Advertisement

Radiative Plasma Heat Transfer

  • Alain Gleizes
Reference work entry

Abstract

Radiation emitted by thermal plasmas and in particular by electric arcs is a well-known phenomenon. But radiation is also an important term of the internal energy balance of these plasmas, governing the temperature in the hottest regions and heating the external regions by absorption mechanisms. Hence, the measurement and calculation of the radiation terms are essential in plasma research and development. In this chapter, some definitions of various parameters or functions allowing to determine the emission and the absorption of radiation are presented. The main radiation laws useful for plasma conditions are also presented and used to compute the contribution of various physical mechanisms involved in radiation. It must be noted that the spectral description of this radiation is very complex, and for a given temperature, it may require up to one million spectral points.

The third and fourth sections of this chapter are devoted to the calculation of radiation transfer in thermal plasmas, with special emphasis on the notion of net emission coefficient which is a strong simplification very useful for thermal plasmas modeling, simple to use, and rather precise and able to take into account various parameters such as the temperature, the nature of the gas or vapor (in particular metal vapor), and the size of the plasma. Other interesting but more complex methods are presented, with specific results showing the advantages and drawbacks. Finally, in the last section, the role of radiation in practical conditions is analyzed.

References

  1. Ali AW, Griem HR (1965) Theory of resonance broadening of spectral lines by atom-atom impacts. Phys Rev 140:A1044CrossRefGoogle Scholar
  2. Aubrecht V, Bartlova M (2009) Net emission coefficients of radiation in air and SF6 thermal plasmas. Plasma Chem Plasma Process 29:131–147.  https://doi.org/10.1007/s11090-008-9163-xCrossRefGoogle Scholar
  3. Aubrecht V, Lowke JJ (1994) Calculations of radiation transfer in SF6 plasmas using the method of partial characteristics. J Phys D Appl Phys 27:20662073Google Scholar
  4. Bakken JA, Gu L, Larsen H, Sevastyanenko VG (1997) Numerical modelling of electric arcs. J Eng Phys Thermophys 70:4CrossRefGoogle Scholar
  5. Bartlova M, Bogatyreva N, Aubrecht V (2015) Modelling radiative properties of SF6 arc plasma. Plasma Phys Technol 2(3):300–303Google Scholar
  6. Benilov M (2015) Physics of spotless mode on cathodes of metal vapor arcs. IEEE Int Conf Plasma Sc (ICOPS).  https://doi.org/10.1109/PLASMA.2015.7179730. Antalya (Turkey)
  7. Biberman LM, Norman GE (1960) Continuous spectra of atomic gases and plasma. Opt Spectrosc 8:230Google Scholar
  8. Billoux T (2013) Elaboration d’une base de données radiatives pour des plasmas de type CwHxOyNz et application au transfert radiatif pour des mélanges air, CO2 et CO-H2. PhD thesis, University of Toulouse (in French)Google Scholar
  9. Billoux T, Cressault Y, Gleizes A (2015) Net emission coefficient for CO-H2 thermal plasmas with the consideration of molecular systems. J Quant Spectrosc Radiat Transf 166:42–54CrossRefGoogle Scholar
  10. Bogatyreva N, Bartlova M, Aubrecht V (2011) J Phys Conf Ser 275:012009CrossRefGoogle Scholar
  11. Bouaziz M, Raynal G, Razafinimanana M, Gleizes A (1996) An experimental and theoretical study of the absorption of SF6 arc plasma radiation by cold SF6 gas. J Phys D Appl Phys 29:2885–2891CrossRefGoogle Scholar
  12. Boulos M, Fauchais P, Pfender E (1994) Thermal plasmas – fundamentals and applications. Plenum Press, New YorkGoogle Scholar
  13. Cabannes F, Chapelle J (1971) Spectroscopic plasma diagnostic, Chapter 7. In: Venugopalan M (ed) Reactions under plasma conditions, vol 1. Wiley-Interscience, New-YorkGoogle Scholar
  14. Chauveau S, Deron C, Perrin M-Y, Riviere P, Soufiani A (2003) Radiative transfer in LTE air plasmas for temperatures up to 15, 000 K. J Quant Spectrosc Radiat Transf 77:113–130CrossRefGoogle Scholar
  15. Condon E, Shortley G (1935) The theory of atomic spectra. Cambridge University Press, Cambridge. ISBN 0-521-09209-4Google Scholar
  16. Cowan RD (1981) The theory of atomic structure and spectra. University of California Press, Berkeley. ISBN 0-520-03821-5Google Scholar
  17. Cressault Y, Gleizes A (2013) Thermal plasma properties for Ar-Al, Ar-Fe and Ar-Cu mixtures used in welding plasmas processes. Part I: data tables of net emission coefficients. J Phys D Appl Phys 46:415206. (16pp)CrossRefGoogle Scholar
  18. Cressault Y, Hannachi R, Teulet P, Gleizes A, Gonnet J-P, Battandier J-Y (2008) Influence of metallic vapours on the properties of air thermal plasmas. Plasma Sources Sci Technol 17:035016CrossRefGoogle Scholar
  19. Cressault Y, Rouffet M-E, Gleizes A, Meillot E (2010) Net emission coefficient of Ar-H2-He thermal plasmas at atmospheric pressure. J Phys D Appl Phys 43:335204CrossRefGoogle Scholar
  20. Cressault Y, Gleizes A, Riquel G (2012) Properties of air-aluminium thermal plasmas. J Phys D Appl Phys 45:265202. (12pp)CrossRefGoogle Scholar
  21. Cressault Y, Bauchire J-M, Hong D, Rabat H, Riquel G, Gleizes A (2015) Radiation of long and high power arcs. J Phys D Appl Phys 48:415201. (16pp)CrossRefGoogle Scholar
  22. Deron C, Riviere P, Perrin M-Y, Soufiani A (2004) 15th international conference on gas discharges and their applications (GD2004). Toulouse 1:137Google Scholar
  23. Deron C, Riviere P, Perrin M-Y, Soufiani A (2006) Coupled radiation, conduction, and Joule heating in argon thermal plasmas. J Thermophys Heat Transf 20:211–219CrossRefGoogle Scholar
  24. Drawin HW, Emard F (1973) Optical escape factors for bound-bound and free-bound radiation from plasma. I. Constant source function. Beitrag Plasmaphysik 13:143–168CrossRefGoogle Scholar
  25. Drayson SR (1976) Rapid computation of the Voigt profile. J Quant Spectrosc Radiat Transf 16:611CrossRefGoogle Scholar
  26. Eby SD, Trepanier J-Y, Zhang XD (1998) Modelling radiative transfer in SF6 circuit-breaker arcs with the P-1 approximation. J Phys D Appl Phys 31(13):1578–1588CrossRefGoogle Scholar
  27. Ernst KA, Kopainsky JG, Maecker HH (1973) The energy transport, including emission and absorption, in nitrogen arcs of different radii. IEEE Trans Plasma Sci PS-1(4):1–16Google Scholar
  28. Fagiano L, Gati R (2015) Order reduction of the radiative heat transfer model for the simulation of plasma arcs. arXiv: 1504.06204Google Scholar
  29. Freton P, Gonzalez J-J, Gleizes A (2000) Comparison between a two-and a three-dimensional arc plasma configuration. J Phys D Appl Phys 33:2442–2452CrossRefGoogle Scholar
