Advertisement

Heat Transfer in Suspension Plasma Spraying

  • Mehdi Jadidi
  • Armelle Vardelle
  • Ali Dolatabadi
  • Christian Moreau
Reference work entry

Abstract

Suspension plasma spraying (SPS) is an emerging thermal spray processes. Its specific feature is to use a suspension that is a heterogeneous mixture of very fine particles in an aqueous or organic solvent, to achieve finely structured coatings. The latter have a great potential for demanding applications like solid-oxide fuel cells or thermal barriers in gas turbines. The suspension feedstock is injected radially or axially into a DC plasma jet in the form of a spray of droplets with size of 20–200 μm or a continuous jet. The interaction of the suspension drops/jet with the high-temperature high-velocity plasma jet results in their fragmentation into small droplets and vaporization of solvent in a few microseconds. Subsequently, the solid particles are accelerated, heated, and melted by the plasma jet and rapidly flatten and solidify after impact on the substrate. Although this process has been investigated for about 20 years, the effect of process operation parameters and mechanisms are not fully understood yet. In this chapter, the phenomena involved in suspension plasma spraying process, the basic aspects in the simulation of this process, as well as the main technological challenges are described in detail. Different correlations for suspension properties, liquid penetration height in gaseous crossflow, effervescent atomizers, droplet/particle drag coefficient, and Nusselt number, as well as the importance of coating particles’ Stokes number are discussed. Moreover, various methods for plasma jet modeling, the specific volume of fluid approach for modeling the liquid-plasma jet interaction, the commonly used secondary breakup models, and an approach for modeling suspension droplet based on a multicomponent assumption are reviewed.

References

  1. Aghasibeig M, Mousavi M, Ben Ettouill F et al (2014) Electrocatalytically active nickel-based electrode coatings formed by atmospheric and suspension plasma spraying. J Therm Spray Technol 23:220–226CrossRefGoogle Scholar
  2. Ahn K, Kim J, Yoon Y (2006) Effect of orifice internal flow on transverse injection into subsonic crossflows: cavitation and hydraulic flip. Atomization Sprays 16:15–34CrossRefGoogle Scholar
  3. ANSYS (2011) ANSYS FLUENT theory guide, Release 14.0. Cecil Township, PA, USAGoogle Scholar
  4. Ashgriz N (2011a) Handbook of atomization and sprays: theory and applications. Springer, New YorkCrossRefGoogle Scholar
  5. Ashgriz N (2011b) Atomization of a liquid jet in a crossflow. In: Proceedings of the 4th international meeting of advances in thermofluids, Melaka, 3–4 Oct 2011Google Scholar
  6. Aubignat E, Planche M, Billieres D et al (2016) Optimization of the injection with a twin-fluid atomizer for suspension plasma spray process using three non-intrusive diagnostic tools. J Vis 19:21–36CrossRefGoogle Scholar
  7. Bechtel S, Cooper J, Forest M et al (1995) A new model to determine dynamic surface tension and elongational viscosity using oscillating jet measurements. J Fluid Mech 293:379–403MATHCrossRefGoogle Scholar
  8. Bechtel S, Forest M, Youssef N et al (1998) The effect of dynamic surface tension on the oscillation of slender elliptical Newtonian jets. J Appl Mech 65:694–704CrossRefGoogle Scholar
