Validity, Reliability, and Reproducibility of Skin Temperature in Healthy Subjects Using Infrared Thermography

Living reference work entry


Infrared thermography (IRT) is a rapid and noninvasive technology to assess skin temperature (Tsk). The technical improvement and new applications of IRT on humans should be accompanied by results about the reproducibility of IRT measurements in different population groups. In addition, there is a remarkable necessity of a larger supply on software to analyze IRT images of human beings.

In the last years, some studies have further investigated the reproducibility of Tsk in patients with different pathologies and also in healthy subjects with different characteristics (young, overweight, active, etc.). Reliability has been also studied between observers and software specialized on the analysis of IRT images of human beings.

Despite differences in their methodology among studies, most of them have shown good reproducibility results. However, it has also been proven that the reproducibility of the Tsk measurements slightly decreased with some factors, as the regions of interest (ROI) analyzed and the time between measurements. Regarding reliability results, specific software solutions have been shown as the best option to analyze IRT images.


Reliability Reproducibility Validity Skin temperature Infrared thermography Humans Healthy Overweight Patients Software 


  1. Akimov E, Son’kin V. Skin temperature and lactate threshold during muscle work in athletes. Hum Physiol. 2011;37(5):621–8.CrossRefGoogle Scholar
  2. Ammer K. Need for standardisation of measurements in thermal imaging. In: Wiecek B, editor. Thermography and lasers in medicine. Lodz: Akademickie Centrum Graficzno-Marketigowe Lodar S.A; 2003. p. 13–7.Google Scholar
  3. Ammer K. The glamorgan protocol for recording and evaluation of thermal images of the human body. Thermol Int. 2008;18(4):125–9.Google Scholar
  4. Bartlett JW, Frost C. Reliability, repeatability and reproducibility: analysis of measurement errors in continuous variables. Ultrasound Obstet Gynecol: Off J Int Soc Ultrasound Obstet Gynecol. 2008;31(4):466–75.CrossRefGoogle Scholar
  5. Bruehl S, Lubenow TR, Nath H, Ivankovich O. Validation of thermography in the diagnosis of reflex sympathetic dystrophy. Clin J Pain. 1996;12(4):316–25.CrossRefPubMedGoogle Scholar
  6. Burnham RS, McKinley RS, Vincent DD. Three types of skin-surface thermometers: a comparison of reliability, validity, and responsiveness. American journal of physical medicine & rehabilitation / Association of Academic Physiatrists. 2006;85(7):553–8.Google Scholar
  7. Cheng VS, Bai J, Chen Y. A high-resolution three-dimensional far-infrared thermal and true-color imaging system for medical applications. Med Eng Phys. 2009;31(9):1173–81.CrossRefPubMedGoogle Scholar
  8. Choi E, Lee P-B, Nahm FS. Interexaminer reliability of infrared thermography for the diagnosis of complex regional pain syndrome. Skin Research and Technology. 2013;19(2):189–93.Google Scholar
  9. Christensen J, Vaeth M, Wenzel A. Thermographic imaging of facial skin – gender differences and temperature changes over time in healthy subjects. Dentomaxillofac Radiol. 2012;41(8):662–7.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Costa ACS, Dibai Filho AV, Packer AC, Rodrigues-Bigaton D. Intra and inter-rater reliability of infrared image analysis of masticatory and upper trapezius muscles in women with and without temporomandibular disorder. Braz J Phys Ther. 2013;17(1):24–31.CrossRefPubMedGoogle Scholar
