Macroscopic Heat Conduction Formulation

  • Leandro A. SphaierEmail author
  • Jian Su
  • Renato Machado Cotta
Reference work entry


In this chapter, mathematical formulations of macroscopic heat conduction are derived from the First Law of Thermodynamics. Specific forms of the heat conduction equation in isotropic media are given in Cartesian, Cylindrical, and Spherical coordinates systems, as well as in a general orthogonal coordinate system. Heat conduction equations in anisotropic media and in heterogeneous media are then derived. Mathematical formulations of one-dimensional transient heat conduction with phase change and in multilayered composite media are presented. Finally, classical and improved lumped parameter formulations for transient heat conduction problems are analyzed more closely. The so-called Coupled Integral Equations Approach (CIEA) is reviewed as a problem reformulation and simplification tool in heat and mass diffusion. The averaged temperature and heat flux, in one or more space coordinates, are approximated by Hermite formulae for integrals, yielding analytic relations between boundary and average temperatures, to be used in place of the usual plain equality assumed in the classical lumped system analysis. The accuracy gains achieved through the improved lumped-differential formulations are then illustrated through a few typical examples.


  1. Alves LSB, Sphaier LA, Cotta RM (2000) Error analysis of mixed lumped-differential formulations in diffusion problems. Hybrid Methods Eng 2(4):409–435CrossRefGoogle Scholar
  2. An C, Su J (2011) Improved lumped models for transient combined convective and radiative cooling of multi-layer composite slabs. Appl Therm Eng 31(14–15):2508–2517CrossRefGoogle Scholar
  3. An C, Su J (2013) Lumped parameter model for one-dimensional melting in a slab with volumetric heat generation. Appl Therm Eng 60(1–2):387–396CrossRefGoogle Scholar
  4. An C, Su J (2015) Lumped models for transient thermal analysis of multilayered composite pipeline with active heating. Appl Therm Eng 87:749–759CrossRefGoogle Scholar
  5. Aparecido JB, Cotta RM (1990) Improved one-dimensional fin solutions. Heat Transf Eng 11(1):49–59CrossRefGoogle Scholar
  6. Aparecido JB, Cotta RM, Özişik MN (1989) Analytical solutions to two-dimensional diffusion type problems in irregular geometries. J Franklin Inst 326:421–434MathSciNetzbMATHCrossRefGoogle Scholar
  7. Arpaci VS (1966) Conduction heat transfer. Addison-Wesley, ReadingzbMATHGoogle Scholar
  8. Aziz A, Kraus AD (1995) Transient heat transfer in extended surfaces. Appl Mech Rev 48(7):317–350CrossRefGoogle Scholar
  9. Barbosa Mota JP, Rodrigues AE, Saatdjian E, Tondeur D (1997) Charge dynamics of methane adsorption storage system: intraparticle diffusional effects. Adsorption 3(2):117–125CrossRefGoogle Scholar
  10. Barbuto FAA, Cotta RM (1997) Integral transformation of elliptic problems within irregular domains: fully developed channel flow. Int J Numer Methods Heat Fluid Flow 7(8):778–793MathSciNetzbMATHCrossRefGoogle Scholar
  11. Barozzi GS, Pagliarini G (1985) A method to solve conjugate heat-transfer problems – the case of fully-developed laminar-flow in a pipe. J Heat Transf Trans ASME 107(1):77–83CrossRefGoogle Scholar
  12. Bastos-Neto M, Torres AEB, Azevedo DCS, Cavalcante CL Jr (2005) A theoretical and experimental study of charge and discharge cycles in a storage vessel for adsorbed natural gas. Adsorption 11(2):147–157CrossRefGoogle Scholar
  13. Benther JD, Sphaier LA (2015) One-dimensional formulation for heat and mass transfer in solid desiccant dehydration of natural gas. Heat Transf Eng 36(11):952–962CrossRefGoogle Scholar
  14. Bird RB, Stewart WE, Lightfoot EN (2002) Transport phenomena, 2nd edn. Wiley, New YorkGoogle Scholar
  15. Campo A, Schuler C (1988) Heat-transfer in laminar-flow through circular tubes accounting for two-dimensional wall conduction. Int J Heat Mass Transf 31(11):2251–2259CrossRefGoogle Scholar
  16. Carslaw HS, Jaeger JC (1959) Conduction of heat in solids. Clarendon Press, LondonzbMATHGoogle Scholar
  17. Cattaneo C (1958) Sur une forme de l’équation de la chaleur éliminant le paradoxe d’une propagation instantanée. Comptes Rendus 247(4):431–433zbMATHGoogle Scholar
  18. Cengel YA, Boles MA (1998) Thermodynamics: an engineering approach, 3rd edn. WCB/McGraw-Hill, HightstownGoogle Scholar
  19. Cheroto S, Guigon SMS, Ribeiro JW, Cotta RM (1997) Lumped-differential formulations for drying in capillary porous media. Dry Technol 15(3):811–835CrossRefGoogle Scholar
  20. Chester M (1963) Second sound in solids. Phys Rev 131(5):2013CrossRefGoogle Scholar
  21. Corrêa EJ, Cotta RM (1998) Enhanced lumped-differential formulations of diffusion problems. Appl Math Model 22(3):137–152zbMATHCrossRefGoogle Scholar
  22. Cotta RM (1998) Improved lumped-differential formulations in heat transfer, Chapter 10. In: Sun-den B, Faghri M (eds) Modelling of engineering heat transfer phenomena, vol 2. Computational Mechanics Publications, Southampton, pp 293–325Google Scholar
  23. Cotta RM, Mikhailov MD (1997) Heat conduction – lumped analysis, integral transforms, symbolic computation. Wiley, ChichesterGoogle Scholar
  24. Cotta RM, Ozisik MN, Mennig J (1990) Coupled integral-equation approach for solving phase-change problems in a finite slab. J Franklin Inst 327(2):225–234zbMATHCrossRefGoogle Scholar
  25. Cotta RM, Ungs MJ, Mikhailov MD (2003) Contaminant transport in finite fractured porous medium: integral transforms and lumped-differential formulations. Ann Nucl Energy 30(3):261–285CrossRefGoogle Scholar
  26. Cotta RM, Knupp DC, Naveira-Cotta CP (2016) Analytical heat and fluid flow in microchannels and microsystems. Mechanical engineering series. Springer, ChamzbMATHCrossRefGoogle Scholar
  27. da Silva MJM, Sphaier LA (2010) Dimensionless lumped formulation for performance assessment of adsorbed natural gas storage. Appl Energy 87(5):1572–1580CrossRefGoogle Scholar
  28. Dantas LB, Orlande HRB, Cotta RM (2002) Estimation of dimensionless parameters of Luikov’s system for heat and mass transfer in capillary porous media. Int J Therm Sci 41(3):217–227CrossRefGoogle Scholar
  29. Dantas LB, Orlande HRB, Cotta RM (2003) An inverse problem of parameter estimation for heat and mass transfer in capillary porous media. Int J Heat Mass Transf 46(9):1587–1598zbMATHCrossRefGoogle Scholar
  30. Dantas LB, Orlande HRB, Cotta RM (2007) Improved lumped-differential formulations and hybrid solution methods for drying in porous media. Int J Therm Sci 46(9):878–889CrossRefGoogle Scholar
  31. De Souza JRB, Lisboa KM, Cerqueira IG, Zotin JLZ, Naveira-Cotta CP, Cotta RM (2015) Conjugated heat transfer analysis of heated aeronautical pitot probes with flight tests experimental validation. Heat Transf Eng 36(11):991–1000CrossRefGoogle Scholar
  32. de Souza JRB, Lisboa KM, Allahyarzadeh AB, de Andrade GJA, Loureiro JBR, Naveira-Cotta CP, Freire APS, Orlande HRB, Silva GAL, Cotta RM (2016) Thermal analysis of anti-icing systems in aeronautical velocity sensors and structures. J Braz Soc Mech Sci Eng 38(5):1489–1509CrossRefGoogle Scholar
  33. Fourier JBJ (1822) Théorie analytique de la chaleur. Chez Firmin Didot, père et filsGoogle Scholar
  34. Fourier JBJ (1878) The analytical theory of heat (English translation reprint). Cambridge University Press, CambridgeGoogle Scholar
  35. Grattan-Guinness I, Ravetz J (1972) Joseph Fourier, 1768–1830: a survey of his life and work. The MIT Press, Cambridge, MAzbMATHGoogle Scholar
  36. Gregg SJ, Sing KSW (1982) Adsorption, surface area and porosity, 2nd edn. Academic, LondonGoogle Scholar
  37. Guedes ROC, Cotta RM, Brum NCL (1991) Heat transfer in laminar flow with wall axial conduction and external convection. J Thermophys Heat Transf 5(4):508–513CrossRefGoogle Scholar
  38. Guedes ROC, Ozisik MN, Cotta RM (1994) Conjugated periodic turbulent forced-convection in a parallel-plate channel. J Heat Transf Trans ASME 116(1):40–46CrossRefGoogle Scholar
  39. Guigon SMS, Dantas LB, Scofano Neto F, Cotta RM (1999) Exact solution of Luikov’s equations for drying in capillary porous media. Hybrid Methods Eng 1(4):365–387CrossRefGoogle Scholar
  40. Hermite MC (1878) Sur la formule d’interpolation de Lagrange. J Crelle 84Google Scholar
  41. Hirata SC, Couto P, Lara LG, Cotta RM (2009) Modeling and hybrid simulation of slow discharge process of adsorbed methane tanks. Int J Therm Sci 48(6):1176–1183CrossRefGoogle Scholar
  42. Hsu CT (1999) A closure model for transient heat conduction in porous media. J Heat Transf Trans ASME 121(3):733–739CrossRefGoogle Scholar
  43. Kays WM, Crawford ME, Weigand B (2004) Convective heat and mass transfer, 4th edn. McGraw-Hill, New YorkGoogle Scholar
  44. Kern DQ, Kraus AD (1972) Extended surface heat transfer. McGraw-Hill, New YorkGoogle Scholar
  45. Knupp DC, Naveira-Cotta CP, Cotta RM (2012) Theoretical analysis of conjugated heat transfer with a single domain formulation and integral transforms. Int Commun Heat Mass Transf 39(3):355–362CrossRefGoogle Scholar
  46. Knupp DC, Cotta RM, Naveira-Cotta CP (2015) Fluid flow and conjugated heat transfer in arbitrarily shaped channels via single domain formulation and integral transforms. Int J Heat Mass Transf 82:479–489CrossRefGoogle Scholar
  47. Lobo PD, Mikhailov MD, Ozisik MN (1987) On the complex eigenvalues of Luikov system of equations. Dry Technol 5(2):273–286CrossRefGoogle Scholar
  48. Luikov AV (1966) Heat and mass transfer in capillary-porous bodies. Pergamon Press, Oxford/New YorkzbMATHCrossRefGoogle Scholar
  49. Luikov AV (1968) Analytical heat diffusion theory. Academic, New York/LondonGoogle Scholar
  50. Luikov AV (1975) Systems of differential equations of heat and mass-transfer in capillary-porous bodies (review). Int J Heat Mass Transf 18(1):1–14zbMATHCrossRefGoogle Scholar
  51. Luikov AV (1980) Heat and mass transfer. Mir Publishers; Distributed by Imported Publications, Moscow/ChicagozbMATHGoogle Scholar
  52. Luikov AV, Aleksash VA, Aleksash AA (1971) Analytical methods of solution of conjugated problems in convective heat transfer. Int J Heat Mass Transf 14(8):1047–1056CrossRefGoogle Scholar
  53. Mennig J, Özişik MN (1985) Coupled integral equation approach for solving melting or solidification. Int J Heat Mass Transf 28(8):1481–1485zbMATHCrossRefGoogle Scholar
  54. Mikhailov MD, Özişik MN (1984) Unified analysis and solutions of heat and mass diffusion. Wiley, New YorkGoogle Scholar
  55. Moreira DC, Telles MCD, Nunes LCS, Sphaier LA (2015) Analysis of improved-lumped models for property estimation from temperature field data using a fin model. J Porous Media 18(10):985–996CrossRefGoogle Scholar
  56. Mori S, Tsuji M, Takahashi K, Tanimoto A, Sakakibara M (1994) Coupling of laminar-flow heat-transfer in a vertical circular tube with external free-convection. Chem Eng J Biochem Eng J 55(3):103–114CrossRefGoogle Scholar
  57. Myers GE (1998) Analytical methods in conduction heat transfer, 2nd edn. AMCHT Publications, MadisonGoogle Scholar
  58. Narasimhan TN (1999) Fourier’s heat conduction equation: history, influence, and connections. Rev Geophys 37(1):151–172CrossRefGoogle Scholar
  59. Naveira CP, Lachi M, Cotta RM, Padet J (2009) Hybrid formulation and solution for transient conjugated conduction–external convection. Int J Heat Mass Transf 52(1–2):112–123zbMATHCrossRefGoogle Scholar
  60. Naveira-Cotta CP, Lachi M, Rebay M, Cotta RM (2010) Experiments and simulations in transient conjugated conduction-convection-radiation. Heat Transf Res 41(3):209–231CrossRefGoogle Scholar
  61. Nunes JS, Cotta RM, Avelino MR, Kakac S (2010) Conjugated heat transfer in microchannels. In: Kakac S, Kosoy B, Li D, Pramuanjaroenkij A (eds) Microfluidics based microsystems: fundamentals and applications. NATO science for peace and security series a: chemistry and biology. Springer, Dordrecht, pp 61–82Google Scholar
  62. Özişik MN (1968) Boundary value problems of heat conduction. International Textbook Company, ScrantonGoogle Scholar
  63. Özişik MN (1993) Heat conduction, 2nd edn. Wiley Interscience, New YorkGoogle Scholar
  64. Perelman TL (1961) On conjugated problems of heat transfer. Int J Heat Mass Transf 3(4):293–303CrossRefGoogle Scholar
  65. Pérez Guerrero JS, Quaresma JNN, Cotta RM (2000) Simulation of laminar flow inside ducts of irregular geometry using integral transforms. Comput Mech 25(4):413–420zbMATHCrossRefGoogle Scholar
  66. Pontedeiro AC, Cotta RM, Su J (2008) Improved lumped model for thermal analysis of high burn-up nuclear fuel rods. Prog Nucl Energy 50(7):767–773CrossRefGoogle Scholar
  67. Poulikakos D (1993) Conduction heat transfer. International Textbook Company, ScrantonGoogle Scholar
  68. Regis CR, Cotta RM, Su J (2000) Improved lumped analysis of transient heat conduction in a nuclear fuel rod. Int Commun Heat Mass Transf 27(3):357–366CrossRefGoogle Scholar
  69. Reis MCL, Macêdo EN, Quaresma JNN (2000) Improved lumped-differential formulations in hyperbolic heat conduction. Int Commun Heat Mass Transf 27(7):965–974CrossRefGoogle Scholar
  70. Ribeiro JW, Cotta RM (1995) On the solution of nonlinear drying problems in capillary-porous media through integral transformation of Luikov equations. Int J Numer Methods Eng 38(6):1001–1020zbMATHCrossRefGoogle Scholar
  71. Ribeiro JW, Cotta RM, Mikhailov MD (1993) Integral transform solution of Luikov equations for heat and mass-transfer in capillary-porous media. Int J Heat Mass Transf 36(18):4467–4475zbMATHCrossRefGoogle Scholar
  72. Ruperti NJ, Cotta RM, Falkenberg CV, Su J (2004) Engineering analysis of ablative thermal protection for atmospheric reentry: improved lumped formulations and symbolic-numerical computation. Heat Transf Eng 25(6):101–111CrossRefGoogle Scholar
  73. Ruthven DM (1984) Principles of adsorption and adsorption processes. Wiley, New YorkGoogle Scholar
  74. Sacsa Diaz RP, Sphaier LA (2011) Development of dimensionless groups for heat and mass transfer in adsorbed gas storage. Int J Therm Sci 50(4):599–607CrossRefGoogle Scholar
  75. Scofano Neto F, Cotta RM (1993) Improved hybrid lumped-differential formulation for double-pipe heat-exchanger analysis. J Heat Transf 115(4):921–927CrossRefGoogle Scholar
  76. Shah RK, London AL (1978) Laminar flow forced convection in ducts: a source book for compact heat exchanger analytical data. In: Irvine TF Jr, Hartnet JP (eds) Advances in heat transfer. Academic, New YorkGoogle Scholar
  77. Sontag RE, Van Wylen GJ (1991) Introduction to thermodynamics: classical and statistical, 3rd edn. Wiley, New YorkGoogle Scholar
  78. Sphaier LA, Cotta RM (2000) Integral transform analysis of multidimensional eigenvalue problems within irregular domains. Numer Heat Transf B Fund 38(2):157–175CrossRefGoogle Scholar
  79. Sphaier LA, Cotta RM (2002) Analytical and hybrid solutions of diffusion problems within arbitrarily shaped regions via integral transforms. Comput Mech 29(3):265–276MathSciNetzbMATHCrossRefGoogle Scholar
  80. Sphaier LA, Jurumenha DS (2012) Improved lumped-capacitance model for heat and mass transfer in adsorbed gas discharge operations. Energy 44(1):978–985CrossRefGoogle Scholar
  81. Sphaier LA, Worek WM (2004) Analysis of heat and mass transfer in porous sorbents used in rotary regenerators. Int J Heat Mass Transf 47(14–16):3415–3430zbMATHCrossRefGoogle Scholar
  82. Sphaier LA, Worek WM (2009) Parametric analysis of heat and mass transfer regenerators using a generalized effectiveness-NTU method. Int J Heat Mass Transf 52(9–10):2265–2272zbMATHCrossRefGoogle Scholar
  83. Su J (2001) Improved lumped models for asymmetric cooling of a long slab by heat convection. Int Commun Heat Mass Transf 28(7):973–983CrossRefGoogle Scholar
  84. Su J (2004) Improved lumped models for transient radiative cooling of a spherical body. Int Commun Heat Mass Transf 31(1)MathSciNetCrossRefGoogle Scholar
  85. Su J, Cotta RM (2001) Improved lumped parameter formulation for simplified LWR thermohydraulic analysis. Ann Nucl Energy 28(10):1019–1031CrossRefGoogle Scholar
  86. Su G, Tan Z, Su J (2009) Improved lumped models for transient heat conduction in a slab with temperature-dependent thermal conductivity. Appl Math Model 33(1):274–283zbMATHCrossRefGoogle Scholar
  87. Tan Z, Su G, Su J (2009) Improved lumped models for combined convective and radiative cooling of a wall. Appl Therm Eng 29(11–12):2439–2443CrossRefGoogle Scholar
  88. Todreas NE, Kazimi MS (2012) Nuclear systems. Thermal hydraulic fundamentals, vol 1, 2nd edn. Taylor & Francis, Boca RatonGoogle Scholar
  89. Traiano FML, Cotta RM, Orlande HRB (1997) Improved approximate formulations for anisotropic heat conduction. Int Commun Heat Mass Transf 24(6):869–878CrossRefGoogle Scholar
  90. Vasiliev LL, Kanonchik L, Mishkinis D, Rabetsky M (2000) Adsorbed natural gas storage and transportation vessels. Int J Therm Sci 39(9–11):1047–1055CrossRefGoogle Scholar
  91. Vernotte P (1958) Les paradoxes de la théorie continue de l’équation de la chaleur. Comptes Rendus 246(22):3154–3155zbMATHGoogle Scholar
  92. Yener Y, Kakac S, Naveira-Cotta CP (2017) Heat conduction, 5th edn. Taylor & Francis, New YorkGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Leandro A. Sphaier
    • 1
    Email author
  • Jian Su
    • 2
  • Renato Machado Cotta
    • 3
  1. 1.Laboratory of Thermal Sciences – LATERMO, Department of Mechanical Engineering – TEM/PGMECUniversidade Federal FluminenseNiteroiBrazil
  2. 2.Nuclear Engineering Department – PEN and Nanoengineering Department – PENT, COPPEFederal University of Rio de JaneiroRio de JaneiroBrazil
  3. 3.Universidade Federal do Rio de Janeiro – UFRJRio de JaneiroBrazil

Section editors and affiliations

  • Renato M. Cotta
    • 1
  1. 1.Universidade Federal do Rio de Janeiro, Department of Mechanical EngineeringUFRJ Politécnica/COPPERio de JaneiroBrazil

Personalised recommendations