  9. Bechtel S, Koelling K, Nguyen W et al (2002) A new technique for the measurement of the dynamic evolution of surface tension. J Colloid Interface Sci 245:142–162CrossRefGoogle Scholar
  10. Becker J, Hassa C (2002) Breakup and atomization of a kerosene jet in crossflow at elevated pressure. Atomization Sprays 11:49–67CrossRefGoogle Scholar
  11. Bhuiyan M, Saidur R, Amalina M et al (2015) Effect of nanoparticles concentration and their sizes on surface tension of nanofluids. Procedia Eng 105:431–437CrossRefGoogle Scholar
  12. Boulos M, Fauchais P, Pfender E (1994) Thermal plasmas: fundamentals and application. Plenum Press, New YorkCrossRefGoogle Scholar
  13. Bourdin E, Fauchais P, Boulos M (1983) Transient heat conduction under plasma conditions. Int J Heat Mass Transf 26:567–582CrossRefGoogle Scholar
  14. Brackbill J, Kothe D, Zemach C (1992) A continuum method for modeling surface tension. J Comput Phys 100:335–354MathSciNetMATHCrossRefGoogle Scholar
  15. Brian B, Chen J (1987) Surface tension of solid-liquid slurries. AICHE J 33(2):316–318CrossRefGoogle Scholar
  16. Buckner H, Sojka P (1991) Effervescent atomization of high viscosity fluids. Part 1: Newtonian liquids. Atomization Sprays 1:239–252CrossRefGoogle Scholar
  17. Buckner H, Sojka P, Lefebvre A (1990) Effervescent atomization of non-Newtonian single phase liquids. In: Proceedings of the 4th annual conference on atomization and spray systems, Hartford, 21–23 May 1990Google Scholar
  18. Bush S, Bennett J, Sojka P et al (1996) Momentum rate probe for use with two-phase flows. Rev Sci Instrum 67:1878–1885CrossRefGoogle Scholar
  19. Cavaliere A, Ragucci R, Noviello C (2003) Bending and break-up of a liquid jet in a high pressure airflow. Exp Thermal Fluid Sci 27:449–454CrossRefGoogle Scholar
  20. Chazelas C, Trelles J, Vardelle A (2017) The main issues to address in modeling plasma spray torch operation. J Therm Spray Technol 26:3–11CrossRefGoogle Scholar
  21. Chen H, Ding Y, Tan C (2007) Rheological behaviour of nanofluids. New J Phys 9:367CrossRefGoogle Scholar
  22. Chen H, Witharana S, Jin Y et al (2009) Predicting thermal conductivity of liquid suspensions of nanoparticles (nanofluids) based on rheology. Particuology 7:151–157CrossRefGoogle Scholar
  23. Chen S, Lefebvre A (1994) Spray cone angles of effervescent atomizers. Atomization Sprays 4:291–301CrossRefGoogle Scholar
  24. Chen X, Pfender E (1982) Unsteady heating and radiation effects of small particles in a thermal plasma. Plasma Chem Plasma Proc 2:293–316CrossRefGoogle Scholar
  25. Chen X, Pfender E (1983) Behavior of small particles in a thermal plasma flow. Plasma Chem Plasma Proc 3:351–366CrossRefGoogle Scholar
  26. Chin J, Lefebvre A (1993) Flow regimes in effervescent atomization. Atomization Sprays 3:463–475CrossRefGoogle Scholar
  27. Chin J, Lefebvre A (1995) A design procedure for effervescent atomizers. ASME J Engng Gas Turbines Power 117:266–271CrossRefGoogle Scholar
  28. Chinnam J, Das D, Vajjha R et al (2015) Measurements of the surface tension of nanofluids and development of a new correlation. Int J Therm Sci 98:68–80CrossRefGoogle Scholar
  29. CODE_STURNE (2017) http://code-saturne.org/cms. Accessed 27 Feb 2017
  30. Costa M, Melo M, Sousa J et al (2006) Spray characteristics of angled liquid injection into subsonic crossflows. AIAA J 44:646–653CrossRefGoogle Scholar
  31. Crowe C, Sommerfeld M, Tsuji Y (1998) Multiphase flows with droplets and particles. CRC Press, Boca RatonGoogle Scholar