  30. Gautier M, Cressault Y, Takali S, Rohani V, Fulcheri L (2015) Heat and mass transfer modelling in a three-phase AC hydrogen plasma torch: influence of radiation and very high pressure. In: ISPC 22 – 22nd international symposium on plasma chemistry, AntwerpGoogle Scholar
  31. Gleizes A, Gongassian M, Rahmani B (1989) Continuum absorption coefficient in SF6 and SF6-N2 mixtures plasmas. J Phys D Appl Phys 22:83–89CrossRefGoogle Scholar
  32. Gleizes A, Rahmani B, Gonzalez J-J, Liani B (1991) Calculation of net emission coefficient in N2, SF6 and SF6-N2 arc plasmas. J Phys D 24:1300–1309CrossRefGoogle Scholar
  33. Gleizes A, Gonzalez J-J, Razafinimanana M, Robert T (1992) Influence of radiation on temperature field calculation in SF6 arcs. Plasma Sources Sci Technol 1:135–140CrossRefGoogle Scholar
  34. Gleizes A, Erraki A, Naghizadeh-Kashani Y, Riad H (1997) Calculation of mean absorption coefficients for thermal plasmas. Applications to air, methane and argon-iron. In: XXIII ICPIG international conference on phenomena in ionized gases, Toulouse, II-106, July 1997Google Scholar
  35. Gleizes A, Gonzalez JJ, Freton P (2005) Thermal plasma modelling. J Phys D Appl Phys 38:R153–R183. (topical review)CrossRefGoogle Scholar
  36. Gongassian M, Schlüter D (1986) Semiempirical calculation of photoionization cross sections for the first excited levels of F I. Z Phys D 3:7–10CrossRefGoogle Scholar
  37. Gonzalez J-J, Gleizes A, Proulx P, Boulos M (1993) Mathematical modeling of a free-burning arc in the presence of metal vapor. J Appl Phys 74:3065–3070CrossRefGoogle Scholar
  38. Gonzalez J-J, Belhaouari J-B, Gleizes A (1996) Influence of demixing effect on the temperature in wall-stabilized SF6 arcs. J Phys D Appl Phys 29:1520–1524CrossRefGoogle Scholar
  39. Gonzalez J-J, Freton P, Reichert F, Petchanka A (2015) PTFE vapor contribution to pressure changes in high-voltage circuit breakers. IEEE Trans Plasma Sci 43:2703CrossRefGoogle Scholar
  40. Griem HR (1974) Spectral line broadening by plasmas. Academic, New YorkGoogle Scholar
  41. Griem HR, Baranger M, Kolb AC, Oertel G (1962) Stark broadening of neutral helium lines in a plasma. Phys Rev 125(1):177CrossRefGoogle Scholar
  42. Herzberg G (1979) (1945) Atomic spectra and atomic structure. Dover, New York. ISBN 0-486-60115-3Google Scholar
  43. Herzberg G (1989a) Molecular spectra and molecular structure: I. Spectra of diatomic molecules. Krieger Publisher Company, Malabar, Florida. ISBN 0-89464-268-5Google Scholar
  44. Herzberg G (1989b) Molecular spectra and molecular structure: II. Infrared and Raman spectra of polyatomic molecules. Krieger Publishing Company, Malabar, Florida. ISBN 0-89464-269-3Google Scholar
  45. Herzberg G (1989c) Molecular spectra and molecular structure: III. Electronic spectra and electronic structure of polyatomic molecules. Krieger Publisher Company, Malabar, Florida. ISBN 0-89464-270-7Google Scholar
  46. Hirschfelder JO, Curtiss CF, Bird BR (1964) Molecular theory of gases and liquids. Wiley, New YorkMATHGoogle Scholar
  47. Hofsaess D (1977) Photoabsorption in alkali and alkaline earth elements calculated by the Scaled Thomas Fermi method. Z Physik A 281:1–13CrossRefGoogle Scholar
  48. Hofsaess D (1979) Photoionization cross sections calculated by the scaled Thomas-Fermi method (hv ≤ 50 eV). At Data Nucl Data Tables 24:285–321CrossRefGoogle Scholar
  49. Hsu K, Etemadi K, Pfender E (1983) Study of the free-burning high-intensity argon arc. J Appl Phys 54:293Google Scholar
  50. Jacquinet-Husson N, Crepeau L, Armante R, Boutammine C, Chedin A, Scott NA, Crevoisier C, Capelle V, Boone C, Poulet-Crovisier N, Barbe A, Campargue A, Benner DC, Benilan Y, Bezard B, Boudon V, Brown LR, Coudert LH, Coustenis A, Dana V, Devi VM, Fally S, Fayt A, Flaud JM, Goldman A, Herman M, Harris GJ, Jacquemart D, Jolly A, Kleiner I, Kleinbohl A, Kwabia Tchana F, Lavrentieva N, Lacome N, Xu LH, Lyulin OM, Mandin JY, Maki A, Mikhailenko S, Miller CE, Mishina T, Moazzen-Ahmadi N, Müller HSP, Nikitin A, Orphal J, Perevalov V, Perrin A, Petkie DT, PredoiCross A, Rinsland CP, Remedios J, Rotger M, Smith MAH, Sung K, Tashkun S, Tennyson J, Toth RA, Vandaele AC, Auwera Vander J (2011) The 2011 edition of the GEISA spectroscopic database. J Quant Spectrosc Radiat Transf 112(15):2395–2445CrossRefGoogle Scholar
  51. Jan C, Cressault Y, Gleizes A, Bousoltane K (2014) Calculation of radiative properties of SF6-C2F4 thermal plasmas-application to radiative transfer in high-voltage circuit breakers modelling. J Phys D Appl Phys 47:015204CrossRefGoogle Scholar
  52. Jones RT, Reynolds QG, Curr TR, Sager D (2011) Some myths about DC arc furnaces. Southern African Pyrometallurgy. In: Jones RT, den Hoed P (eds), available at http://www.mintek.co.za/Pyromet/Files/2011Jones1.pdf
  53. Kahhali N, Rivière P, Perrin M-Y, Gonnet J-P, Soufiani A (2010) Effects of radiative transfer modelling on the dynamics of a propagating electrical discharge. J Phys D Appl Phys 43:425204.  https://doi.org/10.1088/0022-3727/43/42/425204CrossRefGoogle Scholar
  54. Kepple P, Griem HR (1968) Improved Stark profile calculations for the hydrogen lines Hα, Hβ, Hγ, and Hδ. Phys Rev 173:317CrossRefGoogle Scholar
  55. Kloc P, Aubrecht V, Bartlova M, Coufal O, Rümpler C (2015) On the selection of integration intervals for the calculation of mean absorption coefficients. Plasma Chem Plasma Process 35:1097–1110.  https://doi.org/10.1007/s11090-015-9648-3CrossRefGoogle Scholar
  56. Konjevic R, Konjevic N (1986) Stark broadening and shift of neutral copper spectral lines. FIZIKA 18:327Google Scholar
  57. Kurucz RL (1995) Atomic line data (R.L. Kurucz and B. Bell) Kurucz CD-ROM No. 23. Smithsonian Astrophysical Observatory, Cambridge, MA. Available online at http://cfa-www.harvard.edu/amp/ampdata/kurucz23/sekur.html. Accessed May 2016Google Scholar
  58. Lacombe J-G, Delannoy Y, Trassy (2008) The role of radiation in modelling of argon inductively coupled plasmas at atmospheric pressure J. Phys D Appl Phys 41(16):165204.  https://doi.org/10.1088/0022-3727/41/16/165204CrossRefGoogle Scholar
  59. Lago F, Gonzalez J-J, Freton P, Gleizes A (2004) A numerical modelling of an electric arc and its interaction with the anode: part I the two dimensional model. J Phys D Appl Phys 37:883–897CrossRefGoogle Scholar
  60. Lamet J-M, Babou Y, Rivière P, Perrin M-Y, Soufiani A (2008) Radiative transfer in gases under thermal and chemical nonequilibrium conditions: application to earth atmospheric re-entry. J Quant Spectr Radiat Transfer 109:235–244CrossRefGoogle Scholar
  61. Lamet J-M, Rivière P, Perrin M-Y, Soufiani A (2010) Narrow-band model for nonequilibrium air plasma radiation. J Quant Spectrosc Radiat Transf 111:87CrossRefGoogle Scholar
  62. Laux C, Spence TG, Kruger CH, Zare RN (2003) Optical diagnostics of atmospheric pressure air plasmas. Plasma Sources Sci Technol 12(2):125; and online http://www.specair-radiation.net/. Accessed May 2016CrossRefGoogle Scholar
  63. Letchworth KL, Benner DC (2007) Rapid and accurate calculation of the Voigt function. J Quant Spectrosc Radiat Transf 107:173CrossRefGoogle Scholar
  64. Liebermann RW, Lowke JJ (1976) Radiation emission coefficients for sulfur hexafluoride arc plasmas. J Quant Spectrosc Radiat Transf 16:253CrossRefGoogle Scholar
  65. Lowke JJ (1974) Predictions of arc temperature profiles using approximate emission coefficients for radiation losses. J Quant Spectrosc Radiat Transf 14:111–122CrossRefGoogle Scholar
  66. Lowke JJ, Mitchell D (1983) Net emission coefficients of radiation in sulphur hexafluoride plasmas. XVI ICPIG Dusseldorf 502Google Scholar
  67. Luque J, Crosley DR (1999) LIFBASE database and spectral simulation program (version 1.5). Presented at the SRI international report MP 99-009Google Scholar
  68. Menart J, Heberlein J, Pfender (1996) E line-by-line method of calculating emission coefficients for thermal plasmas consisting of monoatomic species. J Quant Spectrosc Radiat Transf 56:377–398CrossRefGoogle Scholar
  69. Menart J, Heberlein J, Pfender E (1999) Theoretical radiative transport results for a free-burning arc using a line-by-line technique. J Phys D Appl Phys 3:55–63CrossRefGoogle Scholar
  70. Modest MF (1993) Radiative heat transfer. Mc-Graw-Hill International Editions, New York. ISBN 0-07-112742-9Google Scholar
  71. Mostaghimi J, Proulx P, Boulos M (1984) Parametric study of the flow and temperature fields in an inductively coupled r.f. plasma torch. Plasma Chem Plasma Proc 4(3):199–217CrossRefGoogle Scholar
  72. Murphy AB (2010) The effects of metal vapour in arc welding. J Phys D: Appl Phys 43:434001CrossRefGoogle Scholar
  73. Naghizadeh-Kashani Y (1999) Calcul du transfert radiatif dans un plasma d’air. PhD thesis, University Paul Sabatier, Toulouse (in French)Google Scholar
  74. Naghizadeh-Kashani Y, Gleizes A (2001) Radiative transfer in oxygen, nitrogen and air thermal plasmas between 300 and 30 000 K. Progress in plasma processing of materials. Begell House, New York, pp 427–432Google Scholar
  75. Naghizadeh-Kashani Y, Cressault Y, Gleizes A (2002) Net emission coefficient of air thermal plasmas. J Phys D Appl Phys 35:2925–2934CrossRefGoogle Scholar
  76. Nordborg H, Iordanidis A (2008) Self-consistent radiation based modelling of electric arcs: I. efficient radiation approximations. J Phys D Appl Phys 41:135205.  https://doi.org/10.1088/0022-3727/41/13/135205CrossRefGoogle Scholar
  77. Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere Publishing Corporation. McGraw-Hill Book Company, New YorkMATHGoogle Scholar
  78. Paul K, Takemura T, Hiramoto T, Erraki A, Dawson F, Zissis G, Gonzalez J-J, Gleizes A, Benilov M, Lavers JD (2006) Self-consistent model of HID lamp for design applications. IEEE Trans Plasma Sci 34:N4CrossRefGoogle Scholar
  79. Perrin M-Y, Colonna G, D’Ammando G, Pietanza LD, Riviere P, Soufani A, Surzhikov S (2014) Radiation models and radiation transfer in hypersonics. The Open Plasma Phys J 7(Suppl 1: M8):114–126CrossRefGoogle Scholar
  80. Peyrou B, Chemartin L, Lalande P, Chéron B, Rivière P, Perrin M-Y, Soufiani A (2012) Radiative properties and radiative transfer in high pressure thermal air plasmas. J Phys D Appl Phys 45:455203. (12pp)CrossRefGoogle Scholar
  81. Ralchenko Y, Kramida AE, Reader J, NIST ASD team (2008) NIST atomic spectra database (version 3.1.5). National Institute of Standards and Technology, Gaithersburg. Available online at http://physics.nist.gov/asd3. Accessed May 2016
  82. Randrianandraina HZ, Cressault Y, Gleizes A (2010) Radiative transfer calculation in SF6 thermal plasmas. In: International conference on gas discharges and their applications, GD2010, GreifswaldGoogle Scholar
  83. Randrianandraina HZ, Cressault Y, Gleizes A (2011) Improvements of radiative transfer for SF6 thermal plasmas. J Phys D Appl Phys 44:194012CrossRefGoogle Scholar
  84. Raynal G, Gleizes A (1995) Radiative transfer calculation in SF6 arc plasmas using partial characteristics. Plasma Sources Sci Technology 4(1):152–160CrossRefGoogle Scholar
  85. Raynal G, Vergne P-J, Gleizes A (1995) Radiative transfer in SF6 and SF6-Cu arcs. J Phys D Appl Phys 28:508–515CrossRefGoogle Scholar
  86. Reichert F, Gonzalez J-J, Freton P (2012) Modelling and simulation of radiative energy transfer in high-voltage circuit breakers. J Phys D Appl Phys 45:375201. (11pp)CrossRefGoogle Scholar
  87. Riviere P, Soufiani A, Perrin M-Y, Riad H, Gleizes A (1996) Air mixture radiative property modelling in the temperature range 10 000–40 000 K. J Quant Spectrosc Radiat Transf 56:29–45CrossRefGoogle Scholar
  88. Rothman LS, Gordon IE, Barber RJ, Dothe H, Gamache RR, Goldman A, Perevalov VI, Tashkun SA, Tennyson J (2010) HITEMP, the high-temperature molecular spectroscopic database. J Quant Spectrosc Radiat Transf 111:2139–2150CrossRefGoogle Scholar
  89. Rothman LS, Gordon IE, Babikov Y, Barbe A, Benner DC, Bernath PF, Birk M, Bizzocchi L, Boudon V, Brown LR, Campargue A, Chance K, Cohen EA, Coudert L, Devi VM, Drouin BJ, Fayt A, Flaud JM, Gamache RR, Harrison J, Hartmann JM, Hill C, Hodges JT, Jacquemart D, Jolly A, Lamouroux J, Le Roy RJ, Li G, Long DA, Lyulin OM, Mackie CJ, Massie ST, Mikhailenko S, Muller HSP, Naumenko OV, Nikitin AV, Orphal J, Perevalov V, Perrin A, Polovtseva ER, Richard C, Smith MAH, Starikova E, Sung K, Tashkun S, Tennyson J, Toon GC, Tyuterev VG, Wagner G (2013) The HITRAN 2012 molecular spectroscopic database. J Quant Spectrosc Radiat Transf 130(Special issue):4–50. (2013) The HITRAN 2012 molecular spectroscopic database. J Quant Spectrosc Radiat Transf 130(Special issue):4–50CrossRefGoogle Scholar
  90. Sabsabi M, Cielo P, Gleizes A (1995) Characterization of an aluminum plasma induced by a YAG laser in air at atmospheric pressure. In: XXII ICPIG international conference on phenomena in ionized gases, Hoboken, August 1995, p 163Google Scholar
  91. Sarroukh H, Aubes M, Zissis G, Damelincourt J-J (1999) On the radiation trapping calculation in discharge lamps, ICOPS’99, MontereyGoogle Scholar
  92. Seeger M (2015) Perspectives on research on high voltage gas circuit breakers. Plasma Chem Plasma Process 35:527–541CrossRefGoogle Scholar
  93. Sevast’yanenko V (1979) Radiation transfer in a real spectrum. Integration over frequency. J Eng Phys 36(138–148):1979Google Scholar
