Advertisement

Synthesis of Nanosize Particles in Thermal Plasmas

  • Yasunori Tanaka
Reference work entry

Abstract

This chapter is devoted to a description of fundamentals of nanoparticle synthesis using a thermal plasma. Nanoparticles are receiving special attention as the next-generation materials in various industrial fields. To synthesize nanoparticles, thermal plasma is widely used as an effective heat source from its high gas temperature to evaporate feedstock to atomic materials and then as a medium to provide high-temperature gradient field for rapid cooling of evaporated materials.

Keywords

Nanoparticle Nanopowder Thermal plasma Evaporation of feedstock Nucleation Coagulation Condensation 

References

  1. Ando Y, Zhao X, Hirahara K, Suenaga K, Bandow S, Iijima S (2000) Mass production of single-wall carbon nanotubes by the arc plasma jet method. Chem Phys Lett 323:580CrossRefGoogle Scholar
  2. Anekawa Y, Koseki T, Yoshida T, Akashi K (1985) The co-condensation process of high temperature metallic vapors. J Jpn Inst Metals 49:451–456CrossRefGoogle Scholar
  3. Araya T, Ibaraki Y, Endo Y, Hioki S, Kanamaru M (1988) Arc apparatus for producing ultrafine particles, US Patent 4732369Google Scholar
  4. Barolo G, Livraghi S, Chiesa M, Cristina M, Paganini C, Giamello E (2012) Mechanism of the photoactivity under visible light of N-doped titanium dioxide. Charge carries migration in irradiated N-TiO2 investigated by electron paramagnetic resonance. J Phys Chem C 116:20887–20894CrossRefGoogle Scholar
  5. Biju KP, Jain MK (2008) Effect of crystallization on humidity sensing properties of sol-gel derived nanocrystalline TiO2 thin films. Thin Solid Films 516:2175–2180CrossRefGoogle Scholar
  6. Bilodeau JF, Proulx P (1996) A mathematical model for ultrafine iron powder growth in thermal plasmas. Aerosol Sci Technol 24:175–189CrossRefGoogle Scholar
  7. Bora B, Aomoa N, Bordoloi RK, Srivastava DN, Bhuyan H, Das AK, Kakati M (2012) Freeflowing, transparent γ-alumina nanoparticles synthesized using a supersonic thermal plasma expansion process. Curr Appl Phys 12(3):880–884CrossRefGoogle Scholar
  8. Bora B, Aomoa N, Bordoloi RK, Srivastava DN, Bhuyan H, Das AK, Kakati M (2013) Studies on a supersonic thermal plasma expansion process for synthesis of titanium nitride nanoparticles. Powder Technol 246:413–418CrossRefGoogle Scholar
  9. Bora B, Saikia BJ, Borgohain C, Kakati M, Das AK (2010) Numerical investigation of nanoparticle synthesis in supersonic thermal plasma expansion. Vacuum 85:283CrossRefGoogle Scholar
  10. Boulos MI, Jurewicz J, Guo J (2006) Induction plasma synthesis of nanopowders. US Patent 8013269 B2Google Scholar
  11. Bystrzejewski M, Huczko A, Lange H, PLotczyk WW, Stankiewicz R, Pichler T, Gemming T, Rummeli MH (2008) A continuous synthesis of carbon nanotubes by dc thermal plasma jet. Appl Phys A Mater Sci Process 91:223CrossRefGoogle Scholar
  12. Cheng Y, Tanaka M, Watanabe T, Choi SY, Shin MS, Lee KH (2014) Synthesis of Ni2B nanoparticles by RF thermal plasma for fuel cell catalyst. J Phys Conf Ser 518:012026CrossRefGoogle Scholar
  13. Choi SI, Nam JS, Kim JI, Hwang TH, Seo JH, Hong SH (2006) Continuous process of carbon nanotubes synthesis by decomposition of methane using an arc-jet plasma. Thin Solid Films 506–507:244CrossRefGoogle Scholar
  14. Colombo V, Ghedini E, Gherardi M, Sanibondi P (2012) Modelling for the optimization of the reaction chamber in silicon nanoparticle synthesis by a radio-frequency induction thermal plasma. Plasma Sources Sci Technol 21(5):055007CrossRefGoogle Scholar
  15. Colombo V, Ghedini E, Gherardi M, Sanibondi P (2013) Evaluation of precursor evaporation in Si nanoparticle synthesis by inductively coupled thermal plasmas. Plasma Sources Sci Technol 22(3):035010CrossRefGoogle Scholar
  16. Crowe CT, Sharma MP, Stock DE (1977) The particle-source-in cell (PSI–cell) model for gas–droplet flows. J Fluids Eng 99:325–332CrossRefGoogle Scholar
  17. Cruz ACD, Munz RJ (1997) Vapor phase synthesis of fine particles. IEEE Trans Plasma Sci 25:1008–1016CrossRefGoogle Scholar
  18. Cruz ACD, Munz RJ (2001) Nucleation with simultaneous chemical reaction in the vapor-phase synthesis of AlN ultrafine powders. Aerosol Sci Technol 34:499–511CrossRefGoogle Scholar
  19. Désilets M, Bilodeau JF, Proulx P (1997) Modelling of the reactive synthesis of ultrafine powders in a thermal plasma reactor. J Phys D Appl Phys 30:1951–1960CrossRefGoogle Scholar
  20. Ebbensen TW, Ajayan PM (1992) Large-scale synthesis of carbon nanotubes. Nature 358:220CrossRefGoogle Scholar
  21. Eguchi K, Ko IY, Sugawara T, Lee HJ, Yoshida T (1989) Process control for the formation of fine SiC powders in thermal plasma frame. J Jpn Inst Metals 53:1236–1241CrossRefGoogle Scholar
  22. Fauchais P, Vardelle A, Denoirjean A (1997) Reactive thermal plasmas: ultrafine particle synthesis and coating deposition. Surf Coat Technol 97:66CrossRefGoogle Scholar
  23. Friedlander SK (2000) Smoke, dust and haze. Oxford University Press, New YorkGoogle Scholar
  24. Fuchs NA (1964) Mechanics of aerosols. Pergamon, New YorkGoogle Scholar
  25. Fudoligh AM, Nogami H, Yagi J (1997) Prediction of generation rates in ‘reactive arc plasma’ ultrafine powder production process. ISIJ Int 37:641CrossRefGoogle Scholar
  26. Girshick SL, Chiu CP (1990a) Kinetic nucleation theory: a new expression for the rate of homogeneous nucleation from an ideal supersaturated vapor. J Chem Phys 93:1273–1277CrossRefGoogle Scholar
  27. Girshick SL, Chiu CP (1990b) Numerical study of MgO powder synthesis by thermal plasma. Aerosol Sci Technol 21:641–650CrossRefGoogle Scholar
  28. Girshick SL, Chiu CP, McMurry PH (1988) Modeling particle formation and growth in a plasma synthesis reactor. Plasma Chem Plasma Process 8:145–157CrossRefGoogle Scholar
  29. Girshick SL, Chiu CP, McMurry PH (1990) Time-dependent aerosol models and homogeneous nucleation rates. Aerosol Sci Technol 13:465–477CrossRefGoogle Scholar
  30. Girshick SL, Chiu CP, Muno R, Wu CY, Yang L, Singh SK, McMurry PH (1993) Thermal plasma synthesis of ultrafine iron particles. J Aerosol Sci 24:367–382CrossRefGoogle Scholar
  31. Gitzhofer F (1996) Induction plasma synthesis of ultrafine SiC. Pure Appl Chem 68:1113CrossRefGoogle Scholar
  32. Goortani BM, Mendoza-Gonzalez NY, Proulx P (2006) Synthesis of SiO2 nanoparticles in RF plasma reactors: effect of feed rate and quench gas injection. Int J Chem React Eng 4:A33Google Scholar
  33. Gratzel M (2001) Photoelectrochemical cells. Nature 414:338–344CrossRefGoogle Scholar
  34. Guo JY, Gitzhofer F, Boulos MI (1995) Induction plasma synthesis of ultrafine SiC powders from silicon and CH4. J Mater Sci 30:5589CrossRefGoogle Scholar
  35. Harada T, Yoshida T, Koseki T, Akashi K (1985) Co-condensation process of high temperature metallic vapors. J Jpn Inst Metals 45:1138–1145CrossRefGoogle Scholar
  36. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603CrossRefGoogle Scholar
  37. Ishigaki T, Li JG (2007) Synthesis of functional nanocrystallites through reactive thermal plasma processing. Sci Technol Adv Mater 8:617–623CrossRefGoogle Scholar
  38. Ishigaki T, Oh SM, Li JG, Park DW (2005) Controlling the synthesis of TaC nanopowders by injecting liquid precursor into RF induction plasma. Sci Technol Adv Mater 6:111–118CrossRefGoogle Scholar
  39. Kakati M, Bora B, Sarma S, Saikia BJ, Shripathi T, Deshpande U, Dubey A, Ghosh G, Das AK (2008) Synthesis of titanium oxide and titanium nitride nanoparticles with narrow size distribution by supersonic thermal plasma expansion. Vacuum 82:833CrossRefGoogle Scholar
  40. Kim KH, Choi H, Han C (2017) Tungsten micropowder/copper nanoparticle core/shell-structured composite powder synthesized by inductively coupled thermal plasma process. Metall Mater Trans A: Phys Metall Mater Sci 48(1):439–445CrossRefGoogle Scholar
  41. Kim TH, Choi S, Park DW (2013) Effects of NH3 flow rate on the thermal plasma synthesis of AlN nanoparticles. J Korean Phys Soc 63(10):1864–1870CrossRefGoogle Scholar
  42. Kim KS, Cota-Sanchez G, Kingston CT, Imris M, Simard B, Soucy G (2007) Large-scale production of single-walled carbon nanotubes by induction thermal plasma. J Phys D Appl Phys 40:2375CrossRefGoogle Scholar
  43. Kim YM, Kim KH, Kim B, Choi H (2016) Size and morphology manipulation of nickel nanoparticle in inductively coupled thermal plasma synthesis. J Alloys Comp 658:824–831CrossRefGoogle Scholar
  44. Kim KS, Moradian A, Mostaghimi J, Alinejad Y, Shahverdi A, Simard B, Soucy G (2009) Synthesis of single-walled carbon nanotubes by induction thermal plasma. Nano Res 2:800CrossRefGoogle Scholar
  45. Kim KS, Seo JH, Nam JS, Ju WT, Hong SH (2005) Production of hydrogen and carbon black by methane decomposition using dc-rf hybrid thermal plasmas. IEEE Trans Plasma Sci 33(2):813CrossRefGoogle Scholar
  46. Ko EH, Kim T-H, Choi S, Park D-W (2015) Synthesis of cubic boron nitride nanoparticles from boron oxide, melamine and NH3 by non-transferred Ar-N2 thermal plasma. J Nanosci Nanotechnol 15(11):8515–8520CrossRefGoogle Scholar
  47. Kodama N, Tanaka Y, Kita K, Ishisaka Y, Uesugi Y, Ishijima T, Sueyasu S, Nakamura K (2016) Fundamental study of Ti feedstock evaporation and the precursor formation process in inductively coupled thermal plasmas during TiO2 nanopowder synthesis. J Phys D Appl Phys 49(30):305501CrossRefGoogle Scholar
  48. Kodama N, Tanaka Y, Kita K, Uesugi Y, Ishijima T, Watanabe S, Nakamura K (2014) A method for large-scale synthesis of Al-doped TiO2 nanopowder using pulse-modulated induction thermal plasmas with time-controlled feedstock feeding. J Phys D Appl Phys 47:195304CrossRefGoogle Scholar