  32. Curry N, VanEvery K, Snyder T et al (2014) Thermal conductivity analysis and lifetime testing of suspension plasma-sprayed thermal barrier coatings. Coatings 4:630–650CrossRefGoogle Scholar
  33. Dalir E (2016) Three-dimensional modeling of arc voltage fluctuations in suspension plasma spraying. Master thesis, Concordia University, MontrealGoogle Scholar
  34. Dumouchel C (2008) On the experimental investigation on primary atomization of liquid streams. Exp Fluids 45:371–422CrossRefGoogle Scholar
  35. Dussoubs B, Mariaux G, Vardelle A et al (1999) D.C. plasma spraying: effect of arc root fluctuations on particle behavior in the plasma jet. High Temp Mat Processes 3:235–254CrossRefGoogle Scholar
  36. Echekki T, Mastorakos E (2010) Turbulent combustion modeling, advances, new trends and perspectives. Springer, DordrechtMATHGoogle Scholar
  37. Esfarjani S, Dolatabadi A (2009) A 3D simulation of two-phase flow in an effervescent atomizer for suspension plasma spray. Surf Coat Technol 203(15):2074–2080CrossRefGoogle Scholar
  38. Fan L, Zhu C (1998) Principles of gas-solid flows. Cambridge University Press, CambridgeMATHCrossRefGoogle Scholar
  39. Fauchais P, Montavon G (2010) Latest developments in suspension and liquid precursor thermal spraying. J Therm Spray Technol 19:226–239CrossRefGoogle Scholar
  40. Fauchais P, Etchart-Salas R, Rat V et al (2008) Parameters controlling liquid plasma spraying: solutions, sols, or suspensions. J Therm Spray Technol 17:31–59CrossRefGoogle Scholar
  41. Fauchais P, Heberlein J, Boulos M (2014) Thermal spray fundamentals from powder to part. Springer, New YorkCrossRefGoogle Scholar
  42. Fauchais P, Montavon G, Bertrand G (2010) From powders to thermally sprayed coatings. J Therm Spray Technol 19:56–80CrossRefGoogle Scholar
  43. Fauchais P, Montavon G, Lima R et al (2011) Engineering a new class of thermal spray nano-based microstructures from agglomerated nanostructured particles, suspensions and solutions: an invited review. J Phys D Appl Phys 44(9):093001.  https://doi.org/10.1088/0022-3727/44/9/093001CrossRefGoogle Scholar
  44. Fazilleau J, Delbos C, Rat V et al (2006) Phenomena involved in suspension plasma spraying part 1: suspension injection and behavior. Plasma Chem Plasma Proc 26:371–391CrossRefGoogle Scholar
  45. Fuller R, Wu P, Kirkendall K et al (2000) Effects of injection angle on atomization of liquid jets in transverse airflow. AIAA J 38:64–72CrossRefGoogle Scholar
  46. Gadow R, Killinger A, Rauch J (2008) Introduction to high-velocity suspension flame spraying (HVSFS). J Therm Spray Technol 17:655–661CrossRefGoogle Scholar
  47. Garnier E, Adams N, Sagaut P (2009) Large eddy simulation for compressible flows. Springer, New YorkMATHCrossRefGoogle Scholar
  48. Gell M, Jordan E, Teicholz M et al (2008) Thermal barrier coatings made by the solution precursor plasma spray process. J Therm Spray Technol 17:124–135CrossRefGoogle Scholar
  49. Ghadimi A, Saidur R, Metselaar H (2011) A review of nanofluid stability properties and characterization in stationary conditions. Int J Heat Mass Transf 54:4051–4068CrossRefGoogle Scholar
  50. Guildenbecher D, Lopez-Rivera C, Sojka P (2009) Secondary atomization. Exp Fluids 46:371–402CrossRefGoogle Scholar
  51. Hirt C, Nichols B (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39:201–225MATHCrossRefGoogle Scholar
  52. Howell E, Megaridis C, McNallan M (2004) Dynamic surface tension measurements of molten Sn/Pb solder using oscillating slender elliptical jets. Int J Heat Fluid Flow 25:91–102CrossRefGoogle Scholar
  53. Hsiang L, Faeth G (1992) Near-limit drop deformation and secondary breakup. Int J Multiph Flow 18:635–652MATHCrossRefGoogle Scholar
  54. Hsiang L, Faeth G (1995) Drop deformation and breakup due to shock wave and steady disturbances. Int J Multiph Flow 21:545–560MATHCrossRefGoogle Scholar
  55. Inamura T (2000) Trajectory of a liquid jet traversing subsonic airstreams. J Propuls Power 16:155–157CrossRefGoogle Scholar
  56. Inamura T, Nagai N (1997) Spray characteristics of liquid jets traversing subsonic airstreams. J Propuls Power 13(2):250–256CrossRefGoogle Scholar
  57. Jabbari F, Jadidi M, Wuthrich R et al (2014) A numerical study of suspension injection in plasma spraying process. J Therm Spray Technol 23:3–13CrossRefGoogle Scholar
  58. Jadidi M, Moghtadernejad S, Dolatabadi A (2015a) A comprehensive review on fluid dynamics and transport of suspension/liquid droplets and particles in high-velocity oxygen-fuel (HVOF) thermal spray. Coatings 5(4):576–645CrossRefGoogle Scholar
  59. Jadidi M, Moghtadernejad S, Dolatabadi A (2016a) Numerical modeling of suspension HVOF spray. J Therm Spray Technol 25:451–464CrossRefGoogle Scholar
  60. Jadidi M, Moghtadernejad S, Dolatabadi A (2016b) Penetration and breakup of liquid jet in transverse free air jet with application in suspension-solution thermal sprays. Mater Des 110:425–435CrossRefGoogle Scholar
  61. Jadidi M, Moghtadernejad S, Dolatabadi A (2017) Numerical simulation of primary breakup of round nonturbulent liquid jets in shear-laden gaseous crossflow. Atomization Sprays 27(3):227–250CrossRefGoogle Scholar
  62. Jadidi M, Mousavi M, Moghtadernejad S et al (2015b) A three-dimensional analysis of the suspension plasma spray impinging on a flat substrate. J Therm Spray Technol 24:11–23Google Scholar
  63. Jiang X, Siamas G, Jagus K et al (2010) Physical modelling and advanced simulations of gas-liquid two-phase jet flows in atomization and sprays. Prog Energy Combust Sci 36:131–167CrossRefGoogle Scholar
  64. Jordan E, Jiang C, Gell M (2015) The solution precursor plasma spray (SPPS) process: a review with energy considerations. J Therm Spray Technol 24:1153–1165CrossRefGoogle Scholar
  65. Kassner H, Siegert R, Hathiramani D et al (2008) Application of suspension plasma spraying (SPS) for manufacture of ceramic coatings. J Therm Spray Technol 17(1):115–123CrossRefGoogle Scholar
  66. Kihm K, Deignan P (1995) Dynamic surface tension of coal-water slurry fuels. Fuel 74:295–300CrossRefGoogle Scholar
  67. Killinger A, Gadow R, Mauer G et al (2011) Review of new developments in suspension and solution precursor thermal spray processes. J Therm Spray Technol 20:677–695CrossRefGoogle Scholar
  68. Kitano T, Kataoka T, Shirota T (1981) An empirical equation of the relative viscosity of polymer melts filled with various inorganic fillers. Rheol Acta 20(2):207–209CrossRefGoogle Scholar
  69. Kleinstreuer C, Feng Y (2011) Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review. Nanoscale Res Lett 6(1):229CrossRefGoogle Scholar
  70. Krieger I, Thomas J (1957) A mechanism for non-Newtonian flow in suspensions of rigid spheres. Trans Soc Rheol 3(1):137–152MATHCrossRefGoogle Scholar
  71. Lakhamraju R (2005) Liquid jet breakup studies in subsonic airstream at elevated temperatures. Master thesis, University of CincinnatiGoogle Scholar
  72. Lee K, Aalburg C, Diez F et al (2007) Primary breakup of turbulent round liquid jets in uniform crossflows. AIAA J 45(8):1907–1916CrossRefGoogle Scholar
  73. Lee Y, Hsu C, Pfender E (1981) Modeling of particle injection into a D.C. plasma jet. In: 5th international symposium on plasma chemistry, Edinburgh, 10–14 Aug 1981Google Scholar
  74. Lefebvre A (1989) Atomization and sprays. Hemisphere, New YorkGoogle Scholar
  75. Lewis J, Gauvin W (1973) Motion of particles entrained in a plasma jet. AICHE J 19:982–990CrossRefGoogle Scholar
  76. Litchfield D, Baird D (2006) The rheology of high aspect ratio nano-particle filled liquids. Rheol Rev 1–60Google Scholar
  77. Lubarsky E, Shcherbik D, Bibik O et al (2012) Fuel jet in cross flow – experimental study of spray characteristics. In: Oh HW (ed) Advanced fluid dynamics. INTECH Open Access Publisher, Vienna.  https://doi.org/10.5772/26045CrossRefGoogle Scholar
  78. Lund M, Sojka P, Lefebvre A et al (1993) Effervescent atomization at low mass fow rates. Part 1: the infuence of surface tension. Atomization Sprays 3:77–89CrossRefGoogle Scholar
  79. Marchand C, Mariaux G, Vardelle M et al (2008) Injection and aerodynamic fragmentation of liquid precursors under plasma spray conditions. In: 2nd international workshop on suspension and solution thermal spraying, Tours, 5–7 June 2008Google Scholar
  80. Mariaux G, Vardelle A (2005) 3-D time-dependent modelling of the plasma spray process. Part 1: flow modelling. Int J Therm Sci 44(4):357–366CrossRefGoogle Scholar
  81. Mariaux G, Legros E, Vardelle A (2003) Modeling of coating formation and heat flux to substrate by particles and plasma jet in plasma spraying. In: Proceedings of the international thermal spray conference 2003. Advancing the Science and Applying the Technology, ASM International, p 895Google Scholar
  82. Meillot E, Damiani D, Vincent S et al (2013) Analysis by modeling of plasma flow interactions with liquid injection. Surf Coat Technol 220:149–156CrossRefGoogle Scholar
  83. Meillot E, Guenadou D, Bourgeois C (2008) Three-dimension and transient D.C. plasma flow modeling. Plasma Chem Plasma Proc 28:69–84CrossRefGoogle Scholar
  84. Meillot E, Vincent S, Caruyer C et al (2009) From DC time-dependent thermal plasma generation to suspension plasma-spraying interactions. J Therm Spray Technol 18:875–886CrossRefGoogle Scholar
  85. Mishra P, Mukherjee S, Nayak S et al (2014) A brief review on viscosity of nanofluids. Int Nano Lett 4:109–120CrossRefGoogle Scholar
  86. Moreau E, Chazelas C, Mariaux G et al (2006) Modeling the restrike mode operation of a DC plasma spray torch. J Therm Spray Technol 15:524–530CrossRefGoogle Scholar
  87. Oberkampf W, Talpallikar M (1994) Analysis of a high velocity oxygen-fuel (HVOF) thermal spray torch, part 1: numerical formulation. In: Berndt C, Sampath S (eds) Thermal spray industrial applications. ASM International, Materials Park, p 381Google Scholar
  88. Oberste-Berghaus J, Bouaricha S, Legoux JG et al (2005) Injection conditions and in-flight particle states in suspension plasma spraying of alumina and irconia nano-ceramics. In: Berndt C, Lugsheider E (eds) International thermal spray conference. Basel, ASM International, p 512Google Scholar
  89. Pabst W (2004) Fundamental considerations on suspension rheology. Ceram Silik 48:6–13Google Scholar
  90. Panchagnula M, Sojka P (1999) Spatial droplet velocity and size profiles in effervescent atomizer-produced sprays. Fuel 78:729–741CrossRefGoogle Scholar
  91. Patterson M, Reitz R (1999) Modeling spray atomization with the kelvin-helmholtz/rayleigh-taylor hybrid model. Atomization Sprays 9:623–650CrossRefGoogle Scholar
  92. Pawlowski L (2009) Suspension and solution thermal spray coatings. Surf Coat Technol 203:2807–2829CrossRefGoogle Scholar
  93. Pilch M, Erdman C (1987) Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop. Int J Multiph Flow 13:741–757CrossRefGoogle Scholar
  94. Pourang K (2015) Effect of substrate on in-flight particle characteristics in suspension plasma spraying. Master thesis, Concordia University, MontrealGoogle Scholar
  95. Pourang K, Moreau C, Dolatabadi A (2016) Effect of substrate and its shape on in-flight particle characteristics in suspension plasma spraying. J Therm Spray Technol 25:44–54CrossRefGoogle Scholar
  96. Prosperetti A, Tryggvason G (2009) Computational methods for multiphase flow. Cambridge University Press, CambridgeMATHGoogle Scholar
  97. Reitz R (1987) Mechanisms of atomization processes in high-pressure vaporizing sprays. Atomization Spray Technol 3:309–337Google Scholar
  98. Remesh K, Yu S, Ng H et al (2003) Computational study and experimental comparison of the in-flight particle behavior for an external injection plasma spray process. J Therm Spray Technol 12:508–522CrossRefGoogle Scholar
  99. Roesler T (1988) An experimental study of aerated-liquid atomization. PhD thesis, Purdue UniversityGoogle Scholar
  100. Roesler T, Lefebvre A (1988) Photographic studies on aerated-liquid atomization, combustion fundamentals and applications. In: Proceedings of the meeting of the central states section of the Combustion Institute, Indianapolis, 2–3 May 1988Google Scholar
  101. Ronay M (1978) Determination of the dynamic surface tension of inks from the capillary instability of jets. J Colloid Interface Sci 66:55–67CrossRefGoogle Scholar
  102. Sallam K, Aalburg C, Faeth G (2004) Breakup of round nonturbulent liquid jets in gaseous crossflow. AIAA J 42(12):2529–2540CrossRefGoogle Scholar
  103. Santangelo P, Sojka P (1995) A holographic investigation of the near nozzle structure of an effervescent atomizer produced spray. Atomization Sprays 5:137–155CrossRefGoogle Scholar
  104. Sazhin S (2006) Advanced models of fuel droplet heating and evaporation. Prog Energy Combust Sci 32:162–214CrossRefGoogle Scholar
  105. Schramm L (1996) Suspensions: fundamentals and applications in the petroleum industry. The American Chemical Society, Washington, DCCrossRefGoogle Scholar
  106. Sharma A (2015) Liquid jet in oscillating crossflow: characterization of nea-field and far-field spray behavior. Master Thesis, University of CincinnatiGoogle Scholar
  107. Shraiber A, Podvysotsky A, Dubrovsky V (1996) Deformation and breakup of drops by aerodynamic forces. Atomization Sprays 6:667–692CrossRefGoogle Scholar
  108. Siegel R, Howell J (1981) Thermal radiation heat transfer, 2nd edn. Hemisphere, Washington, DCGoogle Scholar
  109. Sovani S, Sojka P, Lefebvre A (2001) Effervescent atomization. Prog Energy Combust Sci 27:483–521CrossRefGoogle Scholar
  110. Stenzler J, Lee J, Santavicca D (2003). Penetration of liquid jets in a crossflow. In: Proceedings of 41st aerospace science meeting and exhibit, Reno, 6–9 Jan 2003Google Scholar
  111. Sutherland J, Sojka P, Plesniak M (1997) Ligament controlled effervescent atomization. Atomization Sprays 7:383–406MATHCrossRefGoogle Scholar
  112. Tambe S (2010) Liquid jets injected into non-uniform crossflow. PhD thesis, University of CincinnatiGoogle Scholar
  113. Tambe S, Jeng S (2010) Three-dimensional penetration and velocity distribution of liquid jets injected transversely into a swirling crossflow. In: 22nd annual conference on liquid atomization and spray systems, Cincinnati, 16–19 May 2010Google Scholar
  114. Tambe S, Elshamy O, Jeng S (2007) Liquid jets injected transversely into a shear layer. In: 45th AIAA aerospace sciences meeting and exhibit, Reno, 8–11 Jan 2007Google Scholar
  115. Tambe S, Jeng S, Mongia H et al (2005) Liquid jets in subsonic crossflow. In: 43rd AIAA aerospace sciences meeting and exhibit, Reno, 10–13 Jan 2005Google Scholar
  116. Tanvir S, Qiao L (2012) Surface tension of nanofluid-type fuels containing suspended nanomaterials. Nanoscale Res Lett 7:226CrossRefGoogle Scholar
  117. Tavman I, Turgut A, Chirtoc M et al (2008) Experimental investigation of viscosity and thermal conductivity of suspensions containing nanosized ceramic particles. Arch Mater Sci Eng 34(2):99–104Google Scholar
  118. Taylor G (1963) The shape and acceleration of a drop in high-speed air stream. In: Batchelor G (ed) The scientific papers of sir Geoffrey Ingram Taylor, vol 3. Cambridge University Press, Cambridge, pp 457–464Google Scholar
  119. Trelles J, Chazelas C, Vardelle A et al (2009) Arc plasma torch modeling. J Therm Spray Technol 18:728–752CrossRefGoogle Scholar
  120. Trelles J, Heberlein J, Pfender E (2007) Non-equilibrium modelling of arc plasma torches. J Phys D Appl Phys 40:5937–5952CrossRefGoogle Scholar
  121. Trelles J, Pfender E, Heberlein J (2006) Multi scale element modeling of arc dynamics in a D.C. plasma torch. Plasma Chem Plasma Process 26:557–575CrossRefGoogle Scholar
  122. Tryggvason G, Scardovelli R, Zaleski S (2011) Direct numerical simulations of gas-liquid multiphase flows. Cambridge University Press, CambridgeMATHCrossRefGoogle Scholar
  123. Vardelle A, Chazelas C, Marchand C et al (2008) Modeling time-dependent phenomena in plasma spraying of liquid precursors. Pure Appl Chem 80:1981–1991CrossRefGoogle Scholar
  124. Vardelle A, Moreau C, Akedo J et al (2016) The 2016 thermal spray roadmap. J Therm Spray Technol 25:1376–1440CrossRefGoogle Scholar
  125. Vardelle A, Moreau C, Themelis N et al (2015) A perospective on plasma spray technology. Plasma Chem Plasma Proc 35:491–509CrossRefGoogle Scholar
  126. Vincent S, Balmigere G, Caruyer C et al (2009) Contribution to the modeling of the interaction between a plasma flow and a liquid jet. Surf Coat Technol 203:2162–2171CrossRefGoogle Scholar
  127. Whitlow J, Lefebvre A (1993) Effervescent atomizer operation and spray characteristics. Atomization Sprays 3:137–156CrossRefGoogle Scholar
  128. Wu P, Kirkendall K, Fuller R et al (1997) Breakup processes of liquid jets in subsonic crossflows. J Propuls Power 13(1):64–72CrossRefGoogle Scholar
  129. Yu W, France D, Routbort J et al (2008) Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transfer Eng 29:432–460CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Mehdi Jadidi
    • 1
  • Armelle Vardelle
    • 2
  • Ali Dolatabadi
    • 1
  • Christian Moreau
    • 1
  1. 1.Department of Mechanical and Industrial EngineeringConcordia UniversityMontrealCanada
  2. 2.European Ceramic Center, Laboratoire Sciences des Procédés Céramiques et de Traitements de SurfaceUniversity of LimogesLimoges CedexFrance

Section editors and affiliations

  • Javad Mostaghimi
    • 1
  1. 1.Department of Mechanical and Industrial EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations