Cultivation of Stevia rebaudiana Bertoni and Associated Challenges

  • Luciana G. AngeliniEmail author
  • Andrea MartiniEmail author
  • Barbara PasseraEmail author
  • Silvia TavariniEmail author
Living reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)


The rising concern about the spread of obesity and diabetes, and a growing awareness about healthy foods in western societies have stimulated, in the last years, a strong interest toward stevia sweeteners as alternative of sucrose and artificial intensive sweeteners. The worldwide demand for purified steviol glycosides from stevia is steadily increasing, and it is expected that in the future the agricultural production capacity will be lower than the market demand. This provides a strong incentive to explore the possibilities to cultivate stevia and to produce leaves and extracts, beyond the traditional production zones. The cultivation of stevia might represent a formidable opportunity for the growers, in order to diversify the cropping systems and to meet the increasing market demand for high-quality and traceable raw material. In addition, several legislative initiatives, such as the steviol glycosides approval as food additive in several countries, represent favorable factors for the development of a stevia-based agro-industry. To foster the introduction of this novel species, a significant improvement of its cultivation should be achieved and a modern agronomical blueprint defined. It is, in fact, imperative to develop economically viable and environmentally sustainable crop production systems through the integration of site-specific agronomic techniques and efficient mechanization technologies for the production and processing of a higher quality product. Several agronomic aspects require still to be optimized (e.g., choice of the cultivar, propagation and transplanting, sustainable weed management, nutrition, irrigation, harvesting), in order to improve, not only the leaf yield, but also its quality in terms of steviol glycosides and bioactive compounds. Traceability and crop quality control along the production chain are the strongest points, in order to obtain a certification that will provide to the farmers preferential market access and to sell the raw material at a differential price.

The present chapter, therefore, aims to provide updated scientific information regarding the most important agronomic factors in order to foster stevia cultivation and attain maximum yield and quality.


Agronomy Cultivation and sustainability Preharvest factors Stevia rebaudiana Sustainable crop production 