  11. Costello JT, McInerney CD, Bleakley CM, Selfe J, Donnelly AE. The use of thermal imaging in assessing skin temperature following cryotherapy: a review. J Therm Biol. 2012;37(2):245–74.CrossRefGoogle Scholar
  12. Denoble AE, Hall N, Pieper CF, Kraus VB. Patellar skin surface temperature by thermography reflects knee osteoarthritis severity. Clin Med Insights Arthritis Musculoskelet Disord. 2010;3:69–75.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dibai-Filho AV, Guirro EC, Ferreira VT, Brandino HE, Vaz MM, Guirro RR. Reliability of different methodologies of infrared image analysis of myofascial trigger points in the upper trapezius muscle. Braz J Phys Ther. 2015;19(2):122–8.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Feldman F, Nickoloff EL. Normal thermographic standards for the cervical spine and upper extremities. Skeletal Radiol. 1984;12(4):235–49.CrossRefPubMedGoogle Scholar
  15. Fernández-Cuevas I. Effect of endurance, speed and strength training on skin temperature measured by infrared thermography. Madrid: Universidad Politécnica de Madrid; 2012.Google Scholar
  16. Fernández-Cuevas I, Marins JC, Gómez Carmona PM, García-Concepción MÁ, Arnáiz Lastras J, Sillero Quintana M. Reliability and reproducibility of skin temperature of overweight subjects by an infrared thermography software designed for human beings. Thermol Int. 2012;22:130. Apendix 1 to number 3.Google Scholar
  17. Fernández-Cuevas I, Bouzas Marins JC, Arnáiz Lastras J, Gómez Carmona PM, Piñonosa Cano S, García-Concepción MÁ, et al. Classification of factors influencing the use of infrared thermography in humans: a review. Infrared Phys Technol. 2015;71:28–55.CrossRefGoogle Scholar
  18. Fournet D, Ross L, Voelcker T, Redortier B, Havenith G. Body mapping of thermoregulatory and perceptual responses of males and females running in the cold. J Therm Biol. 2013;38(6):339–44.CrossRefGoogle Scholar
  19. Frim J, Livingstone SD, Reed LD, Nolan RW, Limmer RE. Body composition and skin temperature variation. J Appl Physiol. 1990;68(2):540–3.CrossRefPubMedGoogle Scholar
  20. George J, Bensafi A, Schmitt AM, Black D, Dahan S, Loche F, et al. Validation of a non-contact technique for local skin temperature measurements. Skin Res Technol. 2008;14(4):381–4.CrossRefPubMedGoogle Scholar
  21. Gold JE, Cherniack M, Hanlon A, Dennerlein JT,Dropkin J. Skin temperature in the dorsal hand of office workers and severity of upper extremity musculoskeletal disorders. Int Arch Occup Environ Health. 2009;82(10):1281–92.CrossRefPubMedGoogle Scholar
  22. Gómez Carmona PM. Influencia de la información termográfica infrarroja en el protocolo de prevención de lesiones de un equipo de fútbol profesional español. Madrid: Universidad Politécnica de Madrid; 2012.Google Scholar
  23. Goodman PH, Heaslet MW, Pagliano JW, Rubin BD. Stress fracture diagnosis by computer assited thermography. Physician Sportsmed. 1985;13(4):114Google Scholar
  24. Hart J, Omolo B, Boone WR, Brown C, Ashton A. Reliability of three methods of computer-aided thermal pattern analysis. J Can Chiropr Assoc. 2007;51(3):175–85.PubMedPubMedCentralGoogle Scholar
  25. Head JF, Elliott RL. Infrared imaging: making progress in fulfilling its medical promise. Eng Med Biol Mag IEEE. 2002;21(6):80–5.CrossRefGoogle Scholar
  26. Hildebrandt C, Raschner C. An intra-examiner reliability study of knee temperature patterns with medical infrared thermal imaging. Thermol Int. 2009a;19(3):73–6.Google Scholar
  27. Hildebrandt C. Medical infrared thermography as a screening tool for knee injuries in professional junior alpine-ski-racers in Austria – Findings of a pilot study. In: Sciences EECoS, editor. 14th annual ECSS Congress; Oslo, Norway: ECSS European College on Sport Sciences; 2009b.Google Scholar
  28. Hildebrandt C, Raschner C, Ammer K. An overview of recent application of medical infrared thermography in sports medicine in Austria. Sensors. 2010;10(5):4700–15.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hildebrandt C, Zeilberger K, Ring EFJ, Raschner C. The application of medical infrared thermography in sports medicine. In: Zaslav KR, editor. An international perspective on topics in sports medicine and sports injury. InTech; 2012. p. 534.Google Scholar
  30. Jiang LJ, Ng EY, Yeo AC, Wu S, Pan F, Yau WY, et al. A perspective on medical infrared imaging. J Med Eng Technol. 2005;29(6):257–67.CrossRefPubMedGoogle Scholar
  31. Littlejohn RAN. Thermographic assessment of the forearm during data entry tasks: a reliability study. Virginia Tech.; Blacksburg, Virginia, USA 2008.Google Scholar
  32. Liu J, Xu LX. Boundary information based diagnostics on the thermal states of biological bodies. Int J Heat Mass Transfer. 2000;43(16):2827–39.CrossRefGoogle Scholar
  33. Marins J.C.B, Fernández-Cuevas I, Arnaiz-Lastras J, Fernandes A.A. y Sillero-Quintana M. Aplicaciones de la termografía infrarroja en el deporte. Una revisión / Applications of Infrared Thermography in Sports. A Review. Revista Internacional de Medicina y Ciencias de la Actividad Física y el Deporte. 2015;60: 805–824.
  34. McCoy M, Campbell I, Stone P, Fedorchuk C, Wijayawardana S, Easley K. Intra-examiner and inter-examiner reproducibility of paraspinal thermography. PLoS One. 2011;6(2):e16535.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Merla A, Iodice P, Tangherlini A, De Michele G, Di Romualdo S, Saggini R, et al. Monitoring skin temperature in trained and untrained subjects throughout thermal video. Conf Proc IEEE Eng Med Biol Soc. 2005;2(1):1684–6.PubMedGoogle Scholar
  36. Murawski P, Jung A, Ring FEJ, Zuber J, Plassmann P, Kalicki B. “Image ThermaBase” – a software programme to capture and analyse thermographic images. Thermol Int. 2003;13(1):5–9.Google Scholar
  37. Ng EYK. A review of thermography as promising non-invasive detection modality for breast tumor. Int J Therm Sci. 2009;48(5):849–59.CrossRefGoogle Scholar
  38. Niu HH, Lui PW, Hu JS, Ting CK, Yin YC, Lo YL, et al. Thermal symmetry of skin temperature: normative data of normal subjects in Taiwan. Zhonghua Yi Xue Za Zhi (Taipei). 2001;64(8):459–68.Google Scholar
  39. Oerlemans HM, Perez RS, Oostendorp RA, Goris RJ. Objective and subjective assessments of temperature differences between the hands in reflex sympathetic dystrophy. Clin Rehabil. 1999;13(5):430–8.CrossRefPubMedGoogle Scholar
  40. Owens Jr EF, Hart JF, Donofrio JJ, Haralambous J, Mierzejewski E. Paraspinal skin temperature patterns: an interexaminer and intraexaminer reliability study. J Manipulative Physiol Ther. 2004;27(3):155–9.CrossRefPubMedGoogle Scholar
  41. Pauling JD, Shipley JA, Raper S, Watson ML, Ward SG, Harris ND, et al. Comparison of infrared thermography and laser speckle contrast imaging for the dynamic assessment of digital microvascular function. Microvascular Research. 2011;83(2):162–7.Google Scholar
  42. Plassmann P, Ring EF, Jones CD. Quality assurance of thermal imaging systems in medicine. Thermol Int. 2006;16(1):10–5.Google Scholar
  43. Plaugher G, Lopes MA, Melch PE, Cremata EE. The inter- and intraexaminer reliability of a paraspinal skin temperature differential instrument. J Manipulative Physiol Ther. 1991;14(6):361–7.PubMedGoogle Scholar
  44. Rich PB, Dulabon GR, Douillet CD, Listwa TM, Robinson WP, Zarzaur BL, et al. Infrared thermography: a rapid, portable, and accurate technique to detect experimental pneumothorax. J Surg Res. 2004;120(2):163–70.CrossRefPubMedGoogle Scholar
  45. Ring E, Ammer K. The technique of infra red imaging in medicine. Thermol Int. 2000;10(1):7–14.Google Scholar
  46. Ring EF, Ammer K. Infrared thermal imaging in medicine. Physiol Meas. 2012;33(3):R33–46.CrossRefPubMedGoogle Scholar
  47. Rodrigues-Bigaton D, Dibai Filho AV, Costa ACS, Packer AC, de Castro EM. Accuracy and reliability of infrared thermography in the diagnosis of arthralgia in women with temporomandibular disorder. J Manipulative Physiol Ther. 2013;36(4):253–8.CrossRefPubMedGoogle Scholar
  48. Roy R, Boucher JP, Comtois AS. Validity of infrared thermal measurements of segmental paraspinal skin surface temperature. J Manipulative Physiol Ther. 2006;29(2):150–5.CrossRefPubMedGoogle Scholar
  49. Schwartz RG. Guidelines for neuromusculoskeletal thermography. Thermol Int. 2006;16(1):5–9.Google Scholar
  50. Selfe J, Hardaker N, Thewlis D, Karki A. An accurate and reliable method of thermal data analysis in thermal imaging of the anterior knee for use in cryotherapy research. Arch Phys Med Rehabil. 2006;87(12):1630–5.CrossRefPubMedGoogle Scholar
  51. Sherman RA, Woerman AL, Karstetter KW. Comparative effectiveness of videothermography, contact thermography, and infrared beam thermography for scanning relative skin temperature. J Rehabil Res Dev. 1996;33(4):377–86.PubMedGoogle Scholar
  52. Simpson R, McEvoy H, Machin G, Howell K, Naeem M, Plassmann P, et al. In-field-of-view thermal image calibration system for medical thermography applications. Int J Thermophys. 2008;29(3):1123–30.CrossRefGoogle Scholar
  53. Sivanandam S, Anburajan M, Venkatraman B, Menaka M, Sharath D. Medical thermography: a diagnostic approach for type 2 diabetes based on non-contact infrared thermal imaging. Endocrine. 2012;42(2):343–51.Google Scholar
  54. Skala K, Lipic T, Sovic I, Gjenero L, Grubisic I. 4D thermal imaging system for medical applications. Period Biol. 2011;113(4):407–16.Google Scholar
  55. Spalding SJ, Kwoh CK, Boudreau R, Enama J, Lunich J, Huber D, et al. Three-dimensional and thermal surface imaging produces reliable measures of joint shape and temperature: a potential tool for quantifying arthritis. Arthritis Res Ther. 2008;10(1):R10.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Uematsu S, Edwin DH, Jankel WR, Kozikowski J, Trattner M. Quantification of thermal asymmetry. Part 1: normal values and reproducibility. J Neurosurg. 1988;69(4):552–5.CrossRefPubMedGoogle Scholar
  57. Vainer BG. FPA-based infrared thermography as applied to the study of cutaneous perspiration and stimulated vascular response in humans. Phys Med Biol. 2005;50(23):R63.CrossRefPubMedGoogle Scholar
  58. Vardasca R, editor. Template based alignment and interpolation methods comparison of region of interest in thermal images. 3rd research student workshop. Glamorgan: The Research Office, University of Glamorgan; 2008.Google Scholar
  59. Varju G, Pieper CF, Renner JB, Kraus VB. Assessment of hand osteoarthritis: correlation between thermographic and radiographic methods. Rheumatology (Oxford). 2004;43(7):915–9.CrossRefGoogle Scholar
  60. Zaproudina N, Varmavuo V, Airaksinen O, Narhi M. Reproducibility of infrared thermography measurements in healthy individuals. Physiol Meas. 2008;29(4):515–24.CrossRefPubMedGoogle Scholar

Authors and Affiliations

  1. 1.Faculty of Sciences for Physical Activity and Sport (INEF)Universidad Politécnica de Madrid (Spain)MadridSpain
  2. 2.Human Performance Laboratory – LAPEHUniversidade Federal de Viçosa (Brazil)ViçosaBrazil

Personalised recommendations