Advertisement

Heat Pipes and Thermosyphons

  • Amir Faghri
Reference work entry

Abstract

Heat pipes are highly effective passive devices designed to transfer large quantities of heat through a small cross-sectional area over considerable distances, while operating nearly isothermally. Heat pipes are composed of a sealed container, lined internally with a wick and filled partially with a working fluid. Heat pipes are liquid-vapor phase change devices that can transfer heat from a hot source to a cold source through capillary forces generated by the flow of liquid in a wick or other porous media. To accomplish this, heat pipes take advantage of the latent heat of an internal working fluid to transfer heat.

Nomenclature

A

Area (m2)

Ab

Bare condenser/evaporator surface area exposed (m2)

Ac,f

Inner surface area of the liquid film in the condenser (m2)

At

Total surface area of the condenser/evaporator section exposed (m2)

Aw

Cross-sectional area of the wick (m2)

cp

Specific heat at constant pressure (J/kg∙K)

cv

Specific heat at constant volume (J/kg∙K)

D

Diameter (m)

Dh

Hydraulic diameter (m)

d

Screen wick wire diameter (m)

Fl

Liquid fractional coefficient Fl = μl/(ρl Aw K hfg)

Fv

Vapor fractional coefficient \( {F}_v=\left({fRe}_{z,v}\right){\mu}_v/2{R}_v^2{A}_v{\rho}_v{h}_{fg} \)

f

Ergun coefficient

g

Gravitational acceleration (m/s2)

h

Heat transfer coefficient (W/ m2∙K)

hf

Heat transfer coefficient of the liquid film (W/ m2∙K)

hc,f,r

Heat transfer coefficient of internal liquid film in thermosyphon (W/ m2∙K)

hfg

Latent heat of vaporization (kJ/kg)

HP

Heat pipe

i

Enthalpy (kJ)

K

Wick permeability (m2)

k

Thermal conductivity (W/m∙K)

L

Length (m)

\( \dot{m} \)

Mass flow rate (kg/s)

n

Unit vector

N

Mesh number

p

Pressure (Pa)

patm

Atmospheric pressure (Pa)

Pr

Prandtl number

Δp

Pressure difference (Pa)

pe,  δ

Pressure drop due to interfacial evaporation (Pa)

pc,  δ

Pressure drop due to interfacial condensation (Pa)

pg

Pressure change due to gravitational effects (Pa)

Q

Heat transfer rate (W)

Qa

Axial heat flow through the adiabatic section (W)

Qboiling

Boiling heat transfer limit (W)

Qent

Entrainment heat transfer limit for conventional heat pipes (W)

Qflooding

Flooding heat transfer limit for thermosyphons (W)

Qsonic

Sonic heat transfer limit (W)

q”

Heat flux (W/m2)

R

Radius (m)/thermal resistance (°C/W, K/W)

Rb

Effective bubble radius (m)

Rc, f, r

Radial thermal resistance due to liquid film (°C/W, K/W)

Re, f, r

Effective internal thermal resistance of the evaporator (°C/W, K/W)

Ri

Inner radius of the heat pipe (m)

Rh, w

Hydraulic radius of the wick surface pore (m)

Re

Reynolds number

Red

Reynolds number based on bare heat pipe diameter

Rez, v

Axial vapor Reynolds Number

Rg

Specific gas constant (J/kg∙K)

r

Radius (m)

reff

Effective pore radius (m)

t

Time (s)/thickness (m)

T

Temperature (°C)

\( \overline{T} \)

Average temperature (°C)

T0

Temperature at the evaporator end cap (K)

ΔT

Temperature difference (°C)

TS

Thermosyphon

V

Velocity (m/s)/Volume (m3)

V

Velocity vector (m/s)

v

Specific volume (m3/kg)

z

Coordinate direction (m)

〈〉

Averaged over the volume

〈〉f

Averaged over the volume of the fluid

Greek

α

Accommodation coefficient

φ

Porosity

θ

Inclination angle of the heat pipe relative to the horizontal

μ

Viscosity (Pa∙s)

ρ

Density (kg/m3)

ρ0

Density at the evaporator end cap (kg/m3)

σ

Surface tension (N/m)

τ

Stress tensor

ϕ

Viscous heating (W/m3)

Subscripts

a

Adiabatic

ax

Axial

b

Bare (nonfinned HP or TS)

c

Condenser

cap

Capillary

cold

Cold

e

Evaporator

eff

Effective

ex

External (outside HP/TS)

f

Film, fin, fluid

fg

Liquid-vapor

g

Gravity

hot

Hot

HP

Heat pipe

i

Inner/inlet

in

Internal (inside HP/TS)

inter

Interfacial

l

Liquid

max

Maximum

o

Outer/outlet

p

Liquid pool

r

Radial

s

Solid

tot

Total

TS

Thermosyphon

w

Wick/wall

wk.

Wick

References

  1. Aghvami M, Faghri A (2011) Analysis of flat heat pipes with various heating and cooling configurations. Appl Therm Eng 31(14–15):2645–2655.  https://doi.org/10.1016/j.applthermaleng.2011.04.034CrossRefGoogle Scholar
  2. Akbarzadeh A, Wadowski T (1996) Heat pipe-based cooling systems for photovoltaic cells under concentrated solar radiation. Appl Therm Eng 16(1):81–87.  https://doi.org/10.1016/1359-4311(95)00012-3CrossRefGoogle Scholar
  3. Alizadehdakhel A, Rahimi M, Alsairafi A (2010) CFD modeling of flow and heat transfer in a thermodyphon. Int Commun Heat and Mass Tran 37:312–318CrossRefGoogle Scholar
  4. Alleau T, Bricard A, Chabanne J, Kermorgant H, de Lallee J (1984) Sodium heat pipes for thermal energy supply of a stirling engine. In: Proceedings of the 5th international heat pipe conference, Tsukuba, pp 54–58Google Scholar
  5. Alleau T, Bricard A, Thouvenin A (1987) Stirling engine coupled with a sodium boiler. In: Proceedings of the 6th international heat pipe conference, Grenoble, pp 748–752Google Scholar
  6. Allen MJ, Bergman TL, Faghri A, Sharifi N (2015) Robust heat transfer enhancement during melting and solidification of a phase change material using a combined heat pipe-metal foam or foil configuration. ASME J Heat Tran 137(10):102301CrossRefGoogle Scholar
  7. Alonso G, Perez R (1990) Cooling of power transformers with two-phase thermosyphons. In: Proceedings of the 7th international heat pipe conference, MinskGoogle Scholar
  8. Amidieu M, Moscheti B, Tatry M (1987) Develpement of a space deployable radiator using heat pipes. In: Proceedings of the 6th international heat pipe conference, Grenoble, pp 380–385Google Scholar
  9. Anderson WG, Tarau C (2008) Variable conductance heat pipes for radioisotope stirling systems. Proc STAIF 969(2008):679–688.  https://doi.org/10.1063/1.2845031CrossRefGoogle Scholar
  10. Anderson WG, Dussinger PM, Sarraf DB, Tamanna S (2008) Heat pipe cooling of concentrating photovoltaic cells. In: 33rd IEEE photovoltaic specialists conference, San Diego.  https://doi.org/10.1109/PVSC.2008.4922577
  11. Andraka CE, Rawlinson KS, Moss TA, Adkins DR, Moreno JB, Gallup DR, Cordeiro PG, Johansson S (1996) Solar heat pipe testing of the stirling thermal motors 4–120 stirling engine. In: SAND96-1424C, Proceedings of the 31st intersociety energy conversion engineering conference, vol 2, pp 1295–1300.  https://doi.org/10.1109/IECEC.1996.553903
  12. Andraka CE, Rawlinson KS, and Siegel NP (2012) Technical feasibility of storage on large dish stirling systems, Sandia report SAND2012-8352Google Scholar
  13. Barthelemy R, Jacobson D, Rabe D (1978) Heat pipe mirrors for high power lasers. In: Proceedings of the 3rd international heat pipe conference, Paper no. 78-391, Palo AltoGoogle Scholar
  14. Bartsch G, Butow E, Schroeder-Richter D (1987) Deicing of road surfaces employing heat pipes installed in the ground-water layer. In: Proceedings of the 6th international heat pipe conference, Grenoble, pp 715–720Google Scholar
  15. Basiulis A (1976) Follow-up on heat pipe applications, Proceedings of the 2nd International Heat Pipe Conference, Bologna, Italy, 473–480.Google Scholar
  16. Bassani C, Lighthart J, Sciamanna G, Marcarino P, Fernicola V (1990) Gas controlled heat pipes for primary temperature measurements. In: Proceedings of the 7th international heat pipe conference, MinskGoogle Scholar
  17. Bayasan R, Korotchenko A, Volkov N, Pustovoit G, Lobanov A (2008) Use of two-phase heat pipes with the enlarged heat-exchange surface for thermal stabilization of permafrost soils at the bases of structures. Appl Therm Eng 28:274–277CrossRefGoogle Scholar
  18. Benn S, Poplaski L, Faghri A, Bergman T (2016) Analysis of thermosyphon/heat pipe integrateion for feasability of dry cooling for thermoelectric power genertion. Appl Therm Eng 104:358–374CrossRefGoogle Scholar
  19. Bergman T, Incropera F, DeWitt D, Lavine A (2011) Fundamentals of heat and mass transfer, 7th edn. John Wiley & sonsGoogle Scholar
  20. Bilski WJ, Broadbent J (2010) Feel the heat: thermal design trends in medical devices. MD+DI 32(6)Google Scholar
  21. Brennan PJ, Thienel L, Swanson T, Morgan M (1993) Flight data for the cryogenic heat pipe (CRYOHP) experiment. AIAA-93-2735Google Scholar
  22. Brost O, Groll M, Mack H (1990) High-temperature lithium heat pipe furnace for space applications. In: Proceedings of the 7th international heat pipe conference, MinskGoogle Scholar
  23. Brown R, Gustafson E, Gisondo F, Hutchison M (1990) Performance evaluation of the grumman prototype space erectable radiator system, AIAA Paper No. 90-1766Google Scholar
  24. Brown R, Kosson R, Ungar E (1991) Design of the SHARE II monogroove heat pipe. In: AIAA 91–1359, Proceedings of AIAA 26th thermophysics conference, HonoluluGoogle Scholar
  25. Cao Y (1996) Rotating micro/miniature heat pipes for turbine blade cooling applications. In: AFOSR contractor and grantee meeting on turbulence and internal flows, AtlantaGoogle Scholar
  26. Cao Y (1997) A feasibility study of turbine disk cooling by employing radially rotating heat pipes, Final report for summer faculty research program, Air Force Research Lab, Turbine Engine DivisionGoogle Scholar
  27. Cao Y (2010) Miniature high-temperature rotating heat pipes and their applications in gas turbine cooling. Front Heat Pip (FHP) 1:023002.  https://doi.org/10.5098/fhp.v1.2.3002CrossRefGoogle Scholar
  28. Cao Y, Faghri A (1990) Transient two-dimensional compressible analysis for high-temperature heat pipes with pulsed heat input. Numer Heat Tran; Part A: Appl 18(4):483–502.  https://doi.org/10.1080/10407789008944804CrossRefGoogle Scholar
  29. Cao Y, Faghri A (1991) Transient multidimensional analysis of nonconventional heat pipes with uniform and nonuniform heat distributions. J Heat Transf 113(4):995–1002.  https://doi.org/10.1115/1.2911233CrossRefGoogle Scholar
  30. Cao Y, Faghri A (1992) Closed-form analytical solutions of high-temperature heat pipe startup and frozen startup limitation. J Heat Transf 114(4):1028–1035.  https://doi.org/10.1115/1.2911873CrossRefGoogle Scholar
  31. Cao Y, Faghri A (1993a) Conjugate modeling of high-temperature nosecap and wing leading-edge heat pipes. J Heat Transf 115(3):819–822.  https://doi.org/10.1115/1.2910765CrossRefGoogle Scholar
  32. Cao Y, Faghri A (1993b) Simulation of the early startup period of high-temperature heat pipes from the frozen state by a rarefied vapor self-diffusion model. J Heat Transf 115(1):239–246.  https://doi.org/10.1115/1.2910655CrossRefGoogle Scholar
  33. Cao Y, Faghri A (1993c) A numerical analysis of high-temperature heat pipe startup from the frozen state. J Heat Transf 115(1):247–254.  https://doi.org/10.1115/1.2910657CrossRefGoogle Scholar
  34. Cao Y, Faghri A (1994) Micro/miniature heat pipes and operating limitations. J Enhanc Heat Tran 1(3):265–274CrossRefGoogle Scholar
  35. Chengsheng H, Tinghan L, Yaopu W, Zengqi H (1984) Design and performance of low temperature heat pipe blackbody. In: Proceedings of the 5th international heat pipe conference, Tsukuba, pp 74–81Google Scholar
  36. Chernysheva MA, Maydanik YF (2008) Numerical simulation of transient heat and mass transfer in a cylindrical evaporator of a loop heat pipe. Int J Heat Mass Transf 51(17–18):4204–4215.  https://doi.org/10.1016/j.ijheatmasstransfer.2007.12.021CrossRefzbMATHGoogle Scholar
  37. Chuang PA (2003) An improved steady-state model of loop heat pipe based on experimental and theoretical analyses. PhD thesis, Pennsylvania State University, State CollegeGoogle Scholar
  38. Cotter TP (1984) Principles and prospects for micro heat pipes. In: Proceedings of 5th international heat pipe conference, Tsukuba, pp 328–335Google Scholar
  39. Cullimore B, Bauman J (2000) Steady state and transient loop heat pipe modeling. In: SAE 2000–01-2316, Proceedings of the 34th international conference on environmental systems (ICES), ToulouseGoogle Scholar
  40. Do KH, Kim SJ, Garimella S (2008) A mathematical model for analyzing the thermal characteristics of a flat micro heat pipe with a grooved wick. Int J Heat Mass Transf 51:4637–4650CrossRefGoogle Scholar
  41. Dobson RT (2004) Theoretical and experimental modelling of an open oscillatory heat pipes including gravity. Int J Therm Sci 43:113–119CrossRefGoogle Scholar
  42. Fadhl B,Wrobel LC, Jouhara H (2013) Numerical modelling of the temperature distribution in a two-phase closed thermosyphon. Applied Thermal Engineering, 60(1):122–131CrossRefGoogle Scholar
  43. Faghri A (1990) Thermal energy storage heat exchangers. US Patent No. 4976308Google Scholar
  44. Faghri A (1991) Micro heat pipe energy storage systems. US Patent No. 5000252Google Scholar
  45. Faghri A (1993a) Centrifugal heat pipe vapor absorption heat pump. US Patent No. 5201196.Google Scholar
  46. Faghri A (1993b) Temperature regulation system for the human body using heat pipes. US Patent No. 5269369Google Scholar
  47. Faghri A (2012) Review and advances in heat pipe science and technology. J Heat Transf 134(12):123001.  https://doi.org/10.1115/1.4007407CrossRefGoogle Scholar
  48. Faghri A (2014) Heat pipes: review, opportunities and challenges. Front Heat Pip 5(1).  https://doi.org/10.1061/(ASCE)0887-3801(1995)9:3(209)
  49. Faghri A (2016) Heat pipe science and technology, 2nd edn. Global Digital Press, Columbia, MissourieGoogle Scholar
  50. Faghri A, Thomas S (1989) Performance characteristics of a concentric annular heat pipe: part I-experimental prediction and analysis of the capillary limit. J Heat Transf 111(1–4):844–850.  https://doi.org/10.1115/1.3250795CrossRefGoogle Scholar
  51. Faghri A, Buchko M (1991) Experimental and numerical analysis of low-temperature heat pipes with multiple heat sources. J Heat Transf 113(3):728–734.  https://doi.org/10.1115/1.2910624CrossRefGoogle Scholar
  52. Faghri A, Guo Z (2005) Challenges and opportunities of thermal management issues related to fuel cell technology and modeling. Int J Heat Mass Transf 48(19–20):3891–3920.  https://doi.org/10.1016/j.ijheatmasstransfer.2005.04.014CrossRefGoogle Scholar
  53. Faghri A, Zhang Y (2006) Transport phenomena in multiphase systems. Elsevier, AmsterdamGoogle Scholar
  54. Faghri A, Guo Z (2008) Integration of heat pipe into fuel cell technology. Heat Transfer Eng 29(3):232–238.  https://doi.org/10.1080/01457630701755902CrossRefGoogle Scholar
  55. Faghri A, Guo Z (2009) Vapor feed fuel cells with a passive thermal-fluids management system. US Patent No. 7625649B1Google Scholar
  56. Faghri A, Chen MM, Morgan M (1989a) Heat transfer characteristics in two-phase closed conventional and concentric annular thermosyphons. J Heat Transf 111(3):611–618.  https://doi.org/10.1115/1.3250726CrossRefGoogle Scholar
  57. Faghri A, Reynolds D, Faghri P (1989b) Heat pipes for hands. Mech Eng 111(6):72–75Google Scholar
  58. Faghri A, Buchko M, Cao Y (1991a) A study of high-temperature heat pipes with multiple heat sources and sinks: part I – experimental methodology and frozen startup profiles. J Heat Transf 113(4):1003–1009.  https://doi.org/10.1115/1.2911193CrossRefGoogle Scholar
  59. Faghri A, Buchko M, Cao Y (1991b) A study of high-temperature heat pipes with multiple heat sources and sinks: part II – analysis of continuum transient and steady- state experimental data with numerical predictions. Trans ASME J Heat Transf 113(4):1010–1016.  https://doi.org/10.1115/1.2911194CrossRefGoogle Scholar
  60. Faghri A, Zhang Y, Howell J (2010) Advanced heat and mass transfer. Global Digital Press, ColumbiaGoogle Scholar
  61. Finlay I, Cree D, Blundell D (1976) Performance of a prototype isothermal oven for use with an ‘X’ band microwave noise standard. In: Proceedings of the 2nd international heat pipe conference, Bologna, pp 545–554Google Scholar
  62. Fletcher L, Peterson G (1997) Treatment method using a micro heat pipe catheter. US Patent No. 5591162Google Scholar
  63. Furukawa M (2006) Model-based method of theoretical design analysis of a loop heat pipe. J Thermophys Heat Transf 20(1):111–121.  https://doi.org/10.2514/1.14675CrossRefGoogle Scholar
  64. Gi K, Maezawa S (2006) Study on solar cell cooling by heat pipe. In: Proceedings of the 8th international heat pipe symposium, Kumamoto, pp 295–299Google Scholar
  65. Giessler F, Sattler P, Thoren F (1987) Heat pipe cooling of electrical machines. In: Proceedings of the 6th international heat pipe conference, Grenoble, pp 557–564Google Scholar
  66. Guo Z, Faghri A (2006a) Development of planar air breathing direct methanol fuel cell stacks. J Power Sources 160(2):1183–1194.  https://doi.org/10.1016/j.jpowsour.2006.03.045CrossRefGoogle Scholar
  67. Guo Z, Faghri A (2006b) Miniature DMFCs with passive thermal-fluids management system. J Power Sources 160(2):1142–1155.  https://doi.org/10.1016/j.jpowsour.2006.03.013CrossRefGoogle Scholar
  68. Hamdan MO (2003) Loop heat pipe (LHP) modeling and development by utilizing coherent porous silicon (CPS) wicks. PhD thesis, University of CincinnatiGoogle Scholar
  69. Harley C, Faghri A (1994a) Complete transient two-dimensional analysis of two-phase closed thermosyphons including the falling condensate film. J Heat Transf 116(2):418–426.  https://doi.org/10.1115/1.2911414CrossRefGoogle Scholar
  70. Harley C, Faghri A (1994b) Transient two-dimensional gas-loaded heat pipe analysis. J Heat Transf 116(3):716–723.  https://doi.org/10.1115/1.2910927CrossRefGoogle Scholar
  71. Harley C, Faghri A (1995) Two-dimensional rotating heat pipe analysis. J Heat Transf 117(1):202–208.  https://doi.org/10.1115/1.2822304CrossRefGoogle Scholar
  72. Hoang TT, Kaya T (1999) Mathematical modeling of loop heat pipe with two-phase pressure drop, AIAA paper no. 1999–3448Google Scholar
  73. Hoang T, Ku J (2003) Transient modeling of loop heat pipes, AIAA paper no. 2003–6082Google Scholar
  74. Hopkins R, Faghri A, Khrustalev D (1999) Flat miniature heat pipes with micro capillary grooves. J Heat Transf 121(1):102–109.  https://doi.org/10.1115/1.2825922CrossRefGoogle Scholar
  75. Iwata Z, Sakuma S, Koga S (1984) Heat pipes for local cooling of underground power cables. In: Proceedings of the 5th international heat pipe conference, Tsukuba, pp 153–155Google Scholar
  76. Jalilvand A, Katsuta M, Saito K, Toyonaga J, Mochizuki M (2006) The study of the thermal performance of concentric annular heat pipe with the application in the heat roll of fusing unit of copy machine. Annals of the assembly for international heat transfer conference 13.  https://doi.org/10.1615/IHTC13.p22.60
  77. Jang JH, Faghri A, Chang WS, Mahefkey ET (1990) Mathematical modeling and analysis of heat pipe start-up from the frozen state. J Heat Transf 112(3):586–594.  https://doi.org/10.1115/1.2910427CrossRefGoogle Scholar
  78. Jen TC, Gutierrez G, Eapen S, Barber G, Zhao H, Szuba PS, Labataille J, Manjunathaiah J (2002) Investigation of heat pipe cooling in drilling applications part 1: preliminary numerical analysis and verification. Int J Mach Tools Manuf 42(5):643–652CrossRefGoogle Scholar
  79. Kaya T, Goldak J (2006) Numerical analysis of heat and mass transfer in the capillary structure of a loop heat pipe. Int J Heat Mass Transf 49(17–18):3211–3220.  https://doi.org/10.1016/j.ijheatmasstransfer.2006.01.028CrossRefzbMATHGoogle Scholar
  80. Kaya T, Hoang TT (1999) Mathematical modeling of loop heat pipes and experimental validation. J Thermophys Heat Transf 13(3):314–320.  https://doi.org/10.2514/2.6461CrossRefGoogle Scholar
  81. Kaya T, Ku J (1999) A parametric study of performance characteristics of loop heat pipes, SAE paper no. 2001-01-2317Google Scholar
  82. Kaya T, Ku J (2003) Thermal operational characteristics of a small-loop heat pipe. J Thermophys Heat Transf 17(4):464–470.  https://doi.org/10.2514/2.6805CrossRefGoogle Scholar
  83. Kaya T, Pérez R, Gregori C, Torres A (2008) Numerical simulation of transient operation of loop heat pipes. Appl Therm Eng 28(8–9):967–974.  https://doi.org/10.1016/j.applthermaleng.2007.06.037CrossRefGoogle Scholar
  84. Khandekar S, Panigrahi PK, Lefèvre F, Bonjour J (2010) Local hydrodynamics of flow in a pulsating heat pipe: a review. Front Heat Pip (FHP) 1:023003.  https://doi.org/10.5098/fhp.v1.2.3002CrossRefGoogle Scholar
  85. Khrustalev D (2010) Advances in transient modeling of loop heat pipe systems with multiple components. AIP Conf Proc 1208:55–67CrossRefGoogle Scholar
  86. Khrustalev D, Faghri A (1994) Thermal analysis of a micro heat pipe. J Heat Transf 116(1):189–198.  https://doi.org/10.1115/1.2910855CrossRefGoogle Scholar
  87. Khrustalev D, Faghri A (1995a) Thermal characteristics of conventional and flat miniature axially-grooved heat pipes. J Heat Transf 117(4):1048–1054.  https://doi.org/10.1115/1.2836280CrossRefGoogle Scholar
  88. Khrustalev D, Faghri A (1995b) Heat transfer during evaporation on capillary-grooved structures of heat pipes. J Heat Transf 117(3):740–747.  https://doi.org/10.1115/1.2822638CrossRefGoogle Scholar
  89. Khrustalev D, Faghri A (1995c) Heat transfer in the inverted meniscus type evaporator at high heat fluxes. Int J Heat Mass Transf 38(16):3091–3101.  https://doi.org/10.1016/0017-9310(95)00003-RCrossRefGoogle Scholar
  90. Khrustalev D, Faghri A (1996) Estimation of the maximum heat flux in the inverted meniscus type evaporator of a flat miniature heat pipe. Int J Heat Mass Transf 39(9):1899–1909.  https://doi.org/10.1016/0017-9310(95)00270-7CrossRefGoogle Scholar
  91. Kirkpatrick JP, Brennan PJ (1976) Long term performance of the advanced thermal control experiment. In: Proceedings of the 2nd international heat pipe conference, Bolgna, pp 629–646Google Scholar
  92. Langston L, Faghri A (1995) Heat pipe trubine vane cooling, Advanced turbine systems annual review, MorgantownGoogle Scholar
  93. Launay S, Sartre V, Bonjour J (2007a) Effects of fluid thermophysical properties on loop heat pipe operation. In: Proceedings of the 14th international heat pipe conference, FlorianopolisGoogle Scholar
  94. Launay S, Platel V, Dutour S, Joly JL (2007b) Transient modeling of loop heat pipes for the oscillating behavior study. J Thermophys Heat Transf 21(3):487–495.  https://doi.org/10.2514/1.26854CrossRefGoogle Scholar
  95. Launay S, Sartre V, Bonjour J (2007c) Parametric analysis of loop heat pipe operation: a literature review. Int J Therm Sci 46(7):621–636.  https://doi.org/10.1016/j.ijthermalsci.2006.11.007CrossRefGoogle Scholar
  96. Launay S, Sartre V, Bonjour J (2008) Analytical model for characterization of loop heat pipes. J Thermophys Heat Transf 22(4):623–631.  https://doi.org/10.2514/1.37439CrossRefGoogle Scholar
  97. Lefèvre F, Lips S, Bonjour J (2010) Investigation of evaporation and condensation processes specific to grooved flat heat pipes. Front Heat Pip (FHP) 1:023001.  https://doi.org/10.5098/fhp.v1.2.3001CrossRefGoogle Scholar
  98. Liang SB, Ma HB (2004) Oscillating motions of slug flow in capillary tubes. Int Commun Heat Mass Transfer 31(3):365–375.  https://doi.org/10.1016/j.icheatmasstransfer.2004.02.007CrossRefGoogle Scholar
  99. Liao Z, Faghri A (2016) Thermal analysis of a heat pipe solar central receiver for concentrated solar power tower. Appl Therm Eng 102:952–960CrossRefGoogle Scholar
  100. Machiroutu S, Kluge B, Kuroda M, Pokharna H (2006) The study of the effect of the gap between blower and heat exchanger in Notebook PC thermal module design. In: Proceedings of the 8th international heat pipe symposium, Kumamoto, pp 46–50Google Scholar
  101. Maezawa S, Suzuki Y, Tsuchida A (1981) Heat transfer characteristics of disk-shaped rotating, wickless heat pipe. In: Proceedings of the 4th international heat pipe conference, London, pp 725–734CrossRefGoogle Scholar
  102. Mashiko K, Okiai R, Mochizuki M, Ryokai K, Tsuchiya F, Fukuda M (1989) Development of an artificial permafrost storage using heat pipes. Paper no. 89-HT-15 ASME/AIChE national heat transfer conference, PhiladelphiaGoogle Scholar
  103. Matsuda S, Miskolczy G, Okihara M, Okihara T, Kanamori M, Hamada N (1981) Test of a horizontal heat pipe deicing panel for use on marine vessels. In: Proceedings of the 4th international heat pipe conference, London, pp 3–10CrossRefGoogle Scholar
  104. Maydanik YF (2005) Loop heat pipes. Appl Therm Eng 25(5–6):635–657.  https://doi.org/10.1016/j.applthermaleng.2004.07.010CrossRefGoogle Scholar
  105. Maydanik YF, Fershtater YG, Solodovnik N (1994) Loop heat pipes: design, investigation, prospects of use in aerospace technics, SAE paper 941185Google Scholar
  106. McIntosh R, Ollendorf S, Harwell W (1976) The international heat pipe experiment. In: Proceedings of the 2nd international heat pipe conference, Bologna, pp 589–592Google Scholar
  107. Meijer R, Khalili K (1990) Design and testing of a heat pipe gas combustion system for the STM4–120 stirling engine. In: Proceedings of the 7th international heat pipe conference, MinskGoogle Scholar
  108. Mochizuki M, Saito Y, Kiyooka F, Nguyen T (2006) High power cooling chips by heat pipes and advanced heat spreader. In: 8th international heat pipe symposium, Kumamoto, pp 214–221Google Scholar
  109. Mochizuki M, Nguyen T, Saito Y, Kiyooka F, Wuttijumnong V (2007) Advanced micro-channel vapor chamber for cooling high power processors. In: Proceedings of the ASME interpack conference, IPACK 2007, Vancouver, pp 695–702Google Scholar
  110. Mochizuki M, Nguyen T, Mashiko K, Saito Y, Nguyen T, Wuttijumnong V (2011) A review of heat pipe applications including new opportunities. Front Heat Pip (FHP) 2:013001.  https://doi.org/10.5098/fhp.v2.1.3001CrossRefGoogle Scholar
  111. Mochizuki M, Nguyen T, Mashiko K, Saito Y, Singh R, Nguyen T, Wuttijumnong V (2013) Prevention possibility of nuclear power reactor meltdown by use of heat pipes for passive cooling of spent fuel. Front Heat Pip (FHP) 4:013001Google Scholar
  112. Momose T, Ishimaru H, Murase T, Tanaka S, Ishida S (1987) Application of heat pipe to electron-position collider TRISTAN. In: Proceedings of the 6th international heat pipe conference, Grenoble, pp 798–799Google Scholar
  113. Morgownik A, Savage C (1987) Design aspects of a deployable 10 kW heat pipe radiator. In: Proceedings of the 6th international heat pipe conference, Grenoble, pp 351–356Google Scholar
  114. Muraoka I, Ramos FM, Vlassov VV (2001) Analysis of the operational characteristics and limits of a loop heat pipe with porous element in the condenser. Int J Heat Mass Transf 44(12):2287–2297.  https://doi.org/10.1016/S0017-9310(00)00259-3CrossRefzbMATHGoogle Scholar
  115. Nguyen T, Johnson P, Akbarzadeh A, Gibson K, Mochizuki M (1992) Design, manufacture and testing of a closed cycle thermosyphon rankine engine. In: Proceedings of the 8th international heat pipe conference, BeijingGoogle Scholar
  116. Nithyanandam K, Pitchumani R (2012) Computational studies on a latent thermal energy storage system with integral heat pipes for concentrating solar power. Appl Energy, .(in press.  https://doi.org/10.1016/j.apenergy.2012.09.056
  117. Peck S, Fleischman G (1987) Lightweight heat pipe panels for space radiators. In: Proceedings of the 6th international heat pipe conference, Grenoble, pp 362–367Google Scholar
  118. Peterson GP (1992) Overview of micro heat pipe research and development. Appl Mech Rev 45(5):175–189.  https://doi.org/10.1115/1.3119755CrossRefGoogle Scholar
  119. Ponnappan R (1990) Comparison of vacuum and gas loaded mode performances of a LMHP, AIAA-90-1755. In: Proceedings of AIAA/ASME 5th joint thermophysics and heat transfer conference, SeattleGoogle Scholar
  120. Poplaski L, Faghri A, Bergman T (2016) Analysis of internal and external thermal resistances of heat pipes including fins using three-dimensional numerical simulation. Int J Heat Mass Transf 102:455–469CrossRefGoogle Scholar
  121. Poplaski L, Benn S, Faghri A (2017) Thermal performance of heat pipes using nanofluids. Int J Heat Mass Transf 107:358–371CrossRefGoogle Scholar
  122. Ranjan R, Murthy JY, Garimella SV, Vadakkan U (2011) A numerical model for transport in flat heat pipes considering wick microstructure effects. Int J Heat Mass Transf 54(1–3):153–168.  https://doi.org/10.1016/j.ijheatmasstransfer.2010.09.057CrossRefzbMATHGoogle Scholar
  123. Rankin JG (1984) Integration and flight demonstration of a high capacity monogroove heat pipe radiator, AIAA-84-1716. In: Proceedings of the AIAA 19th thermopyhsics conference, SnowmassGoogle Scholar
  124. Reay D (1977) Heat pipes – a new diecasting aid. In: Proceedings of the 1st national diecasters conference. Birmingham Exhibition Centre, BirminghamGoogle Scholar
  125. Rice J, Faghri A (2007) Analysis of porous wick heat pipes, including capillary dry-out limitations. AIAA J Thermophys Heat Transf 21(3):475–486.  https://doi.org/10.2514/1.24809CrossRefGoogle Scholar
  126. Robak CW, Bergman TL, Faghri A (2011) Enhancement of latent heat ernergy storage using embedded heat pipes. Int J Heat Mass Transf 54(15–16):3476–3484.  https://doi.org/10.1016/j.ijheatmasstransfer.2011.03.038CrossRefGoogle Scholar
  127. Schmidt T (1988) Heat transfer of finned tube bundles in crossflow. In: A. Zukauskas, G. Hewitt (Eds.), Hemisphere Publishing, Washington, D.C, p. 172.Google Scholar
  128. Schulze T, Sodtke C, Stephan P,Gambaryan-Roisman T (2007) Performance of heat pipe evaporation for space applications with combined re-entrant and micro grooves. Proceedings of the 14th International Heat Pipe Conference, Florianopolis, BrazilGoogle Scholar
  129. Shabgard H, Faghri A (2011) Performance characteristics of cylindrical heat pipes with multiple heat sources. Appl Therm Eng 31(16):3410–3419.  https://doi.org/10.1016/j.applthermaleng.2011.06.026CrossRefGoogle Scholar
  130. Shabgard H, Bergman TL, Sharifi N, Faghri A (2010) High temperature latent heat thermal energy storage using heat pipes. Int J Heat Mass Transf 53(15–16):2979–2988.  https://doi.org/10.1016/j.ijheatmasstransfer.2010.03.035CrossRefzbMATHGoogle Scholar
  131. Shabgard H, Robak CW, Bergman TL, Faghri A (2012) Heat transfer and exergy analysis of cascaded latent heat storage with gravity-assisted heat pipes for concentrating solar power applications. Sol Energy 86(3):816–830.  https://doi.org/10.1016/j.solener.2011.12.008CrossRefGoogle Scholar
  132. Shabgard H, Bergman TL, Faghri A (2013) Exergy analysis of latent heat thermal energy storage for solar power generation accounting for constraints imposed by long-term operation and the solar say. Energy 60:474–484CrossRefGoogle Scholar
  133. Shabgard H, Xiao B, Faghri A, Gupta R, Weissman W (2014) Thermal characteristic of a closed thermosyphon under various filling conditions. Int J Heat Mass Transf 70:91–102CrossRefGoogle Scholar
  134. Shabgard H, Allen M, Sharifi N, Benn S, Faghri A, Bergman T (2015) Heat pipe heat exchangers and heat sinks: opportunities, challenges, applications, analysis, and state of the art. Int J Heat Mass Transf 89(138–158).  https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.020CrossRefGoogle Scholar
  135. Shafii MB, Faghri A, Zhang Y (2001) Thermal modeling of unlooped and looped pulsating heat pipes. J Heat Transf 123(6):1159–1172.  https://doi.org/10.1115/1.1409266CrossRefzbMATHGoogle Scholar
  136. Shafii MB, Faghri A, Zhang Y (2002) Analysis of heat transfer in unlooped and looped pulsating heat pipes. Int J Numer Methods Heat Fluid Flow 12(5):585–609.  https://doi.org/10.1108/09615530210434304CrossRefzbMATHGoogle Scholar
  137. Sharifi N, Wang S, Bergman TL, Faghri A (2012) Heat pipe-assisted melting of a phase change material. Int J Heat Mass Transf 55(13–14):3458–3469CrossRefGoogle Scholar
  138. Sharifi N, Bergman TL, Allen MJ, Faghri A (2014) Melting and solidification enhancement using a combined heat pipe, foil approach. Int J Heat Mass Transf 78:930–941CrossRefGoogle Scholar
  139. Sharifi N, Stark JR, Bergman TL, Faghri A (2016) The influence of thermal contact resistance on the relative performance of heat pipe-fin array systems. Appl Therm Eng 105:46–55CrossRefGoogle Scholar
  140. Shiraishi M, Mochizuki M, Mashiko K, Ito M, Sughiharu S, Yamagishi Y, Watanabe F (1992) Snow removal and deicing using flexible long heat pipes. In: Symposium on snow and snow related problems, International Glaciological SocietyGoogle Scholar
  141. Singh R, Mochizuki M, Nguyen T, Akbarzadeh A (2011) Applications of heat pipes in energy conservation and renewable energy based systems. Front Heat Pip (FHP) 2:033003.  https://doi.org/10.5098/fhp.v2.3.3003CrossRefGoogle Scholar
  142. Stark JR, Sharifi N, Bergman TL, Faghri A (2016) An experimentally verified numerical model of finned heat pipes in crossflow. Int J Heat Mass Transf 97:45–55CrossRefGoogle Scholar
  143. Swanson TD (2007) Thermal control technologies for the new age of space exploration. In: Proceedings of the 14th international heat pipe conference, FlorianopolisGoogle Scholar
  144. Tang X, Park C (2008) Vibration/Shock-tolerant capillary two-phase loop technology for vehicle thermal control. In: Proceedings of the ASME summer heat transfer conference, Jacksonville, pp 531–537.  https://doi.org/10.1115/HT2008-56349
  145. Tarau C, Anderson WG (2010) Sodium variable conductance heat pipe for radioisotope stirling systems – design and experimental results. In: IECEC 2010, 8th annual international energy conversion engineering conference, NashvilleGoogle Scholar
  146. Thieme LG, Schreiber JG (2003) NASA GRC Stirling technology development overview. AIP Conf Proc 654:613–620.  https://doi.org/10.1063/1.1541346CrossRefGoogle Scholar
  147. Tournier JM, El-Genk MS (1994) A heat pipe transient analysis model. Int J Heat Mass Transf 37(5):753–762.  https://doi.org/10.1016/0017-9310(94)90113-9CrossRefzbMATHGoogle Scholar
  148. Vasiliev LL (2005) Heat pipes in modern heat exchangers. Appl Therm Eng 25(1):1–19.  https://doi.org/10.1016/j.applthermaleng.2003.12.004MathSciNetCrossRefGoogle Scholar
  149. Vasiliev LL, Kanonchik L, Mishkinis D, Rabetsky M (2000) Absorbed natural gas storage and transportation vessels. Int J Therm Sci 39(9–11):1047–1055CrossRefGoogle Scholar
  150. Waters ED (1976) Heat pipes for the Trans-Alaskan pipeline. In: Proceedings of the 2nd international heat pipe conference, Bolonga, pp 803–814Google Scholar
  151. Williams R (1978) Investigation of a cryogenic thermal diode, Paper no. 78–417. In: Proceedings of the 3rd international heat pipe conference, Palo AltoGoogle Scholar
  152. Winship J (1974) Diecasting sharpens its edge. Am Mach 118:77–78Google Scholar
  153. Wu XP, Mochizuki M, Mashiko K, Nguyen T, Nguyen T, Wuttijumnong V, Cabusao G, Singh R, Akbarzadeh A (2011) Cold energy storage systems using heat pipe technology for cooling data centers. Front Heat Pip (FHP) 2:013005.  https://doi.org/10.5098/fhp.v2.1.3005CrossRefGoogle Scholar
  154. Xiao B, Faghri A (2008) A three-dimensional thermal-fluid analysis of flat heat pipes. Int J Heat Mass Transf 51(11–12):3113–3126.  https://doi.org/10.1016/j.ijheatmasstransfer.2007.08.023CrossRefzbMATHGoogle Scholar
  155. Zhang Y, Faghri A (2002) Heat transfer in a pulsating heat pipe with open end. Int J Heat Mass Transf 45(4):755–764.  https://doi.org/10.1016/S0017-9310(01)00203-4CrossRefzbMATHGoogle Scholar
  156. Zhang Y, Faghri A (2003) Oscillatory flow in pulsating heat pipes with arbitrary numbers of turns. J Thermophys Heat Transf 17(3):340–347.  https://doi.org/10.2514/2.6791CrossRefGoogle Scholar
  157. Zhang Y, Faghri A (2008) Advances and unsolved issues in pulsating heat pipes. Heat Transfer Eng 29(1):20–44.  https://doi.org/10.1080/01457630701677114CrossRefGoogle Scholar
  158. Zhang Y, Faghri A, Shafii MB (2002) Analysis of liquid-vapor pulsating flow in a U-shaped miniature tube. Int J Heat Mass Transf 45(12):2501–2508.  https://doi.org/10.1016/S0017-9310(01)00348-9CrossRefzbMATHGoogle Scholar
  159. Zukauskas A, Ulinskas R (1988) Heat transfer in tube banks in crossflow. Hemisphere Publishing, Washington, DCGoogle Scholar
  160. Zuo ZJ, Faghri A (1997) Boundary element approach to transient heat pipe analysis. Numer Heat Transfer Part A: Appl 32(3):205–220.  https://doi.org/10.1080/10407789708913888CrossRefGoogle Scholar
  161. Zuo ZJ, Faghri A (1998) A network thermodynamic analysis of the heat pipe. Int J Heat Mass Transf 41(11):1473–1484.  https://doi.org/10.1016/S0017-9310(97)00220-2CrossRefzbMATHGoogle Scholar
  162. Zuo ZJ, Faghri A, Langston L (1998) Numerical analysis of heat pipe turbine vane cooling. J Eng Gas Turbines Power 120(4):735–743.  https://doi.org/10.1115/1.2818461CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of ConnecticutStorrsUSA

Section editors and affiliations

  • Vijay K. Dhir
    • 1
  1. 1.Mechanical and Aerospace EngineeringUniversity of California Los AngelesLos AngelesUSA

Personalised recommendations