2,4-Dichlorophenoxyacetic acid


Acceptable daily intake


Arbuscular mycorrhizal fungi






Body weight


Chlorocholine chloride








Reference (or potential) evapotranspiration


Crop evapotranspiration


Field capacity




Farmyard manure


Good agricultural and collection practices




Indole-3-butyric acid


Integrated pest management


Integrated weed management




Crop coefficient




Leaf area index


Long-day conditions


Methyl-d-erythritol 4-phosphate






Murashige and Skoog medium




α-Naphthaleneacetic acid






Plant growth promoting rizhobacteria


Photosynthetic nitrogen use efficiency


Phosphorous solubilizing bacteria

Reb A

Rebaudioside A




Short-day conditions


Specific leaf weight




Steviol glycosides




Union for the Protection of New Varieties of Plants




  1. 1.
    Brandle JE, Starratt AN, Gijzen M (1998) Stevia rebaudiana: its agricultural, biological, and chemical properties. Can J Plant Sci 78:527–536CrossRefGoogle Scholar
  2. 2.
    Madan S, Ahmad S, Singh GN, Kohli K, Kumar Y, Singh R, Garg M (2010) Stevia rebaudiana (Bert.) Bertoni – a review. Indian J Nat Prod Resour 1:267–286Google Scholar
  3. 3.
    Yadav AK, Singh S, Dhyani D, Ahuja PS (2011) A review on the improvement of stevia [Stevia rebaudiana (Bertoni)]. Can J Plant Sci 91:1–27CrossRefGoogle Scholar
  4. 4.
    Otha M, Sasa S, Inoue A, Tamai T, Fujita I, Morita K, Matsuura F (2010) Characterization of novel steviol glycosides from leaves of Stevia rebaudiana Morita. J Appl Glycosci 57:199–209CrossRefGoogle Scholar
  5. 5.
    Chaturvedula VSP, Clos JF, Rhea J, Milanowski D, Mocek U, DuBois GE, Prakash I (2011) Minor diterpenoids glycosides from the leaves of Stevia rebaudiana. Phytochem Lett 4:209–212CrossRefGoogle Scholar
  6. 6.
    De S, Mondal S, Banerjee S (2013) Enhancement of stevioside recovery by diafiltration. In: Stevioside: technology, applications and health. Wiley, Oxford. doi:10.1002/9781118350720.ch9CrossRefGoogle Scholar
  7. 7.
  8. 8.
    Lemus-Mondaca R, Vega-Gálvez A, Zura-Bravo L, Ah-Hen K (2012) Stevia rebaudiana Bertoni, source of a high-potency natural sweetener: a comprehensive review on the biochemical, nutritional and functional aspects. Food Chem 132:1121–1132CrossRefGoogle Scholar
  9. 9.
    EU (2011) Commission Regulation (EU) No. 1131/2011. Off J Eur Union L 295:205–211Google Scholar
  10. 10.
    Jeppesen PB, Gregersen S, Poulsen CR, Hermansen K (2000) Stevioside acts directly on pancreatic β cells to secrete insulin: actions independent of cyclic adenosine monophosphate and adenosine triphosphate – sensitivie K+-channel activity. Metabolism 49:208–214CrossRefGoogle Scholar
  11. 11.
    Jeppesen PB, Gregersen S, Rolfsen SED, Jepsen M, Colombo M, Agger A, Xiao J, Kruhøffer M, Ørntoft T, Hermansen K (2003) Antihyperglycemic and blood pressure-reducing effects of stevioside in the diabetic Goto-Kakizaki rat. Metabolism 52:372–378CrossRefGoogle Scholar
  12. 12.
    Chatsudthipong V, Muanprasat C (2009) Stevioside and related compounds: therapeutic benefits beyond sweetness. Pharmacol Ther 121:41–54CrossRefGoogle Scholar
  13. 13.
    Kinghorn AD (2002) Overview. In: Kinghorn AD (ed) Stevia, the genus of Stevia, Medicinal and aromatic plants-industrial profiles. Taylor and Francis, London/New York, pp 1–17CrossRefGoogle Scholar
  14. 14.
    Tavarini S, Angelini LG (2013) Stevia rebaudiana Bertoni as a source of bioactive compounds: the effect of harvest time, experimental site and crop age on steviol glycoside content and antioxidant properties. J Sci Food Agric 93:2121–2129CrossRefGoogle Scholar
  15. 15.
    WHO (2009) Evaluation of certain food additives – sixty-ninth report of the Joint FAO/WHO Expert Committee on Food Additives. WHO technical report series 952. Accessed 8 Jan 2016
  16. 16.
    EU (2015) Regulation (EU) No. 2015/2283. Off J Eur Union L 327:1–22Google Scholar
  17. 17.
    Ramesh K, Singh V, Megeji NW (2006) Cultivation of stevia [Stevia rebaudiana (Bert.) Bertoni]: a comprehensive review. Adv Agron 89:137–177CrossRefGoogle Scholar
  18. 18.
    Bertoni MS (1918) La Stevia rebaudiana Bertoni. An Cient Parag 2:129–134Google Scholar
  19. 19.
    Carneiro JWP (1990) Stevia rebaudiana (Bert) Bertoni: Produção de Sementes. Paraná State University at Maringa, MaringáGoogle Scholar
  20. 20.
    Kudo M, Koga Y (1977) Photoperiodic response and its variation in Stevia rebaudiana Bertoni. Jpn J Trop Agric 20:211–217Google Scholar
  21. 21.
    Valio IFM, Rocha RF (1977) Effect of photoperiod and growth regulators on growth and flowering of Stevia rebaudiana Bertoni. Jpn J Crop Sci 46:243–248CrossRefGoogle Scholar
  22. 22.
    Metivier J, Viana AM (1979) The effect of long and short day length upon the growth of whole plants and the level of soluble proteins, sugars, and stevioside in leaves of Stevia rebaudiana Bert. J Exp Bot 30:1211–1222CrossRefGoogle Scholar
  23. 23.
    Zaidan LPB, Dietrich SMC, Felippe GM (1980) Effect of photoperiod on flowering and stevioside content in plants of Stevia rebaudiana Bertoni. Jpn J Crop Sci 49:569–574CrossRefGoogle Scholar
  24. 24.
    Miyagawa H, Fujikowa N, Kohda H, Yamasaki K, Taniguchi K, Tanaka R (1986) Studies on the tissue culture of Stevia rebaudiana and its components: (II). Induction of shoot primordia. Planta Med 4:321–324CrossRefGoogle Scholar
  25. 25.
    Proctor M, Yeo P, Lack A (1996) Natural history of pollination. Timber Press, PortlandGoogle Scholar
  26. 26.
    Chalapathi MV, Thimmegowda S, Rama Krishna Prama VR, Prasad TG (1997) Natural non-calorie sweetener Stevia (Stevia rebaudiana Bertoni): a future crop of India. Crop Res 14:347–350Google Scholar
  27. 27.
    Oddone B (1997) How to grow stevia. Technical manual. Guarani Botanicals, PawtucketGoogle Scholar
  28. 28.
    Maiti RK, Purohit SS (2008) Stevia: a miracle plant for human health. Agrobios, Jodhpur. ISBN 9788177543384Google Scholar
  29. 29.
    Raina R, Bhandari S, Chand R, Sharma Y (2013) Strategies to improve poor seed germination in Stevia rebaudiana, a low calorie sweetener. J Med Plant Res 7:1793–1799Google Scholar
  30. 30.
    Goettemoeller J, Ching A (1999) Seed germination in Stevia rebaudiana. In: Janick J (ed) Perspectives on new crops and new uses. ASHS Press, Alexandria, pp 510–511Google Scholar
  31. 31.
    Crammer B, Ikan R (1986) Sweet glycosides from the Stevia plant. Chem Br 22:915–918Google Scholar
  32. 32.
    Sumida T (1968) Reports on stevia introduced from Brazil as a new sweetness resource in Japan (English summary). J Cent Agric Exp Stn 31:1–71Google Scholar
  33. 33.
    Morita Kagaku Kogyo Co., Ltd. (2007) Greeting from the President. Accessed 21 July 2015
  34. 34.
    Evolva (2014) Zero-calorie, natural sweetener. Accessed 19 Jan 2016
  35. 35.
    JECFA (1999) Safety evaluation of certain food additives. WHO food additive series: 42. In: Prepared by the fifty-first meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). International Programme on Chemical Safety, World Health Organization, GenevaGoogle Scholar
  36. 36.
    Food and Drug Administration (FDA) (2007) Letter Department of Health and Human Services. Food and Drug Administration to Hain Celestial Group, Washington, DC, Google Scholar
  37. 37.
    EU (2012) Commission Regulation (EU) No. 231/2012. Off J Eur Union L 83:1–295Google Scholar
  38. 38.
    Industry ARC (2014) Global Stevia/Stevia Rebaudiana Market (2013–2018). Accessed 16 Sept 2015
  39. 39.
    Mintel (2014) Stevia set to steal intense sweetener market share by 2017, reports Mintel and Leatherhead Food Research, 13 January 2014. Accessed 16 Jan 2016
  40. 40.
    Lens (2015) Abstract search: steviol glycosides. Accessed 22 July 2015
  41. 41.
    Meienberg F, Sommer L, Lebrecht T, Lovera M, Gonzalez S, Luig B, Bremen V, Steiner K, Glauser M, Kienle U (2015) The bitter sweet taste of stevia. Berne Declaration, CEIRAD, Misereor, Pro Stevia Switzerland, SUNU, University of Hohenheim. Accessed 15 Jan 2016
  42. 42.
    SteviaOne (2012) La experiencia peruana. Presented at the VIth international symposium of Stevia rebaudiana, AsuncionGoogle Scholar
  43. 43.
    Gmuer H (2015) Zuckersüss und Kalorienfrei. Accessed 1 July 2015
  44. 44.
    Nikkei Asian Review (2015) Appetite for Stevia brings Japan back to Paraguay, 20 August 2015. Accessed 1 Oct 2015
  45. 45.
    Zeng J, Chen A, Li D, Yi B, Wu W (2013) Effects of salt stress on the growth, physiological responses, and glycoside contents of Stevia rebaudiana Bertoni. J Agric Food Chem 61:5720–5726CrossRefGoogle Scholar
  46. 46.
    Bamber P, Fernandez-Stark K (2012) Strengthening the competitiveness of the stevia value chain in Paraguay. Duke Centre on Globalization, Governance & Competitiveness (CGGC), Durham, Accessed 19 Jan 2016Google Scholar
  47. 47.
    Kienle U (2011) Stevia rebaudiana: der Zucker des 21. Jahrhunderts. Spurbuchverlag, BaunachGoogle Scholar
  48. 48.
    GSI (Global Stevia Institute) (2015) Stevia farming. Accessed 12 Oct 2015
  49. 49.
    GSI (Global Stevia Institute) (2015) Stevia product growth accelerates throughout the world. Accessed 12 Oct 2015
  50. 50.
    Jeppesen PB, Barriocanal L, Meyer MT, Palacios M, Canete F, Benitez S, Logwin S, Schupmann Y, Benitez G, Jimenez JT (2006) Efficacy and tolerability of oral stevioside in patients with type 2 diabetes: a long-term, randomized, double-blinded, placebo-controlled study. Diabetol Suppl 49:511–512Google Scholar
  51. 51.
    Rizzo B, Zambonin L, Angeloni C, Leoncini E, Viecelle Dalla Sega F, Prata C, Fiorentini D, Hrelia S (2013) Steviol glycosides modulate glucose transport in different cell types. Oxid Med Cell Longev 2013:1–11Google Scholar
  52. 52.
    GO4STEVIA Report Summary, CORDIS (Community Research and Development Information Service). Accessed 4 Feb 2016
  53. 53.
    WHO (2003) WHO guidelines on good agricultural and collection practices (GACP) for medicinal plants. WHO, GenevaGoogle Scholar
  54. 54.
    Sumida T (1973) Reports on Stevia rebaudiana Bertoni. Introduced from Brazil as a newsweetness resource in Japan. Misc Publ Hokkaido Natl Exp Stn 2:79–83Google Scholar
  55. 55.
    Katayama O, Sumida T, Hayashi H, Mitsuhashi H (1976) The practical application of Stevia and research and development data. I.S.U. Company, Tokyo, p 747Google Scholar
  56. 56.
    Shock CC (1982) Experimental cultivation of Rebaudis Stevia in California. Agron Prog Rep 122, Davis, CA: University of CaliforniaGoogle Scholar
  57. 57.
    Alvarez M (1984) Stevia rebaudiana Bert. estado atual do conhecimento. Universitadade Estaudual de Maringa, Maringa, p 118Google Scholar
  58. 58.
    Bertonha A, Muniz AS, Carneiro JWP, Martins EN, Jabur IC, Thomaz SI (1984) Estudo de cultivo, reproducao e selecao das variedades mais productivas de Stevia rebaudiana, en solos do norte de Prana. In: Mimeo (ed) 2nd Maringa, UEM, p 103Google Scholar
  59. 59.
    Monteiro R (1986) Taxonomia e bologia da reproducao de Stevia rebaudiana. Campinas. Dissertacan (Mestrado), Instituto de Biologia, Universitadade Estaudual de Maringa, p 104Google Scholar
  60. 60.
    Lankes C, Pude R (2008) Possibilities for growth of Stevia in Europe temperate zones. In: Geuns JMC (ed) Steviol glycosides: technical and pharmacological aspects. Proceedings of the 2th Stevia symposium 2008 of European Society of Stevia (EUSTAS), 27 June 2008, KU Leven, Leuven, pp 103–116. ISBN: 9789074253031Google Scholar
  61. 61.
    Midmore DJ, Rank AH (2002) A new rural industry – stevia – to replace imported chemical sweeteners. A report for the Rural Industries Research and Development Corporation. RIRDC Publication No W02/022Google Scholar
  62. 62.
    Tariq U, Ali M, Abbasi BH (2014) Morphogenic and biochemical variations under different spectral lights in callus cultures of Artemisia absinthium L. J Photochem Photobiol B Biol 130:264–271CrossRefGoogle Scholar
  63. 63.
    Ermakov EI, Kochetov AA (1994) Growth and productivity of Stevia under regulated conditions, depending on the photoperiod and light intensity. Russ Agric Sci 11:11–14Google Scholar
  64. 64.
    Ermakov EI, Kochetov AA (1996) Specificities of the growth and development of Stevia plants under different controllable light conditions. Russ Agric Sci 1:9–11Google Scholar
  65. 65.
    Lester T (1999) Stevia rebaudiana sweet leaf. Aust New Crop Newsl 11:1Google Scholar
  66. 66.
    Mohamed AAA, Ceunen S, Geuns JMC, Van Den Ende W, De Ley M (2011) UDP-dependent glycosyltransferases involved in the biosynthesis of steviol glycosides. J Plant Physiol 168:1136–1141CrossRefGoogle Scholar
  67. 67.
    Ceunen S, Werbrouck S, Geuns JMC (2012) Stimulation of steviol glycoside accumulation in Stevia rebaudiana by red LED light. J Plant Physiol 169:749–752CrossRefGoogle Scholar
  68. 68.
    Ceunen S, Geuns JMC (2013) Influence of photoperiodism on the spatio-temporal accumulation of steviol glycosides in Stevia rebaudiana (Bertoni). Plant Sci 198:72–82CrossRefGoogle Scholar
  69. 69.
    Ceunen S, Geuns JMC (2013) Spatio-temporal variation of the diterpene steviol in Stevia rebaudiana grown under different photoperiods. Phytochemistry 89:32–38CrossRefGoogle Scholar
  70. 70.
    Pal PK, Kumar R, Guleria V, Mahajan M, Prasad R, Pathania V, Gill BS, Singh D, Chand G, Singh B, Singh RD, Ahuja PS (2015) Crop-ecology and nutritional variability influence growth and secondary metabolites of Stevia rebaudiana Bertoni. BMC Plant Biol 15:67CrossRefGoogle Scholar
  71. 71.
    Mu H, Jiang D, Wollenweber B, Dai T, Jing Q, Cao W (2010) Long-term low radiation decreases leaf photosynthesis, photochemical efficiency and grain yield in winter wheat. J Agron Crop Sci 196:38–47CrossRefGoogle Scholar
  72. 72.
    Song R, Kelman D, Johns KL, Wright AD (2012) Correlation between leaf age, shade levels, and characteristic beneficial natural constituents of tea (Camellia sinensis) grown in Hawaii. Food Chem 133:707–714CrossRefGoogle Scholar
  73. 73.
    Slamet IH, Tahardi S (1988) The effect of shading and nitrogen fertilisation on the flowering of Stevia rebaudiana. Menara Perkeb 56:34–37Google Scholar
  74. 74.
    Kumar R, Sharma S, Ramesh K, Singh B (2013) Effects of shade regimes and planting geometry on growth, yield and quality of the natural sweetener plant stevia (Stevia rebaudiana Bertoni) in north-western Himalaya. Arch Agron Soil Sci 59:963–979CrossRefGoogle Scholar
  75. 75.
    Angelini LG, Leone G, Russo C, Tavarini S (2013) Sustainable production chain of stevia in Italy: agronomy, phytochemical assessment and downstream processing. In: Geuns JMC (ed) Knowledge on tour in Europe. Proceedings of the 7th Stevia symposium 2013 of European Society of Stevia (EUSTAS), 24–26 June 2013, Toulouse, pp 93–96. ISBN: 9789074253277Google Scholar
  76. 76.
    Ramakrishna A, Ravishankar GA (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6:1720–1731CrossRefGoogle Scholar
  77. 77.
    Ahmad N, Abdur R, Nisar A (2016) Light-induced biochemical variations in secondary metabolite production and antioxidant activity in callus cultures of Stevia rebaudiana (Bert). J Photochem Photobiol B 154:51–56CrossRefGoogle Scholar
  78. 78.
    Brandle JE, Rosa N (1992) Heritability for yield, leaf: stem ratio and stevioside content estimated from a landrace cultivar of Stevia rebaudiana. Can J Plant Sci 72:1263–1266CrossRefGoogle Scholar
  79. 79.
    Othman HS, Osman M, Zainuddin Z (2015) Morphological assessment of Stevia rebaudiana Bertoni accessions in IIUM’s germplasm as initial material for stevia breeding. Aust J Basic Appl Sci 9:1–9Google Scholar
  80. 80.
    Brandle J (1999) Genetic control of rebaudioside A and C concentration in leaves of the sweet herb, Stevia rebaudiana. Can J Plant Sci 79:85–92CrossRefGoogle Scholar
  81. 81.
    Lee JI, Kang KH, Park HW, Ham YS (1982) New high rebaudioside-A stevia variety “Suweon 11” (English abstr.). Res Rep ORD 24:186–188Google Scholar
  82. 82.
    Shizhen S (1995) A study on good variety selection in Stevia rebaudiana. Sci Agric Sin 28:37–41Google Scholar
  83. 83.
    Morita T (1987) Dried leaves. Japanes Patent 62-96025 [English abstract]Google Scholar
  84. 84.
    Anami ET, Poletine JP, Gonçalves-Vidigal MC, Vidigal Filho PS, Lacanallo GF, Kvitschal MV, Gonela A (2010) Characterization and genetic divergence in Stevia rebaudiana (Bert.) Bertoni clones based in agronomical and morphological characteristics. J Food Agric Environ 8:463–469Google Scholar
  85. 85.
    Lankes C, Zabala UM, Müller V (2010) Performance of Stevia rebaudiana Bertoni genotypes under European temperate zone conditions. In: XXVIII International Horticultural Congress on science and horticulture for people (IHC2010): international symposium, vol 936. pp 273–276Google Scholar
  86. 86.
    Yadav AK, Singh S, Singh B, Sharma RK, Vijaylata S, Sood A, Ahuja PS (2014) Release of Stevia rebaudiana cultivar HIM Stevia (CSIR-IHBT-ST-01).
  87. 87.
    Barbet-Massin C, Giuliano S, Alletto L, Daydé J, Berger M (2015) Towards a semi-perennial culture of Stevia rebaudiana (Bertoni) Bertoni under temperate climate: effects of genotype, environment and plant age on steviol glycoside content and composition. Genet Resour Crop Evol. doi:10.1007/s10722-015-0276-9Google Scholar
  88. 88.
    Hastoy C, Cosson P, Sclaunich E, Jannot P, Boutié P, Rolin D, Schurdi-Levraud V (2015) Towards breeding of new Stevia rebaudiana cultivars adapted to organic production in the South West of France: first results on genetic and phenotypic evaluation. In: Ceunen S, Geuns JMC (eds) Stevia: growth in knowledge and taste. Proceedings of the 8th Stevia symposium 2015 of European Society of Stevia (EUSTAS), 27–29 Jan 2015, Bonn, pp 225–232. ISBN: 9789074253291Google Scholar
  89. 89.
    Brandle J (1998) Stevia rebaudiana with altered steviol glycoside composition. US Patent 6255557 B1Google Scholar
  90. 90.
    Marsolais AA, Brandle J, Sys EA (1998) Stevia plant named “RSIT 94-751”. US Patent PP10564 PGoogle Scholar
  91. 91.
    Wang Q (2012) High rebaudioside-a plant and methods of producing the same and uses thereof. Patent WO 2012088612 A1Google Scholar
  92. 92.
    Alvarez Britos ER (2012) Stevia plant named “AKH L1”. US Patent PP23,164 P3Google Scholar
  93. 93.
    Alvarez Britos ER (2012) Stevia plant named “AKH L4”. US Patent 20120090063 P1Google Scholar
  94. 94.
    Yadav AK, Singh S, Rajeevr R (2014) Self-incompatibility evidenced through scanning electron microscopy and pollination behaviour in Stevia rebaudiana. Indian J Agric Sci 84:93–100Google Scholar
  95. 95.
    UPOV (2015) PLUTO – plant variety database. Accessed 23 June 2015
  96. 96.
    Ramesh K, Singh V, Singh Ahuja P (2007) Production potential of Stevia rebaudiana (Bert.) Bertoni. under intercropping systems. Arch Agron Soil Sci 53:443–458CrossRefGoogle Scholar
  97. 97.
    Schertz D, Towery D (2006) In: Lal R (ed) Encyclopedia of soil science, vol 1, 2nd edn. Taylor and Francis, New York, pp 351–353. doi:10.1081/E-ESS-120006662Google Scholar
  98. 98.
    Southward RC, Kitchen KL, Fountain DW (2004) Flowering and seed production in a model pot-grown specimen of the sweet herb Stevia rebaudiana Bertoni (Asteraceae). Agron N Z 34:183–190Google Scholar
  99. 99.
    Kumar R (2013) Seed germination of Stevia rebaudiana influenced by various potting media. Octa J Biosci 1:143–146Google Scholar
  100. 100.
    Sharma S, Walia S, Singh B, Kumar R (2015) Comprehensive review on agro technologies of low-calorie natural sweetener stevia (Stevia rebaudiana Bertoni): a boon to diabetic patients. J Sci Food Agric. doi:10.1002/jsfa.7500Google Scholar
  101. 101.
    Macchia M, Andolfi L, Ceccarini L, Angelini LG (2007) Effects of temperature, light and pre-chilling on seed germination of Stevia rebaudiana (Bertoni) Bertoni accessions. Ital J Agron 2:55–62CrossRefGoogle Scholar
  102. 102.
    Khalil SA, Zamir R, Ahmad N (2014) Selection of suitable propagation method for consistent plantlets production in Stevia rebaudiana (Bertoni). Saudi J Biol Sci 21:566–573CrossRefGoogle Scholar
  103. 103.
    Abdullateef RA, Osman MB, Zainuddin ZB (2015) Acclimatized apparatus enhanced seed germination in Stevia rebaudiana Bertoni. Int J Biol 7:28–34CrossRefGoogle Scholar
  104. 104.
    Ahmed MB, Salahin M, Karim R, Razvy MA, Hannan MM, Sultana R, Hossain M, Islam R (2007) An efficient method for in vitro clonal propagation of a newly introduced sweetener plant (Stevia rebaudiana Bertoni.) in Bangladesh. Am Eurasian J Sci Res 2:121–125Google Scholar
  105. 105.
    Knafla K (2015) In vitro culture of Stevia rebaudiana: principles and possibilities. In: Ceunen S, Geuns JMC (eds) Stevia: growth in knowledge and taste. Proceedings of the 8th Stevia symposium 2015 of European Society of Stevia (EUSTAS), 27–29 Jan 2015, Bonn, pp 117–182. ISBN: 9789074253291Google Scholar
  106. 106.
    Tamura Y, Nakamura S, Fukui H, Tabata M (1984) Comparison of Stevia plants grown from seeds, cuttings and stem-tip cultures for growth and sweet diterpene glucosides. Plant Cell Rep 3:180–182CrossRefGoogle Scholar
  107. 107.
    Martini A, Tavarini S, Macchia M, Benelli G, Romano D, Canale A, Angelini LG (2015) Floral phenology, insect pollinators and seed quality of 36 genotypes of Stevia rebaudiana Bert. cultivated in Italy. In: Ceunen S, Geuns JMC (eds) Stevia: growth in knowledge and taste. Proceedings of the 8th Stevia symposium 2015 of European Society of Stevia (EUSTAS), 27–29 Jan 2015, Bonn, pp 13–26. ISBN: 9789074253291Google Scholar
  108. 108.
    Carneiro JWP (2007) Stevia rebaudiana (Bert) Bertoni: stages of plant development. Can J Plant Sci 87:861–865CrossRefGoogle Scholar
  109. 109.
    Macchia M, Morelli I, Angelini LG, Flamini G (1999) Agronomic characteristics and quantitative analysis of stevioside in Stevia rebaudiana Bert. a new source of sweet compounds. In: Proceeding fourth European symposium on industrial crops and products, 23–25 Mar, Bonn, Edited by FNR Band 14, Gulzow, pp 331–332. ISBN 3-7843-3019-3Google Scholar
  110. 110.
    Kumar R, Sharma S (2012) Effect of light and temperature on seed germination of important medicinal and aromatic plants in north western Himalayas. Int J Med Aromat Plants 2:468–475Google Scholar
  111. 111.
    Abdullateef RA, Osman MB (2011) Effects of visible light wavelengths on seed germinability in Stevia rebaudiana Bertoni. Int J Biol 3:83–91CrossRefGoogle Scholar
  112. 112.
    Shuping C, Shizhen S (1995) Study on storage technique of Stevia rebaudiana seed. Acta Agron Sin 21:102–105Google Scholar
  113. 113.
    Shock CC (2015) Propagation of Stevia rebaudiana by rooted cuttings, Sustainable Agriculture Techniques. Oregon State University, Department of Crop and Soil Science Ext/CrS 154Google Scholar
  114. 114.
    Gvasaliya VP, Kovalenko NV, Garguliya MC (1990) Studies on the possibility of growing honey grass in Abkhazia conditions. Subtropicheskie Kul’tury 5:149–156Google Scholar
  115. 115.
    Carvalho MAM, Zaidan LBP (1995) Propagation of Stevia rebaudiana from stem cuttings. Pesq Agrop Bras 30:201–206Google Scholar
  116. 116.
    Chalapathi MV, Thimmegowda S, Kumar ND, Rao GGE, Mallikarjuna K (2001) Influence of length of cutting and growth regulators on vegetative propagation of stevia (Stevia rebaudiana Bert.). Crop Res 21:53–56Google Scholar
  117. 117.
    Ingle MR, Venugopal CK (2009) Effect of different growth regulators on rooting of stevia (Stevia rebaudiana Bertoni) cuttings. Karnataka J Agric Sci 22:455–456Google Scholar
  118. 118.
    Smitha GR, Umesha K (2012) Vegetative propagation of stevia [Stevia rebaudiana (Bertoni) Hems.] through cuttings. J Trop Agric 50:72–75Google Scholar
  119. 119.
    Bagoury EL, Olfat H, Allam AI, Abdelghany AM, Attia AE (2006) IBA application to stevia stem cutting: its productivity and quality of plant and ratoon crops. Egypt J Agric Res 84:299Google Scholar
  120. 120.
    Thiyagarajan M, Venkatachalam P (2012) Large scale in vitro propagation of Stevia rebaudiana (bert) for commercial application: pharmaceutically important and antidiabetic medicinal herb. Ind Crop Prod 37:111–117CrossRefGoogle Scholar
  121. 121.
    Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–495CrossRefGoogle Scholar
  122. 122.
    Hwang SJ (2006) Rapid in vitro propagation and enhanced stevioside accumulation in Stevia rebaudiana Bert. J Plant Biol 49:267–270CrossRefGoogle Scholar
  123. 123.
    Kalpana M, Anbazhagan M, Natarajan V (2009) Utilization of liquid medium for rapid micropropagation of Stevia rebaudiana Bertoni. J Ecobiotechnol 1:16–20Google Scholar
  124. 124.
    Ali A, Gull I, Naz S, Afghan S (2010) Biochemical investigation during different stages of in vitro propagation of Stevia rebaudiana. Pak J Bot 42:2827–2837Google Scholar
  125. 125.
    Anbazhagan M, Kalpana M, Rajendran R, Natarajan V, Dhanavel D (2010) In vitro production of Stevia rebaudiana Bertoni. Emir J Food Agric 22:216–222CrossRefGoogle Scholar
  126. 126.
    Ojha A, Sharma VN, Sharma V (2010) An efficient protocol for in vitro clonal propagation of natural sweetener plant (Stevia rebaudiana Bertoni). Afr J Plant Sci 4:319–321Google Scholar
  127. 127.
    Ahmad N, Fazal H, Zamir R, Khalil AS, Abbasi BH (2011) Callogenesis and shoot organogenesis from flowers of Stevia rebaudiana (Bert.). Sugar Tech 13:174–177CrossRefGoogle Scholar
  128. 128.
    Jitendra M, Monika S, Ratan SD, Priyanka G, Priyanka S, Kiran DJ (2012) Micropropagation of an anti-diabetic plant-Stevia rebaudiana Bertoni, (natural sweetener) in Hadoti region of South-East Rajasthan, India. Int J Biol Sci 1:37–42Google Scholar
  129. 129.
    Lata H, Chandra S, Wang YH, Raman V, Khan IA (2013) TDZ-induced high frequency plant regeneration through direct shoot organogenesis in Stevia rebaudiana Bertoni: an important medicinal plant and a natural sweetener. Am J Plant Sci 4:117–128CrossRefGoogle Scholar
  130. 130.
    Rathore S, Yadav K, Singh N, Singh SK (2014) Comparative study on callus induction, proliferation and plantlets regeneration in two cultivars of Stevia rebaudiana Bertoni-the only non caloric natural sweetener. Pertanika J Trop Agric Sci 37:499–508Google Scholar
  131. 131.
    Modi A, Patil G, Kumar N, Singh A, Subhash N (2012) A simple and efficient in vitro mass multiplication procedure for Stevia rebaudiana Bertoni and analysis of genetic fidelity of in vitro raised plants through RAPD. Sugar Tech 4:391–397CrossRefGoogle Scholar
  132. 132.
    Gantait S, Das A, Mandal N (2015) Stevia: a comprehensive review on ethnopharmacological properties and in vitro regeneration. Sugar Tech 17:95–106CrossRefGoogle Scholar
  133. 133.
    Bondarev N, Reshetnyak O, Nosov A (2003) Effects of nutrient medium composition on development of Stevia rebaudiana shoots cultivated in the roller bioreactor and their production of steviol glycosides. Plant Sci 165:845–850CrossRefGoogle Scholar
  134. 134.
    Zayova E, Stancheva I, Geneva M, Petrova M, Dimitrova L (2013) Antioxidant activity of in vitro propagated Stevia rebaudiana Bertoni plants of different origins. Turk J Biol 37:106–113Google Scholar
  135. 135.
    Rebeaux D, Perret J (2015) Sourcing stevia from Europe, economical key questions. In: Ceunen S, Geuns JMC (eds) Stevia: growth in knowledge and taste. Proceedings of the 8th Stevia symposium 2015 of European Society of Stevia (EUSTAS), 27–29 Jan 2015, Bonn. ISBN: 9789074253291Google Scholar
  136. 136.
    Taleie N, Hamidoghli Y, Rabiei B, Hamidoghli S (2012) Effects of plant density and transplanting date on herbage, stevioside, phenol and flavonoid yield of Stevia rebaudiana Bertoni. Int J Agric Crop Sci 4:298–302Google Scholar
  137. 137.
    Maheshwar HM (2005) Effect of different levels of nitrogen and dates of planting on growth and yield of Stevia (Stevia rebaudiana Bert.). MSc thesis, Department of Horticulture College of Agriculture/University of Agricultural Sciences, DharwadGoogle Scholar
  138. 138.
    Singh A, Singh K, Singh P, Singh MP (2015) Medicinal prospective and floral biology of candy leaf (Stevia rebaudiana Bertoni). Int J Adv Res 3:628–636Google Scholar
  139. 139.
    Serfaty M, Ibdah M, Fischer R, Chaimovitsh D, Saranga Y, Dudai N (2013) Dynamics of yield components and stevioside production in Stevia rebaudiana grown under different planting times, plant stands and harvest regime. Ind Crop Prod 50:731–736CrossRefGoogle Scholar
  140. 140.
    Angelini LG, Tavarini S (2014) Crop productivity, steviol glycoside yield, nutrient concentration and uptake of Stevia rebaudiana Bert. under Mediterranean field conditions. Commun Soil Sci Plant Anal 45:2577–2592CrossRefGoogle Scholar
  141. 141.
    Murayama S, Kayano R, Miyazato K, Nose A (1980) Studies on the cultivation of Stevia rebaudiana. II. Effects of fertilizer rates, planting density and seedling clones on growth and yield. Sci Bull Coll Agric 27:1–8Google Scholar
  142. 142.
    Lee JI, Kang KH, Park HW, Ham YS, Park CH (1980) Studies on the new sweetening source plant, Stevia rebaudiana in Korea. II. Effects of fertilizer rates and planting density on dry leaf yields and various agronomic characteristics of Stevia rebaudiana. Res Rep Off Rural Dev (Crop Suwon) 22:138–144Google Scholar
  143. 143.
    Donalisio MGR, Duarte FR, Pinto AJDA, Souza CJ (1982) Stevia rebaudiana. Agronomico 34:65–68Google Scholar
  144. 144.
    Rank AH, Midmore DJ (2006) Stevia, an intense, natural sweetener. Australian Government: Rural Industries Research and Development Corporation. Publication No 06/020. ISBN 1741512832Google Scholar
  145. 145.
    Rashid Z, Inamullah S, Peer QJA, Rashid M, Souliha R (2015) Influence of crop geometry on yield, yield attributes and glycoside yield of Stevia rebaudiana Bertoni. J Appl Nat Sci 7:339–343Google Scholar
  146. 146.
    Kawatani T, Kaneki Y, Tanabe T, Takahashi T (1978) On the cultivation of Kaa He-e (Stevia rebaudiana Bertoni). III. Response of Kaa He-e to fertilizer application amount and to nitrogen fertilization rates. Jpn J Trop Agric 21:165–172Google Scholar
  147. 147.
    Kawatani T, Kaneki Y, Tanabe T, Sakamoto I, Murakami K, Tanaka O (1978) On the cultivation of Kaa He-e (Stevia rebaudiana Bertoni). IV. Response of Kaa He-e to nitrogen fertilization rates and to the three major elements of fertilizer. Jpn J Trop Agric 21:173–178Google Scholar
  148. 148.
    Kawatani T, Kaneki Y, Tanabe T, Takahashi T (1980) On the cultivation of Kaa He-e (Stevia rebaudiana Bertoni). V. Response of Kaa He-e to phosphorus fertilization rates and to the three major elements of fertilizer. Jpn J Trop Agric 24:54–61Google Scholar
  149. 149.
    Liu X, Ren G, Shi Y (2011) The effect of organic manure and chemical fertilizer on growth and development of Stevia rebaudiana Bertoni. Energy Procedia 5:1200–1204CrossRefGoogle Scholar
  150. 150.
    Dube K (2011) Organic production of Stevia. Effect of organic manures, biofertilizers and growth regulators on the productivity of Stevia rebaudiana Bertoni. Asiat J Biotechnol Resours 2:403–413Google Scholar
  151. 151.
    Kumar R, Sharma S, Ramesh K, Prasad R, Pathania VL, Singh B, Singh RD (2012) Effect of agro-techniques on the performance of natural sweetener plant-stevia (Stevia rebaudiana) under western Himalayan conditions. Indian J Agron 57:74–81Google Scholar
  152. 152.
    Rashid Z, Rashid M, Inamullah S, Rasool S, Bahar FA (2013) Effect of different levels of farmyard manure and nitrogen on the yield and nitrogen uptake by stevia (Stevia rebaudiana Bertoni). Afr J Agric Res 8:3941–3945Google Scholar
  153. 153.
    Lima Filho OF, Malavolta E (1997) Symptoms of nutritional disorders in stevia Stevia rebaudiana (Bert.) Bertoni. Sci Agric 54:53–61CrossRefGoogle Scholar
  154. 154.
    Utumi MM, Monnerat PH, Pereira PRG, Fontes PCR, Godinho VdPC (1999) Macronutrient deficiencies in Stevia: visual symptoms and effects on growth, chemical composition, and stevioside production. Pesq Agrop Bras 34:1039–1043Google Scholar
  155. 155.
    Lima Filho OF, Malavolta E (1997) Nutritional interactions in stevia (Stevia rebaudiana (Bert.) Bertoni). Arq Biol Tecnol 40:351–357Google Scholar
  156. 156.
    Gosling P, Hodge A, Goodlass G, Bending GD (2006) Arbuscular mycorrhizal fungi and organic farming. Agric Ecosyst Environ 113:117–135CrossRefGoogle Scholar
  157. 157.
    Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic, LondonGoogle Scholar
  158. 158.
    Miransari M (2011) Arbuscular mycorrhizal fungi and nitrogen uptake. Arch Microbiol 193:77–81CrossRefGoogle Scholar
  159. 159.
    Gianinazzi S, Gollotte A, Binet MN, Van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530CrossRefGoogle Scholar
  160. 160.
    Zeng Y, Guo LP, Chen BD, Hao ZP, Wang JY, Huang LQ, Yang G, Cui XM, Yang L, Wu ZX (2013) Arbuscular mycorrhizal symbiosis for sustainable cultivation of Chinese medicinal plants: a promising research direction. Am J Chin Med 41:1199–1221CrossRefGoogle Scholar
  161. 161.
    Kapoor R, Giri B, Mukerji KG (2002) Glomus macrocarpum: a potential bioinoculant to improve essential oil quality and concentration in Dill (Anethum graveolens L.) and Carum (Trachyspermum ammi (Linn.) Sprague). World J Microbiol Biotechnol 18:459–463CrossRefGoogle Scholar
  162. 162.
    Kapoor R, Giri B, Mukerji KG (2002) Mycorrhization of coriander (Coriandrum sativum L.) to enhance the concentration and quality of essential oil. J Sci Food Agric 82:339–342CrossRefGoogle Scholar
  163. 163.
    Kapoor R, Giri B, Mukerji KG (2004) Improved growth and essential oil yield and quality in Foeniculum vulgare mill on mycorrhizal inoculation supplemented with P-fertilizer. Bioresour Technol 93:307–311CrossRefGoogle Scholar
  164. 164.
    Kapoor R, Chaudhary V, Bhatnagar AK (2007) Effects of arbuscular mycorrhiza and phosphorus application on artemisinin concentration in Artemisia annua L. Mycorrhiza 17:581–587CrossRefGoogle Scholar
  165. 165.
    Copetta A, Lingua G, Berta G (2006) Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. var. Genovese. Micorrhiza 16:485–494CrossRefGoogle Scholar
  166. 166.
    Portugal EP, Mercuri Quitério GC, Honório SL (2006) Seleção de fungos micorrízicos arbusculares para estévia, Stevia Rebaudiana (bert.) Bertoni. Construindo a história dos produtos naturaisGoogle Scholar
  167. 167.
    Mandal S, Evelin H, Giri B, Singh VP, Kapoor R (2013) Arbuscular mycorrhiza enhances the production of stevioside and rebaudioside-A in Stevia rebaudiana via nutritional and non-nutritional mechanisms. Appl Soil Ecol 72:187–194CrossRefGoogle Scholar
  168. 168.
    Zeneli G, Krokene P, Christiansen E, Krekling T, Gershenzon J (2006) Methyl jasmonate treatment of mature Norway spruce (Picea abies) trees increases the accumulation of terpenoid resin components and protects against infection by Ceratocystis polonica, a bark beetle-associated fungus. Tree Physiol 26:977–988CrossRefGoogle Scholar
  169. 169.
    Okada A, Shimizu T, Okada K, Kuzuyama T, Koga J, Shibuya N, Nojiri H, Yamane H (2007) Elicitor induced activation of the methylerythritol phosphate pathway toward phytoalexins biosynthesis in rice. Plant Mol Biol 65:177–187CrossRefGoogle Scholar
  170. 170.
    Goklany S, Loring RH, Glick J, Lee-Parsons CW (2009) Assessing the limitations to terpenoid indole alkaloid biosynthesis in Catharanthus roseus hairy root cultures through gene expression profiling and precursor feeding. Biotechnol Prog 25:1289–1296CrossRefGoogle Scholar
  171. 171.
    Mandal S, Upadhyay S, Singh VP, Kapoor R (2015) Enhanced production of steviol glycosides in mycorrhizal plants: a concerted effect of arbuscular mycorrhizal symbiosis on transcription of biosynthetic genes. Plant Physiol Biochem 89:100–106CrossRefGoogle Scholar
  172. 172.
    Kennedy AC, Smith KL (1995) Soil microbial diversity and the sustainability of agricultural soils. Plant Soil 170:75–86CrossRefGoogle Scholar
  173. 173.
    Das K, Dang R, Shivananda TN, Sekeroglu N (2007) Influence of bio-fertilizers on the biomass yield and nutrient content in Stevia rebaudiana Bert. grown in Indian subtropics. J Med Plant Res 1:5–8Google Scholar
  174. 174.
    Das K, Dang R, Shivananda TN, Sekeroglu N (2007) Comparative efficiency of bio-and chemical fertilizers on nutrient contents and biomass yield in medicinal plant Stevia rebaudiana Bert. IJNES 1:35–39Google Scholar
  175. 175.
    Das K, Dang R, Shivananda TN, Hegde L (2007) Effect of bio-fertilizers on biomass yield of Stevia rebaudiana. Biomed 2:278–282Google Scholar
  176. 176.
    Das K, Dang R, Shivananda TN (2008) Influence of bio-fertilizers on the availability of nutrients (N, P and K) in soil in relation to growth and yield of Stevia rebaudiana grown in South India. Int J Appl Res Nat Prod 1:20–24Google Scholar
  177. 177.
    Das K, Dang R, Shivananda TN (2009) Effect of biofertilizers on the nutrient availability in soil in relation to growth, yield and yield attributes of Stevia rebaudiana. Arch Agron Soil Sci 55:359–366CrossRefGoogle Scholar
  178. 178.
    Das K, Dang R (2010) Influence of biofertilizers on stevioside content in Stevia rebaudiana grown in acidic soil condition. Arch Appl Sci Res 2:44–49Google Scholar
  179. 179.
    Eranna N (2007) Response of Stevia rebaudiana to biofertilizers. Karnataka J Agric Sci 20:616–617Google Scholar
  180. 180.
    Umesha K, Smitha GR, Sreeramu BS, Waman AA (2011) Organic manures and bio-fertilizers effectively improve yield and quality of stevia (Stevia rebaudiana). J Appl Hortic 13:157–162Google Scholar
  181. 181.
    Vafadar F, Amooaghaie R, Otroshy M (2014) Effects of plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungus on plant growth, stevioside, NPK, and chlorophyll content of Stevia rebaudiana. J Plant Interact 9:128–136CrossRefGoogle Scholar
  182. 182.
    Das K, Dang R (2014) Influence of biofertilizers on protein, moisture and ash content in relation to swelling property, water absorption capacity, mineral elements, total phenolic level of Stevia (Stevia rebaudiana Bert.) plant grown under acidic soil zone of Shout India. Int Lett Nat Sci 1:78–97Google Scholar
  183. 183.
    Zare Hoseini R, Mohammadi E, Kalatejari S (2015) Effect of bio-fertilizer on growth, development and nutrient content (leaf and soil) of Stevia rebaudiana Bertoni. J Crop Prod 4:691–704Google Scholar
  184. 184.
    Mamta RP, Pathani V, Gulati A, Singh B, Bhanwra RK, Tewari R (2010) Stimulatory effect of phosphate solubilizing bacteria on plant growth, stevioside and rebaudioside A contents of Stevia rebaudiana Bertoni. Appl Soil Ecol 46:222–229CrossRefGoogle Scholar
  185. 185.
    Patil NM (2010) Biofertilizer effect on growth, protein and carbohydrate content in Stevia rebaudiana var Bertoni. Recent Res Sci Technol 2:42–44Google Scholar
  186. 186.
    Borda-Molina D, Pardo-García JM, Montaña-Lara JS, Martínez-Salgado MM (2011) Influencia de la materia orgánica y Azotobacter nigricans en un cultivo de Stevia rebaudiana B. Univ Sci (Bogota) 16:282–293CrossRefGoogle Scholar
  187. 187.
    Gupta M, Bisht S, Singh B, Gulati A, Tewari R (2011) Enhanced biomass and steviol glycosides in Stevia rebaudiana treated with phosphate-solubilizing bacteria and rock phosphate. Plant Growth Regul 65:449–457CrossRefGoogle Scholar
  188. 188.
    Kumar R, Sharma S, Sood P, Dubey YP (2015) Bioorganic nutrient source effect on growth, biomass and quality of natural sweetener plant stevia and soil fertility in the Western Himalayas. Commun Soil Sci Plant Anal 46:1170–1186CrossRefGoogle Scholar
  189. 189.
    Ramakrishnaiah G, Vijaya T (2013) Influence of VAM fungi, Azotobacter sp. and PSB on soil phosphatase activity and nutrients (N, P, K, Cu, Zn, Fe and Mn) status in the rhizosphere of Stevia rebaudiana (Bert.) plants. Am J Plant Sci 4:1443–1447CrossRefGoogle Scholar
  190. 190.
    Megeji NW, Kumar JK, Singh V, Kaul VK, Ahuja PS (2005) Introducing Stevia rebaudiana, a natural zero-calorie sweetener. Curr Sci 88:801–804Google Scholar
  191. 191.
    Tonello PE, DeFaveri C, Weeden BR (2006) Agronomic assessment of Stevia for the development of a non-caloric natural sweetener industry in north Queensland. A final report to plant science. Queensland Department of Primary Industries and Fisheries, Department of Primary Industries and Fisheries, Queensland Government, BrisbaneGoogle Scholar
  192. 192.
    Parihar CM, Rana KS, Kantwa SR (2010) Nutrient management in pearlmillet (Pennisetum glaucum) – mustard (Brassica juncea) cropping system as affected by land configuration under limited irrigation. Indian J Agron 55:191–196Google Scholar
  193. 193.
    Goenadi DH (1983) Water tension and fertilization of Stevia rebaudiana Bertoni on Oxic Tropudalf (English abstr.). Menara Perkeb 51:85–90Google Scholar
  194. 194.
    Fronza D, Folegatti MV (2003) Water consumption of the estevia (Stevia rebaudiana (Bert.) Bertoni) crop estimated through microlysimeter. Sci Agric 60:595–599CrossRefGoogle Scholar
  195. 195.
    González RE (2000) Necesidad de agua para el cultivo de KA’A HE’E (Stevia rebaudiana Bert) bajo riego por goteo, calculado sobre la base de lectura de microlisimetro. Universidad Nacional de Asunción, Faculdad de Ciencias Agrarias, San Lorenzo, 37 pGoogle Scholar
  196. 196.
    Lavini A, Riccardi M, Pulvento C, De Luca S, Scamosci M, d’Andria R (2008) Yield, quality and water consumption of Stevia rebaudiana Bertoni grown under different irrigation regimes in Southern Italy. Ital J Agron 3:135–143CrossRefGoogle Scholar
  197. 197.
    Midmore DJ, Rank AH, Walsh KB, Reyes R, Gautam G, Hopkins KC (2012) Further development of the stevia natural sweetener industry. Rural Industries Research and Development Corporation. RIRDC Publication No 12/051, pp 107Google Scholar
  198. 198.
    Guzman RD (2010) Autoecological role of steviol glycosides in Stevia rebaudiana Bertoni. Central Queensland University Australia, RockhamptonGoogle Scholar
  199. 199.
    Aladakatti Y, Palled Y, Chetti M, Halikatti S, Alagundag S, Patil P, Patil V, Janawade A (2012) Effect of irrigation schedule and planting geometry on growth and yield of stevia (Stevia rebaudiana Bertoni.). Karnataka J Agric Sci 25:30–35Google Scholar
  200. 200.
    Shi Y, Ren GX (2012) The effects of drought stress on the photosynthetic parameters and dry leaf yield of Stevia rebaudiana Bertoni. Adv Mater Res 518:4786–4789Google Scholar
  201. 201.
    Hajihashemi S, Ehsanpour AA (2013) Influence of exogenously applied paclobutrazol on some physiological traits and growth of Stevia rebaudiana under in vitro drought stress. Biologia 68:414–420CrossRefGoogle Scholar
  202. 202.
    Hajihashemi S, Ehsanpour AA (2014) Antioxidant response of Stevia rebaudiana B. to polyethylene glycol and paclobutrazol treatments under in vitro culture. Appl Biochem Biotechnol 172:4038–4052CrossRefGoogle Scholar
  203. 203.
    Maas EV, Hoffman GJ (1977) Crop salt tolerance – current assessment. ASCE J Irrig Drain Div 103:115–134Google Scholar
  204. 204.
    Reis M, Coelho L, Santos G, Kienle U, Beltrão J (2015) Yield response of stevia (Stevia rebaudiana Bertoni) to the salinity of irrigation water. Agric Water Manag 152:217–221CrossRefGoogle Scholar
  205. 205.
    Harrington KC, Southward RC, Kitchen KL, He XZ (2011) Investigation of herbicides tolerated by Stevia rebaudiana crops. N Z J Crop Hortic Sci 39:21–33CrossRefGoogle Scholar
  206. 206.
    Basuki S (1990) Effects of black plastic mulch and plant density on the growth of weeds and stevia. BIOTROP Spec Publ 38:107–113Google Scholar
  207. 207.
    Andolfi L, Ceccarini L, Macchia M (2002) Bioagronomic characteristics of Stevia rebaudiana. Inf Agrar 58:48–51Google Scholar
  208. 208.
    Covarelli G, Peccetti G, Pannacci E, Graziani F (2008) Stevia (Stevia rebaudiana Bertoni), produttività, concimazione e diserbo in Umbria. Progetto Co.Al.Ta. II, pp 105–107Google Scholar
  209. 209.
    Zachokostas P (2015) Effects of chemicals weed management on the quantitative and qualitative characteristics of Stevia rebaudiana Bertoni, under Mediterranean conditions (Karditsa, Thessaly, Greece). In: Ceunen S, Geuns JMC (eds) Stevia: growth in knowledge and taste. Proceedings of the 8th Stevia symposium 2015 of European Society of Stevia (EUSTAS), 27–29 Jan 2015, Bonn, pp 5–12. ISBN: 9789074253291Google Scholar
  210. 210.
    Hopkins KC, Midmore DJ (2015) Assessment of herbicides for use on the sweet herb, Stevia rebaudiana in the tropics. J Hortic Sci Biotechnol 90:530–536CrossRefGoogle Scholar
  211. 211.
    Li TSC (2000) Medicinal plants: culture, utilization and phytopharmacology. Technomic Publishing Company, LancasterGoogle Scholar
  212. 212.
    Bhandari S, Harsh NSK (2006) First report of Septoria steviae on Stevia rebaudiana in India. Indian Forester 132:385Google Scholar
  213. 213.
    Angelini LG, Tavarini S (2010) Studio sulla ottimizzazione della coltivazione di Stevia rebaudiana Bertoni. Final report Eridania Sadam project contract, p 80Google Scholar
  214. 214.
    DIVAS EU financed project (FP7-SME) Diversification for tobacco growing farms by the alternative crop Stevia rebaudiana Bertoni. Accessed 12 Oct 2015
  215. 215.
    Kang KH, Lee EW (1981) Physio-ecological studies on stevia (Stevia rebaudiana Bertoni). Korean J Crop Sci 26:69–89Google Scholar
  216. 216.
    Pal PK, Mahajan M, Prasad R, Pathania V, Singh B, Ahujac PS (2015) Harvesting regimes to optimize yield and quality in annual and perennial Stevia rebaudiana under sub-temperate conditions. Ind Crop Prod 65:556–564CrossRefGoogle Scholar
  217. 217.
    Moraes RM, Donega MA, Catrell CL, Mello S, McChesney JD (2013) Effect of harvest timing on leaf production and yield of diterpeneglycosides in Stevia rebaudiana Bert: a specialty perennial crop for Mississippi. Ind Crop Prod 51:385–389CrossRefGoogle Scholar
  218. 218.
    Jordan Molero F (1984) La propagación de ka’a he’e, Stevia rebaudiana Bertoni. Primer Simposio Nacional de la Stevia (kaa hee) Julio 1983, Asunción, p 29Google Scholar
  219. 219.
    Taiariol DR (2004) Characterization of the Stevia rebaudiana Bert.
  220. 220.
    Singh V, Kaul VK (2005) Stevia rebaudiana for income generation. Vigyan Pragati 54:10–15Google Scholar
  221. 221.
    Andolfi L, Macchia M, Ceccarini L (2006) Agronomic productive characteristics of two genotype of Stevia rebaudiana in central Italy. Ital J Agron 2:257–262CrossRefGoogle Scholar
  222. 222.
    Gorovits R, Czoznek H (2007) Biotic and abiotic stress responses in tomato breeding lines resistant and susceptible to tomato yellow leaf curl virus. In: Czosnek H (ed) Tomato yellow leaf curl virus disease. Springer, Chapter 6, pp 223–237 Dordrecht, The NetherlandsGoogle Scholar
  223. 223.
    Jimenez-Garcia SN, Vazquez-Cruz MA, Guevara-Gonzalez RG, Torres-Pacheco I, Cruz-Hernandez A, Feregrino-Perez AA (2013) Current approaches for enhanced expression of secondary metabolites as bioactive compounds in plants for agronomic and human health purposes – a review. Pol J Food Nutr Sci 63:67–78Google Scholar
  224. 224.
    Tavarini S, Pagano I, Guidi L, Angelini LG (2015) Impact of nitrogen supply on growth, steviol glycosides and photosynthesis in Stevia rebaudiana Bertoni. Plant Biosyst. doi:10.1080/11263504.2014.993743Google Scholar
  225. 225.
    Tavarini S, Sgherri C, Ranieri AM, Angelini LG (2015) Effect of nitrogen fertilization and harvest time on steviol glycosides, flavonoid composition, and antioxidant properties in Stevia rebaudiana Bertoni. J Agric Food Chem 63:7041–7050CrossRefGoogle Scholar
  226. 226.
    Chaves MM, Pereira JS, Maroco J, Rodrigues M, Ricardo CPP, Osorio M, Carvalho I, Faria T, Pinheiro C (2002) How plants cope with water stress in the field? Photosynthesis and growth. Ann Bot 89:907–916CrossRefGoogle Scholar
  227. 227.
    Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought – from genes to the whole plant. Funct Plant Biol 30:239–264CrossRefGoogle Scholar
  228. 228.
    Karimi M, Ahmadi A, Hashemi J, Abbasi A, Tavarini S, Guglielminetti L, Angelini LG (2015) The effect of soil moisture depletion on Stevia (Stevia rebaudiana Bertoni) grown in greenhouse conditions: growth, steviol glycosides content, soluble sugars and total antioxidant capacity. Sci Hortic 183:93–99CrossRefGoogle Scholar
  229. 229.
    Hajihashemi S, Geuns JMC, Ehsanpour AA (2012) Molecular and physiologicalanalysis of Stevia rebaudiana after treatment with polyethylene glycol, paclobu-trazol and gibberellic acid. In: Geuns JMC (ed) Stevia: 6 months beyond authorisation. Proceedings of the 6th Stevia symposium 2012 of European Society of Stevia (EUSTAS), 3–4 July 2012, KU Leven, Leuven, pp 71–95. ISBN: 9789074253291Google Scholar
  230. 230.
    Karimi M, Ahmadi A, Hashemi J, Abbasi A, Tavarini S, Pompeiano A, Guglielminetti L, Angelini LG (2015) The positive role of steviol glycosides in stevia (Stevia rebaudiana Bertoni) under drought stress condition. Plant Biosyst. doi:10.1080/11263504.2015.1056857Google Scholar
  231. 231.
    Angelini LG, Tavarini S (2011) Effetto della densità d’impianto sulle caratteristiche produttive e sul contenuto di steviol glicosidi in Stevia rebaudiana Bert. In: Pisante M, Stagnari F (eds) Proceedings XL Convegno Nazionale della Società Italiana di Agronomia, 7–10 settembre 2011, Teramo, pp 54–55Google Scholar
  232. 232.
    Alves LM, Ruddat M (1979) The presence of gibberellin A20 in Stevia rebaudiana and its significance for the biological activity of steviol. Plant Cell Physiol 20:123–130Google Scholar
  233. 233.
    Brandle JE, Telmer PG (2007) Steviol glycoside biosynthesis. Phytochemistry 68:1855–1863CrossRefGoogle Scholar
  234. 234.
    Kim KK, Sawa Y, Shibata H (1996) Hydroxylation of ent-kaurenoic acid to steviol in Stevia rebaudiana Bertoni – purification and partial characterization of the enzyme. Arch Biochem Biophys 332:223–230CrossRefGoogle Scholar
  235. 235.
    Hedden P, Kamiya Y (1997) Annu Rev Plant Physiol Plant Mol Biol 48:431–460CrossRefGoogle Scholar
  236. 236.
    Karimi M, Ahmadi A, Hashemi J, Abbasi A, Angelini LG (2014) Effect of two plant growth retardants on steviol glycosides content and antioxidant capacity in Stevia (Stevia rebaudiana Bertoni). Acta Physiol Plant 36:1211–1219CrossRefGoogle Scholar
  237. 237.
    Karimi M, Hashemi J, Ahmadi A, Abbasi A, Pompeiano A, Tavarini S, Guglielminetti L, Angelini LG (2015) Opposing effects of external gibberellin and daminozide on stevia growth and metabolites. Appl Biochem Biotechnol 175:780–791CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Agriculture, Food and Environment (DAFE)University of PisaPisaItaly
  2. 2.University of PisaPisaItaly

Personalised recommendations