  49. Kulkarni NV, Karmakar S, Banerjee I, Sahasrabudhe SN, Das AK, Bhoraskar SV (2009) Growth of nanoparticles of Al2O3, AlN and iron oxide with different crystalline phases in a thermal plasma reactor. Mater Res Bull 9:203–213Google Scholar
  50. Lee HJ, Eguchi K, Yoshida T (1990) Preparation of ultrafine silicon nitride, and silicon nitride and slicon carbide mixed powders in a hybrid plasma. J Am Ceram Soc 73:3356–3362CrossRefGoogle Scholar
  51. Lee JE, Oh SM, Park DW (2004) Synthesis of nano-sized Al doped TiO2 powders using thermal plasma. Thin Solid Films 457:230–234CrossRefGoogle Scholar
  52. Lee SH, Oh SM, Park DW (2007) Preparation of silver nanopowder by thermal plasma. Mater Sci Eng C 27:1286CrossRefGoogle Scholar
  53. Leparoux M, Schreuders C, Shin JW, Siegmann S (2005) Induction plasma synthesis of carbide nanopowders. Adv Eng Mater 7:349CrossRefGoogle Scholar
  54. Li JG, Ikeda M, Ye R, Moriyoshi Y, Ishigaki T (2007) Control of particle size and phase formation of TiO2 nanoparticles synthesized in RF induction plasma. J Phys D Appl Phys 40:2348–2353CrossRefGoogle Scholar
  55. Li YL, Ishigaki T (2004) Controlled one-step synthesis of nanocrystalline anatase and rutile TiO2 powders by in-flight thermal plasma oxidation. J Phys Chem B 108(40):15536–15542CrossRefGoogle Scholar
  56. Li J, Zhao X, Wei H, Gu ZZ, Lu Z (2008) Macroporous ordered titanium dioxide (TiO2) inverse opal as a new label-free immunosensor. Anal Chem Acta 625:63–69CrossRefGoogle Scholar
  57. Malato S, Blanco J, Alarcon DC, Maldonado MI, Fernandez-Ibanez P, Gernjak W (2007) Photocatalytic decontamination and disinfection of water with solar collectors. Catal Today 122:137–149CrossRefGoogle Scholar
  58. Marion F, Munz RJ, Dolbec R, Xue S, Boulos M (2007) Effect of plasma power and precursor size distribution on alumina nanoparticles produced in an inductively coupled plasma (ICP) reactor. J Thermal Spray Technol 17:533–550Google Scholar
  59. McGraw R (1997) Description of aerosol dynamics by the quadrature method of moments. Aerosol Sci Technol 27:255–265CrossRefGoogle Scholar
  60. Mendoza-Gonzalez NY, Goortani BM, Proulx P (2007a) Numerical simulation of silica nanoparticles production in an RF plasma reactor: effect of quench. Mater Sci Eng C 27:1265–1269CrossRefGoogle Scholar
  61. Mendoza-Gonzalez NY, Morsli ME, Proulx P (2007b) Production of nanoparticles in thermal plasmas: a model including evaporation, nucleation, condensation and fractal aggregation. J Thermal Spray Technol 17:533–550CrossRefGoogle Scholar
  62. Murphy AB (2004) Formation of titanium nanoparticles from a titanium tetrachloride plasma. J Phys D Appl Phys 37:2841–2847CrossRefGoogle Scholar
  63. Oh SM, Ishigaki T (2004) Preparation of pure rutile and anatase TiO2 nanopowders using RF thermal plasma. Thin Solid Films 457:186–191CrossRefGoogle Scholar
  64. Oh SM, Park DW (1998) Preparation of AlN fine powder by thermal plasma processing. Thin Solid Films 316:189CrossRefGoogle Scholar
  65. Ohno S, Uda M (1984) Generation rate of ultrafine metal particles in hydrogen plasma: metal reaction. J Jpn Ins Metals 48:640. (in Japanese)CrossRefGoogle Scholar