  94. Sevast’yanenko V (1980) Radiation transfer in a real spectrum. Integration with respect to the frequency and angles. J Eng Phys 38:173–179CrossRefGoogle Scholar
  95. Shayler PJ, Fang MTC (1978) Radiation transport in wall-stabilised nitrogen arcs. J Phys D Appl Phys 11:1743–1756CrossRefGoogle Scholar
  96. Siegel R, Howell J (2002) Thermal radiation heat transfer, 4th edn. Taylor and Francis Ed., New York. ISBN 1-56032-839-8Google Scholar
  97. Soloukhin RI (1986) Handbook of radiative heat transfer in high-temperature gases. Hemisphere Publishing Corporation, Washington, DC. Distribution: SpringerGoogle Scholar
  98. Soucasse L, Rivière P, Soufiani A (2013) Monte Carlo methods for radiative transfer in quasi-isothermal participating media. J Quant Spectrosc Radiat Transf 128:34–42. ISSN 0022-4073CrossRefGoogle Scholar
  99. Strachan DC (1973) Radiation losses from high-current free-burning arcs between copper electrodes. J Phys D Appl Phys 6:1712CrossRefGoogle Scholar
  100. Takali S, Cressault Y, Rohani V, Fabry F, Cauneau F, Fulcheri L (2015) CFD flow modelling inside a three phase AC plasma torch working with air: influence of air radiation. In: ISPC 22 – 22nd international symposium on plasma chemistry, AntwerpGoogle Scholar
  101. Tashkun SA, Perevalov VI (2011) CDSD-4000: high-resolution, high-temperature carbon dioxide spectroscopic databank. J Quant Spectrosc Radiat Transf 112:1403–1410CrossRefGoogle Scholar
  102. Teulet P, Girard L, Razafinimanana M, Gleizes A, Bertrand P, Camy-Peyret F, Baillot E, Richard F (2006) Experimental study of an oxygen plasma cutting torch: II. Arc-material interaction. J Phys D Appl Phys 39:1557–1573CrossRefGoogle Scholar
  103. Traving G (1968) Plasma diagnostics. In: Lochte-Holtgreven W (ed) In reactions under plasma conditions. Venugopalan M (ed). Wiley, New YorkGoogle Scholar
  104. Verite J-C, Boucher T, Comte A, Delalondre C, Robin-Jouan P, Serres E, Texier V, Barrault M, Chevrier P, Fievet C (1995) Arc modelling in SF6 circuit breakers. IEE Proc Sci Meas Technol 142:189CrossRefGoogle Scholar
  105. Walkup R, Stewart B, Pritchard DE (1984) Collisional line broadening due to van der Waals potentials. Phys Rev A 29:169CrossRefGoogle Scholar
  106. Weast RC (1987) Handbook of chemistry and physics, 67th edn. CRC Press, Boca RatonGoogle Scholar
  107. Wells RJ (1999) Rapid approximation to the Voigt/Faddeeva function and its derivatives. J Quant Spectrosc Radiat Transf 62:29CrossRefGoogle Scholar
  108. Yokomizu Y, Matsumura T (2008) Radiation power of SF6 arc in current range from 500 to 20 000A at pressures of 0.1 and 0.4MPa. J Phys D Appl Phys 41:25203CrossRefGoogle Scholar
  109. Zhang JF, Fang MTC (1988) A comparative study of SF6 and N2 arcs in accelerating flow. J Phys D Appl Phys 21:730–736CrossRefGoogle Scholar
  110. Zhang JF, Fang MTC, Newland DB (1987) Theoretical investigation of a 2 kA DC nitrogen arc in a supersonic nozzle. J Phys D Appl Phys 20:668CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute LAPLACE LaboratoryCNRS and Paul Sabatier UniversityToulouseFrance

Section editors and affiliations

  • Javad Mostaghimi
    • 1
  1. 1.Department of Mechanical and Industrial EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations