X, Zhang L, Yu Y-H (2015) Nano-encapsulated PCM via pickering emulsification. Sci Rep 5:1–8Google Scholar
  108. Wang Y, Chen Z, Ling X (2016) A molecular dynamics study of nano-encapsulated phase change material slurry. Appl Thermal Eng 98:835–840CrossRefGoogle Scholar
  109. Warzoha R, Fleischer AS (2014) Improved heat recovery from paraffin-based phase change materials due to the presence of percolating graphene networks. IntJ Heat Mass Trans 79:324–333CrossRefGoogle Scholar
  110. William PK, Goodson KE (2002) Thermal writing and nanoimaging with a heated atomic force microscope cantilever. Trans ASME J Heat Trans 124(4):597CrossRefGoogle Scholar
  111. Xia L, Zhang P, Wang R (2010) Preparation and thermal characterization of expanded graphite/paraffin composite phase change material. Carbon 48:2538–2548CrossRefGoogle Scholar
  112. Yamagishi Y, Takeuchi H, Pyatenko A (1999) Characteristics of microencapsulated PCM slurry as a heat-transfer fluid. AICHE J 45:696–707CrossRefGoogle Scholar
  113. Yamaguchi M, Nogi T (1977) The Stefan problem. Sangyo-Tosho, TokyoGoogle Scholar
  114. Yinping Z, Yi J, Yi J (1999) A simple method, the T-history method, of determining the heat of fusion, specific heat and thermal conductivity of phase change materials. Meas Sci Technol 10:201–205CrossRefGoogle Scholar
  115. Zalba B, Marin J, Cabeza LF, Mehling H (2003) Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Thermal Eng 23:251–283CrossRefGoogle Scholar
  116. Zhang X, Fan Y, Tao X, Yick KL (2004) Fabrication and properties of microcapsules and nanocapsules containing n-octadecane. Mater Chem Phys 88(2–3):300–307CrossRefGoogle Scholar
  117. Zhang Y, Su Y, Zhu Y, Hu X (2001) A General Model for Analyzing the Thermal Performance of the Heat Charging and Discharging Processes of Latent Heat Thermal Energy Storage Systems. Journal of Solar Energy Engineering 123:232–236CrossRefGoogle Scholar
  118. Zhang H, Xu Q, Zhao Z, Zhang J, Sun Y, Sun L, Xu F, Sawada Y (2012) Preparation and thermal performance of gypsum boards incorporated with microencapsulated phase change materials for thermal regulations. Sol Energy 102:93–102Google Scholar
  119. Zhang P, Ma Z, Shi X, Xiao X (2014a) Thermal conductivity measurements of a phase change material slurry under the influence of phase change. Int J Thermal Sci 78:56–64CrossRefGoogle Scholar
  120. Zhang XR, Chen L, Wang T, Zhao Y (2014b) Characterization of thermal and hydrodynamics properties for microencapsulated phase change slurry. Energy Convers Manag 79:317–333CrossRefGoogle Scholar
  121. Zhou Y, Jiang Y, Liu F, Li Q (2016) Thermal conductivity and thermal mechanism of aluminium nanoparticles/octadecane composite phase change materials from molecular dynamics simulations and experimental study. J Ovonic Res 12(2):49–58Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Texas A&M UniversityCollege StationUSA

Section editors and affiliations

  • Vijay K. Dhir
    • 1
  1. 1.Mechanical and Aerospace EngineeringUniversity of California Los AngelesLos AngelesUSA

Personalised recommendations