  66. Ostrikov K, Murphy AB (2007) Plasma-aided nanofabrication: where is the cutting edge? J Phys D Appl Phys 40:2223–2241CrossRefGoogle Scholar
  67. Proulx P, Bilodeau JF (1989) Particle coagulation, diffusion and themophoresis in laminar tube flows. J Aerosol Sci 20:101–111CrossRefGoogle Scholar
  68. Proulx P, Mostaghimi J, Boulos MI (1985) Plasma–particle interaction effects in induction plasma modeling under dense loading conditions. Int J Heat Mass Transf 28:1327–1336CrossRefGoogle Scholar
  69. Proulx P, Mostaghimi J, Boulos MI (1987) Heating of powder in an r.f. inductively coupled plasma under dense loading conditions. Plasma Chem Plasma Process 7:29–52CrossRefGoogle Scholar
  70. Seo JH, Hong BG (2012) Thermal plasma synthesis of nano-sized powders. Nucl Eng Technol 44:9–19CrossRefGoogle Scholar
  71. Shi Z, Lian Y, Liao FH, Zhou X, Gu Z, Zhang Y, Iijima S, Li H, Yue KT, Zhang SL (2000) Large scale synthesis of single-wall carbon nanotubes by arc-discharge method. J Phys Chem Solids 61:1031CrossRefGoogle Scholar
  72. Shigeta M, Murphy AB (2011) Thermal plasmas for nanofabrication. J Phys D Appl Phys 44:174025CrossRefGoogle Scholar
  73. Shigeta M, Watanabe T (2007) Growth mechanism of silicon-based functional nanoparticles fabricated by inductively coupled thermal plasmas. J Phys D Appl Phys 40:2407–2419CrossRefGoogle Scholar
  74. Shigeta M, Watanabe T (2008) Numerical investigation of cooling effect on platinum nanoparticle formation in an inductively coupled thermal plasma. J Appl Phys 103:074903CrossRefGoogle Scholar
  75. Shigeta M, Watanabe T (2010) Growth mechanism of binary alloy nanopowders for thermal plasma synthesis. J Appl Phys 108:043306CrossRefGoogle Scholar
  76. Smoluchowski M (1916) Drei Vortrage uber Diffusion, Brownsche Molekularbewegung undKoagulation von Kolloidteilchen. Z Physik Z 17(557–571):585–599Google Scholar
  77. Son S, Taheri M, Carpenter E, Harris VG, McHenry ME (2002) Synthesis of ferrite and nickel ferrite nanoparticles using radiofrequency thermal plasma torch. J Appl Phys 91:7589CrossRefGoogle Scholar
  78. Sone H, Kageyama T, Tanaka M, Okamoto D, Watanabe T (2016) Induction thermal plasma synthesis of lithium oxide composite nanoparticles with a spinel structure. Jpn J Appl Phys 55(7S2):07LE04CrossRefGoogle Scholar
  79. Soucy G, Jurewicz JW, Boulos MI (1995) Parametric study of the plasma synthesis of ultrafine silicon nitride powders. J Mater Sci 30(8):2008–2018CrossRefGoogle Scholar
  80. Stein M, Kruis FE (2015) Scale-up of metal nanoparticle production. NSTI: Adv Mater Tech Connect Briefs 1:203–206Google Scholar
  81. Stein M, Kruis FE (2016) Optimization of a transferred arc reactor for metal nanoparticle synthesis. J Nanopart Res 18(9):258CrossRefGoogle Scholar
  82. Tanaka M, Kageyama T, Sone H, Yoshida S, Okamoto D, Watanabe T (2016) Synthesis of lithium metal oxide nanoparticles by induction thermal plasmas. Nano 6(4):60Google Scholar
  83. Tanaka Y, Nagumo T, Sakai H, Uesugi Y, Nakamura K (2010) Nanoparticle synthesis using high-powered pulse-modulated induction thermal plasma. J Phys D Appl Phys 43:265201CrossRefGoogle Scholar
  84. Tanaka Y, Tsuke T, Guo W, Uesugi Y, Ishijima T, Watanabe S, Nakamura K (2012) A large amount synthesis of nanopowder using modulated induction thermal plasmas synchronized with intermittent feeding of raw materials. J Phys D: Conf Ser 406:012001Google Scholar
  85. Tanaka M, Watanabe T (2008) Vaporization mechanism from Sn-Ag mixture by Ar-H2 arc for nanoparticle preparation. Thin Solid Films 516(19):6645–6649CrossRefGoogle Scholar
  86. Thompson D, Leparoux M, Jaeggi C, Buha J, Pui DYH, Wang J (2013) Aerosol emission monitoring in the production of silicon carbide nanoparticles by induction plasma synthesis. J Nanopart Res 15:12CrossRefGoogle Scholar
  87. Tong L, Reddy RG (2005) Synthesis of titanium carbide nano-powders by thermal plasma. Scr Mater 52:1253CrossRefGoogle Scholar
  88. Tong L, Reddy RG (2006) Thermal plasma synthesis of SiC nano-powders/nano-fibers. Mater Res Bull 41:2303–2310CrossRefGoogle Scholar
  89. Tsai YC, Hsi CH, Bai H, Fan SK, Sun DH (2012) Single-step synthesis of Al-doped TiO2 nanoparticles using non-transferred thermal plasma torch. Jpn J Appl Phys 51:01AL01CrossRefGoogle Scholar
  90. Uda M, Ohno S, Hoshi T (1983) Process for producing fine metal particles. US Patent 4376740Google Scholar
  91. Uda M, Ohno S, Okuyama H (1987) Process for producing particles of ceramic. US Patent 4642207Google Scholar
  92. Wang XH, Li JG, Kamiyama H, Katada M, Ohashi N, Moriyoshi Y, Ishigaki T (2005) Pyrogenic iron (III)-doped TiO2 nanopowders synthesized in RF thermal plasma: phase formation, defect structure, band gap, and magnetic properties. J Am Chem Soc 127:10982–10990CrossRefGoogle Scholar
  93. Watanabe T, Itoh H, Ishii Y (2001) Preparation of ultrafine particles of silicon base intermetallic compound by arc plasma method. Thin Solid Films 390(1–2):44–50CrossRefGoogle Scholar
  94. Watanabe T, Tanaka M, Shimizu T, Liang F (2013) Metal nanoparticle production by anode jet of argon-hydrogen dc arc. Adv Mater Res 628:11–14CrossRefGoogle Scholar
  95. Yoshida T, Akashi K (1981) Preparation of ultrafine iron particles using an RF plasma. Trans Jpn Inst Metals 22:371–378CrossRefGoogle Scholar
  96. Yoshida T, Kawasaki A, Nakagawa K, Akashi K (1979) The synthesis of ultrafine titanium nitride in an rf plasma. J Mater Sci 14:1624–1630CrossRefGoogle Scholar
  97. Yoshida T, Tani T, Nishimura H, Akashi K (1983) Characterization of a hybrid plasma and its application to a chemical synthesis. J Appl Phys 54:640–646CrossRefGoogle Scholar
  98. Zhang C, Li JG, Uchikoshi T, Watanabe T, Ishigaki T (2010) (Eu3+-Nb5+)-codoped TiO2 nanopowders synthesized via Ar/O2 radio-frequency thermal plasma oxidation processing: phase composition and photoluminescence properties through energy transfer. Thin Solid Films 518:3531–3334CrossRefGoogle Scholar
  99. Zhang C, Uchikoshi T, Li JG, Watanabe T, Ishigaki T (2014) Photocatalytic activities of europium (III) and niobium (V) co-doped TiO2 nanopowders synthesized in Ar/O2 radio-frequency thermal plasmas. J Alloys Compd 606:37–43CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Electrical and Computer EngineeringKanazawa UniversityKakumaJapan

Section editors and affiliations

  • Javad Mostaghimi
    • 1
  1. 1.Department of Mechanical and Industrial EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations