Advertisement

Stevia Rebaudiana’s Antioxidant Properties

  • Cecilia BenderEmail author
Living reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

Stevia rebaudiana Bertoni is a perennial herb native to South America and commonly known as “stevia.” The leaves of stevia have been used for centuries in Paraguay and Brazil to sweeten food and beverage. Nowadays, the leaves of stevia and the steviol glycosides extracted from them are commonly used to sweeten beverages and foods. The steviol glycosides are a non-nutritive substitute of sugar that does not provide energy. Besides their sweetening properties, the antioxidant capacity of stevia and its sweet diterpenes are reported in the literature.

This chapter aims to review the antioxidant properties of S. rebaudiana reported in the literature, the future directions on this topic is discussed taking into consideration its implication on human health.

Keywords

Stevia Stevioside Reb A Antioxidant activity in vitro Antioxidant activity in vivo 

Abbreviations

ABTS

2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid)

CAA

Cellular antioxidant activity

CQA

Caffeoyl quinic acid

DPPH

1,1-diphenyl-2-picrylhydrazyl radical

EFSA

European food safety authority

FRAP

Ferric reducing/antioxidant power

GPx

Glutathione peroxidase

GR

Glutathione reductase

GSH

Reduced glutathione

JECFA

Joint FAO/WHO expert committee on food additives

ORAC

Oxygen radical absorbance capacity

Ox-LDL

Oxidized low density lipoprotein

Reb A

Rebaudioside A

ROS

Reactive oxygen species

SCF

Scientific committee for food

SOD

Superoxide dismutase

References

  1. 1.
    Marín W (2004) Sondeo de mercado de la Estevia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. Bogotá, ColombiaGoogle Scholar
  2. 2.
    Yadav SK, Guleria P (2012) Steviol glycosides from Stevia: biosynthesis pathway review and their application in foods and medicine. Crit Rev Food Sci Nutr 52(11):988–998CrossRefGoogle Scholar
  3. 3.
    EFSA Panel on Food Additives and Nutrient Sources added to food (ANS) (2015) Scientific opinion on the safety of the proposed amendment of the specifications for steviol glycosides (E 960) as a food additive. EFSA J 13(12):4316 [29 pp]Google Scholar
  4. 4.
    Madan S et al (2010) Stevia rebaudiana (Bert) Bertoni: a review. Indian J Nat Prod Resour 1:267–286Google Scholar
  5. 5.
    Dacome AS et al (2005) Sweet diterpenic glycosides balance of a new cultivarof Stevia rebaudiana (Bert) Bertoni: isolation and quantitative distribution by chromatographic, spectroscopic and electrophoretic methods. Process Biochem 44:3587–3594CrossRefGoogle Scholar
  6. 6.
    Goettemoeller J, Ching A (1999) Seed germination in Stevia rebaudiana. In: Perspectives on new crops and new users. J Janick, AlexandriaGoogle Scholar
  7. 7.
    Sekaran T, Giridhar P, Ravishankar GA (2007) Production of steviosides in ex vitro and in vitro grown Stevia rebaudiana Bertoni. J Sci Food Agric 87:420–424CrossRefGoogle Scholar
  8. 8.
    Singh S, Rao G (2005) Stevia: the herbal sugar of 21st Century. Sugar Tech 71:17–24CrossRefGoogle Scholar
  9. 9.
    Heikal AH, Badawy OM, Hafez AM (2008) Genetic relationships among some Stevia (Stevia Rebaudiana Bertoni) accessions based on ISSR analysis. Res J Cell Mol Biol 2(1):1–5Google Scholar
  10. 10.
    EFSA Panel on Food Additives and Nutrient Sources (ANS) (2010) Scientific opinion on safety of steviol glycosides for the proposed uses as a food additive. EFSA J 8(4):1537 [85 pp.]CrossRefGoogle Scholar
  11. 11.
    Savita SM et al (2004) Stevia rebaudiana A: functional component for food industry. J Hum Ecol 15:261–264Google Scholar
  12. 12.
    European Stevia Association (2007) Stevia rebaudiana bertoni plants and dried leaves as novel food. In: Summary of the Application and Specifications of the EUSTAS Quality Label. http://www.eustas.org/images/Documents/Steviol_glycosides_summary_application.pdf p 7
  13. 13.
    Alvarez M et al (1981) In XII Semináreo Brasiliero de Stevia rebaudiana Bertoni 25–26/6/81. Campinas, BrazilGoogle Scholar
  14. 14.
    Singh S, Garg V, Yadav D (2013) Antihyperglycemic and antioxidative ability of Stevia rebaudiana (Bertoni) leaves in diabetes induced mice. Int J Pharm Pharm Sci 5(2):297–302Google Scholar
  15. 15.
    European Commission SCoF (1999) Opinion on Stevia rebaudiana Bertoni plants and leaves. SCF/CS/NF/STEV/3 Final 17/6/1999Google Scholar
  16. 16.
    Curi R et al (1986) Effect of Stevia rebaudiana on glucose tolerance in normal adult humans. Braz J Med Biol Res 19(6):771–774Google Scholar
  17. 17.
    Hong J et al (2006) Stevioside counteracts the α-cell hypersecretion caused by long-term palmitate exposure. Am J Physiol Endocrinol Metab 290:E416–E422CrossRefGoogle Scholar
  18. 18.
    Chen TH et al (2005) Mechanism of hypoglycemic effect of stevioside, a glycoside of Stevia rebaudiana. Planta Med 71:108–113CrossRefGoogle Scholar
  19. 19.
    Jeppesen PB et al (2000) Stevioside acts directly on pancreatic β-cells to secrete insulin: Actions independent of cyclic adenosinemonophosphate and adenosine triphosphate-sensitiveK+ channel activity. Metabolism 49:208–214CrossRefGoogle Scholar
  20. 20.
    Ferreira EB et al (2006) Comparative effects of Stevia rebaudiana leaves and stevioside on glycaemia and hepatic gluconeogenesis. Planta Med 72:691–696CrossRefGoogle Scholar
  21. 21.
    Chan P et al (1998) The effect of stevioside on blood pressure and plasma catecholamines in spontaneously hypertensive rats. Life Sci 63:1679–1684CrossRefGoogle Scholar
  22. 22.
    Liu JC et al (2003) Mechanism of the antihypertensive effect of stevioside in anesthetized dogs. Pharmacology 67:14–20CrossRefGoogle Scholar
  23. 23.
    Chan P et al (2000) A double-blind placebo-controlled study of the effectiveness and tolerability of oral stevioside in human hypertension. Br J Clin Pharmacol 50(3):215–220CrossRefGoogle Scholar
  24. 24.
    Hsieh MH, Chan P, Sue YM (2003) Efficacy and tolerability of oral stevioside in patients with mild essential hypertension: a two-year, randomized, placebo-controlled study. Clin Ther 25:2797–2808CrossRefGoogle Scholar
  25. 25.
    Das S et al (1992) Evaluation of the cariogenic potential of the intense natural sweeteners stevioside and rebaudioside A. Caries Res 26:363–366CrossRefGoogle Scholar
  26. 26.
    Tomita T et al (1997) Bactericidal activity of a fermented hot-water extracts from Stevia rebaudiana Bertoni and other food-borne pathogenic bacteria. Microbiol Immunol 41:1005–1009CrossRefGoogle Scholar
  27. 27.
    Abou-Arab EA, Abu-Salem FM (2010) Evaluation of bioactive compounds of Stevia rebaudiana leaves and callus. Afr J of Food Sci 4:627–634Google Scholar
  28. 28.
    Ghosh S, Subudhi E, Nayak S (2008) Antimicrobial assay of Stevia rebaudiana Bertoni leaf extracts against 10 pathogens. Inter J Integr Biol 2:27–31Google Scholar
  29. 29.
    Jayaraman S, Manoharan M, Illanchezian S (2008) In-vitro antimicrobial and antitumor activities of Stevia rebaudiana (Asteraceae) leaf extracts. Trop J of Pharm Res 7:1143–1149CrossRefGoogle Scholar
  30. 30.
    Kelmer Bracht A, Alvarez M, Bracht A (1985) Effects of Stevia rebaudiana natural products on rat liver mitochondria. Biochem Pharmacol 34(6):873–882CrossRefGoogle Scholar
  31. 31.
    Takahashi K et al (2001) Analysis of anti-rotavirus activity of extract from Stevia rebaudiana. Antiviral Res 49:15–24CrossRefGoogle Scholar
  32. 32.
    Kinghorn AD et al (1998) Non-cariogenic intense natural sweeteners. Med Res Rev 18:347–360CrossRefGoogle Scholar
  33. 33.
    Matsukubo T, Takazoe I (2006) Sucrose substitutes and their role in caries prevention. Int Dent J 56:119–130CrossRefGoogle Scholar
  34. 34.
    Geeraert B et al (2009) Stevioside inhibits atherosclerosis by improving insulin signaling and antioxidant defense in obese insulin-resistant mice. Int J of Obes 34:1–9Google Scholar
  35. 35.
    Konoshima T, Takasaki M (2002) Cancer-chemopreventive effects of natural sweeteners and related compounds. Pure Appl Chem 74:1309–1316CrossRefGoogle Scholar
  36. 36.
    Takasaki M et al (2009) Cancer preventive agents. Part 8: chemopreventive effects of stevioside and related compounds. Bioorg Med Chem 17(2):600–605CrossRefGoogle Scholar
  37. 37.
    Yasukawa K, Kitanaka S, Seo S (2002) Inhibitory effect of stevioside on tumor promotion by 12-O-tetradecanoylphorbol-13-acetate in two-stage carcinogenesis in mouse skin. Biol Pharm Bull 25:1488–1490CrossRefGoogle Scholar
  38. 38.
    Wölwer-Rieck U (2012) The leaves of Stevia rebaudiana (Bertoni), their constituents and the analyses thereof: a review. J Agric Food Chem 60:886–895CrossRefGoogle Scholar
  39. 39.
    Kinghorn AD (1992) Food Ingredient safety review. Stevia rebaudiana leaves. Unpublished report submitted to the European Commission, scientific committee on food (16.3.1992)Google Scholar
  40. 40.
    Bender C, Graziano S, Zimmermann BF (2015) Study of Stevia rebaudiana Bertoni antioxidant activities and cellular properties. Int J Food Sci Nutr 66(5):553–558CrossRefGoogle Scholar
  41. 41.
    Ruiz-Ruiz JC, Moguel-Ordoñez YB, Segura-Campos MR (2015) Biological activity of Stevia rebaudiana Bertoni and their relationship to health. Crit Rev Food Sci Nutr. doi:10.1080/10408398.2015.1072083Google Scholar
  42. 42.
    Kim S et al (2011) The antioxidant activity and the bioactive compound content of Stevia rebaudiana water extracts. Food Sci Technol 44:1328–1332Google Scholar
  43. 43.
    Lemus-Mondaca R et al (2012) Stevia rebaudiana Bertoni, source of a high-potency natural sweetener: a comprehensive review on the biochemical, nutritional and functional aspects. Food Chem 132:1121–1132CrossRefGoogle Scholar
  44. 44.
    Goyal SK, Samsher GRK (2010) Stevia (Stevia rebaudiana) a bio-sweetener: a review. Int J Food Sci Nutr 61:1–10CrossRefGoogle Scholar
  45. 45.
    Tadhani MB, Patel VH, Subhash R (2007) In vitro antioxidant activities of Stevia rebaudiana leaves and callus. J Food Compos Anal 20:323–329CrossRefGoogle Scholar
  46. 46.
    Shibata H et al (1995) Steviol and steviol glycoside. Glucosyl transferase activities in S. rebaudiana Bertoni. Purification and partial characterization. Arch Biochem Biophys 321:390–396CrossRefGoogle Scholar
  47. 47.
    Barriocanal L et al (2008) Apparent lack of pharmacological effect of steviol glycosides used as sweeteners in humans, a pilot study of repeated exposures in some normatensive and hypotensive individuals and in type 1 and type 2 diabetics. Regul Toxicol Pharmacol 51:37–41CrossRefGoogle Scholar
  48. 48.
    Turgut K et al (2015) Stevia rebaudiana Bertoni could be an alternative crop in the mediterranean region of Turkey. In: Stevia: growth in knowledge and taste. Proceedings of the 8th Stevia symposium. Ceunen A and Geuns JMC, BonnGoogle Scholar
  49. 49.
    Grevsen K, Sørensen JN,et al (2015) A danish research project for the development of “Green Stevia” – a natural sweetener for organic food products. In: Stevia: growth in knowledge and taste. In: Proceedings of the 8th Stevia symposium 2015. Ceunen A and Geuns JMC, BonnGoogle Scholar
  50. 50.
    Hajihashemi S, Geuns JMC, Ehsanpour AA (2015) Response of Stevia rebaudiana Bertoni to polyethylene glycol treatment under in vitro culture conditions. In: Stevia: growth in knowledge and taste. Proceedings of the 8th Stevia symposium. Ceunen A and Geuns JMC, Bonn.Google Scholar
  51. 51.
    Lankes C, Grosser P (2015) Evaluation of Stevia rebaudiana genotypes at a location in the Antelejo region in Portugal. In: Stevia: growth in knowledge and taste. Proceedings of the 8th Stevia symposium. Ceunen A and Geuns JMC, BonnGoogle Scholar
  52. 52.
    Yücesan B, Mohammed A,et al (2015) Comparison of coneventional and biotechnological approaches for Stevia rebaudiana production with elevated rebaudioside A content. In: Stevia: growth in knowledge and taste. Proceedings of the 8th Stevia Symposium 2015. Ceunen A and Geuns JMC, BonnGoogle Scholar
  53. 53.
    Ohta M, Sasa S (2010) Characterization of Novel Steviol Glycosides from Leaves of Stevia rebaudiana Morita. Phytochemistry 57:199–209Google Scholar
  54. 54.
    Prakash I, Chaturvedula VS, Markosyan A (2013) Isolation, characterization and sensory evaluation of a Hexa beta-d-glucopyranosyl diterpene from Stevia rebaudiana. Nat Prod Commun 8(11):1523–1526Google Scholar
  55. 55.
    Ceunen S, Geuns JM (2013) Steviol glycosides: chemical diversity, metabolism, and function. J Nat Prod 76(6):1201–1228CrossRefGoogle Scholar
  56. 56.
    Tavarini S, Guidi L,et al (2015) Nitrogen affects growth, steviol glycosides, leaf gas exchanges and chlorophill fluorescence in Stevia rebaudiana Bert. In: Stevia: growth in knowledge and taste. Proceedings of the 8th Stevia Symposium. Ceunen A and Geuns JMC, BonnGoogle Scholar
  57. 57.
    Ďuračková Z (2014) Free radicals and antioxidants for non-experts. In: Systems biology of free radicals and antioxidants. Laher I. Springer, Berlin/HeidelbergGoogle Scholar
  58. 58.
    Vranesic-Bender D (2010) The role of nutraceuticals in anti-aging medicine. Acta Clin Croat 49(4):537–544Google Scholar
  59. 59.
    Fusco D et al (2007) Effects of antioxidant supplementation on the aging process. Clin Interv Aging 2(3):377–387Google Scholar
  60. 60.
    Huang D, Ou B, Prior RL (2005) The chemistry behind antioxidant capacity assays. J Agric Food Chem 53:1841–1856CrossRefGoogle Scholar
  61. 61.
    Chong-Han K (2010) Dietary lipophilic antioxidants: implications and significance in the aging process. Crit Rev Food Sci Nutr 50(10):931–937CrossRefGoogle Scholar
  62. 62.
    Karaköse H, Müller A, Kuhnert N (2015) Profiling and quantification of phenolics in Stevia rebaudiana leaves. J Agric Food Chem 63:9188–9198CrossRefGoogle Scholar
  63. 63.
    Shukla S et al (2009) In vitro antioxidant activity and total phenolic content of ethanolic leaf extract of Stevia rebaudiana Bertoni. Food Chem Toxicol 47:2338–2343CrossRefGoogle Scholar
  64. 64.
    Karaköse H, Jaiswal R, Kuhnert N (2011) Characterisation and quantification of hydrocinnamate derivatives in Stevia rebaudiana leaves by LC-MSn. J Agric Food Chem 59:10143–10150CrossRefGoogle Scholar
  65. 65.
    Ghanta S et al (2007) Oxidative DNA damage preventive activity and antioxidant potential of Stevia rebaudiana (Bertoni) Bertoni, a natural sweetener. J Agric Food Chem 55:10962–10967CrossRefGoogle Scholar
  66. 66.
    Jahan IA et al (2010) Antioxidant activity of Stevia rebaudiana Bertoni leaves from Bangladesh. Bangladesh Pharm J 13:67–75Google Scholar
  67. 67.
    Rajbhandari A, Roberts MF (1983) The Flavonoids of Stevia rebaudiana. J Nat Prod 46:194–195CrossRefGoogle Scholar
  68. 68.
    Shivanna N et al (2013) Antioxidant, anti-diabetic and renal protective properties of Stevia rebaudiana. J Diabetes Complications 27:103–113CrossRefGoogle Scholar
  69. 69.
    Gaweł-Bęben K et al (2015) Stevia rebaudiana Bert. Leaf extracts as a multifunctional source of natural antioxidants. Molecules 20:5468–5486CrossRefGoogle Scholar
  70. 70.
    Hajihashemi S, Geuns JMC (2013) Free radical scavenging activity of steviol glycosides, steviol glucuronide, hydroxytyrosol, metformin, aspirin and leaf extract of Stevia rebaudiana. Free Radicals Antioxid 3(supplement):34–41Google Scholar
  71. 71.
    Geuns JMC, Struyf T (2010) Radical scavenging activity of steviol glycosides and steviol glucoronide. In: Proceedings of the 4th Stevia symposium. Heverlee, BelgiumGoogle Scholar
  72. 72.
    Vaško L et al (2014) Comparison of some antioxidant properties of plant extracts from Origanum vulgare, Salvia officinalis. Eleutherococcus senticosus and Stevia rebaudiana. In Vitro Cell Dev Biol Anim 50:614–622CrossRefGoogle Scholar
  73. 73.
    Barba FJ et al (2014) Stevia rebaudiana Bertoni as a natural antioxidant/antimicrobial for high pressure processed fruit extract: processing parameter optimization. Food Chem 148:261–267CrossRefGoogle Scholar
  74. 74.
    Bender C (2015) Evaluation of Stevia rebaudiana Bertoni antioxidant properties at cellular level, cytotoxicity and proliferative effects. In: Stevia: growth in knowledge and taste. Proceedings of the 8th Stevia Symposium. Ceunen A and Geuns JMC, BonnGoogle Scholar
  75. 75.
    Mediesse KF et al (2014) Antioxidant properties of cell wall polysaccharides of Stevia rebaudiana leaves. J Coast Life Med 2(12):962–969Google Scholar
  76. 76.
    Muanda F et al (2010) Study on chemical composition and biological activities of essential oil and extracts from Stevia rebaudiana Bertoni leaves. Food Sci Technol 44:1865Google Scholar
  77. 77.
    Phansawan B, Poungbangpho S (2007) Antioxidant capacities of Pueraria mirifica, Stevia rebaudiana Bertoni, Curcuma longa Linn., Andrographis paniculata (Burm.f.) Nees and Cassia alata Linn for the development of dietary supplement. Kasetsart J Nat Sci 41:548–554Google Scholar
  78. 78.
    Tavarini S, Angelini LG (2013) Stevia rebaudiana Bertoni as a source of bioactive compounds: the effect of harvest time, experimental site and crop age on steviol glycoside content and antioxidant properties. J Sci Food Agric 93:2121–2129CrossRefGoogle Scholar
  79. 79.
    Chiang Chan EW, Wong SK (2015) Herbs and herbal teas with antioxidant properties comparable to or superior than those of camellia sinensis. Int J Pharmacognosy 2(1):33–37Google Scholar
  80. 80.
    Bender C et al (2014) Antioxidant potential of aqueous plant extracts assessed by the cellular antioxidant activity assay. Am J Biol Life Sci 2:72–79CrossRefGoogle Scholar
  81. 81.
    Jüttner MM et al (2015) ROS – scavenging capabilities of steviol glycosides and derivatives thereof. In: Stevia: Growth in knowledge and taste. Proceedings of the 8th Stevia Symposium. Ceunen A and Geuns JMC. Euprint, BonnGoogle Scholar
  82. 82.
    Prior R, Wu X, Schaich K (2005) Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53:4290–4302CrossRefGoogle Scholar
  83. 83.
    Cao G, Alessio HM, Cutler RG (1993) Oxygen-radical absorbance capacity assay for antioxidants. Free Radic Biol Med 14:303–311CrossRefGoogle Scholar
  84. 84.
    Ou B, Hampsch-Woodill M, Prior RL (2001) Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J Agric Food Chem 49:4619–4926CrossRefGoogle Scholar
  85. 85.
    Glazer AN (1990) Phycoerythrin flurorescence-based assay for reactive oxygen species. Methods Enzymol 186:161–168CrossRefGoogle Scholar
  86. 86.
    Cao G, Prior RL (1998) Comparison of different analytical methods for assessing total antioxidant capacity of human serum. Clin Chem 44(6 (Pt 1)):1309–1315Google Scholar
  87. 87.
    Wolfe KL, Liu RH (2007) Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods and dietary supplements. J Agric Food Chem 55:8896–8907CrossRefGoogle Scholar
  88. 88.
    Geuns JMC et al (2003) Metabolism of stevioside in pigs and intestinal absorption characteristics of stevioside, rebaudioside A and steviol. Food Chem Toxicol 41:1599–1607CrossRefGoogle Scholar
  89. 89.
    Brewe MS (2011) Natural antioxidants: sources, compounds, mechanisms of action, and potential applications. Compr Rev Food Sci Food Saf 10:221–247CrossRefGoogle Scholar
  90. 90.
    Gardana C et al (2003) Metabolism of Stevioside and rebaudioside A from Stevia rebaudiana extracts by human microflora. J Agric Food Chem 51:6618–6622CrossRefGoogle Scholar
  91. 91.
    Wheeler A et al (2008) Pharmacokinetics of rebaudioside A and stevioside after single oral doses in healthy men. Food Chem Toxicol 46:54–60CrossRefGoogle Scholar
  92. 92.
    Simonetti P et al (2004) Bioavailability of Stevioside from Stevia rebaudiana in human volunteers: preliminary report. In: Proceedings of the first symposium on the safety of stevioside. KULeuven/Heverlee-Leuven, Belgium, Euprint EditionsGoogle Scholar
  93. 93.
    Koyama E et al (2003) Absorption and metabolism of the glycosidic sweeteners, Stevia related compounds in human and rat. Food Chem Toxicol 41:875–883CrossRefGoogle Scholar
  94. 94.
    EFSA NDA Panel (EFSA Panel on Dietetic Products NaA) (2011) Guidance on the scientific requirements for health claims related to antioxidants, oxidative damage and cardiovascular health. EFSA J 9(12):2474 [13 pp.]CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Institut Kurz GmbHKölnGermany
  2. 2.Istituto Kurz Italia SRLParmaItaly

Personalised recommendations