Advertisement

Hydrogen-Poor Core-Collapse Supernovae

  • Elena PianEmail author
  • Paolo A. Mazzali
Reference work entry
  • 325 Downloads

Abstract

Hydrogen-poor core-collapse supernovae (SNe) signal the explosive death of stars more massive than the progenitors of hydrogen-rich core-collapse supernovae, i.e., approximately in the range 15–50 M in main sequence. Since hydrogen-poor core-collapse supernovae include those that accompany gamma-ray bursts (GRBs), which were all rigorously identified with type Ic supernovae, their explosion energies cover almost two decades. The light curves and spectra are consequently very heterogeneous and often bear the signature of an asymmetric, i.e., aspherical, explosion. Asphericity is best traced by early-time (within days of the explosion) optical spectropolarimetry and by late-epoch (more than ∼ 100 days after explosion) low-resolution spectroscopy. While the relationship between hydrogen-poor core-collapse supernovae to hydrogen-poor super-luminous supernovae is not understood, a known case of association between an ultra-long gamma-ray burst and a very luminous hydrogen-poor supernova may help unraveling the connection. This is tantalizingly pointing to a magnetar powering source for both phenomena, although this scenario is still highly speculative. Host galaxies of hydrogen-poor supernovae are always star forming; in those of completely stripped supernovae and gamma-ray burst supernovae, the spatial distribution of the explosions follows the blue/ultraviolet light, with a correlation that is more than linear.

Notes

Acknowledgements

We thank Simon Prentice for producing Figs.1 and 2 (left panel) and Avishay Gal-Yam and Iair Arcavi for constructive inputs. The following figures were reprinted with permission: Figure 11 from “The metamorphosis of SN 1998bw”, by F. Patat et al., ApJ, vol. 555, year 2001, pages 900–917 (DOI: 10.1086/321526); Figure 3 from “Long gamma-ray bursts and Type Ic core-collapse supernovae have similar locations in hosts”’, by P. Kelly et al., ApJ, vol. 687, year 2008, pages 1201–1207 (DOI: 10.1086/591925); Figure 4 from “Keck and European Southern Observatory Very Large Telescope view of the symmetry of the ejecta of the XRF/SN 2006aj”, by P.A. Mazzali et al., ApJ, vol. 661, year 2007, pages 892–898 (DOI: 10.1086/517912).

References

  1. Anderson JP, Habergham SM, James PA, Hamuy M (2012) MNRAS 424:1372ADSCrossRefGoogle Scholar
  2. Arcavi I (2012) Death of massive stars: supernovae and gamma-ray bursts. In: Roming P, Kawai N, Pian E (eds) IAUS 279, vol 34Google Scholar
  3. Arnett WD (1982) ApJ 253:785ADSCrossRefGoogle Scholar
  4. Ben-Ami S, Hachinger S, Gal-Yam A, Mazzali PA, Filippenko AV, Horesh A et al (2015) ApJ 803:40ADSCrossRefGoogle Scholar
  5. Benetti S, Turatto M, Valenti S, Pastorello A, Cappellaro E, Botticella MT et al (2011) MNRAS 411:2726ADSCrossRefGoogle Scholar
  6. Boër M, Gendre B, Stratta G (2015) ApJ 800:16ADSCrossRefGoogle Scholar
  7. Bufano F, Immler S, Turatto M, Landsman W, Brown P, Benetti S et al (2009) ApJ 700, 1456ADSCrossRefGoogle Scholar
  8. Campana S, Mangano V, Blustin AJ, Brown P, Burrows DN, Chincarini G et al (2006) Nature 442, 1008ADSCrossRefGoogle Scholar
  9. Cappellaro E, Mazzali PA, Benetti S, Danziger IJ, Turatto M, della Valle M, Patat F (1997) A&A 328:203Google Scholar
  10. Chevalier RA, Fransson C (2006) ApJ 651:381ADSCrossRefGoogle Scholar
  11. Chevalier RA, Soderberg AM (2010) ApJ 711:L40ADSCrossRefGoogle Scholar
  12. Crowther PA (2007) ARA&A 45:177ADSCrossRefGoogle Scholar
  13. D’Elia V, Pian E, Melandri A, D’Avanzo P, Della Valle M, Mazzali PA et al (2015) A&A 577:A116ADSCrossRefGoogle Scholar
  14. Duncan RC, Thompson C (1992) ApJ 392:L9ADSCrossRefGoogle Scholar
  15. Filippenko AV (1997) ARA&A 35:309ADSCrossRefGoogle Scholar
  16. Folatelli G, Contreras C, Phillips MM, Woosley SE, Blinnikov S, Morrell N et al (2006) ApJ 641:1039ADSCrossRefGoogle Scholar
  17. Fruchter AS, Levan AJ, Strolger L, Vreeswijk PM, Thorsett SE, Bersier D et al (2006) Nature 441:463ADSCrossRefGoogle Scholar
  18. Galama TJ, Vreeswijk PM, van Paradijs J, Kouveliotou C, Augusteijn T, Böhnhardt H et al (1998) Nature 395:670ADSCrossRefGoogle Scholar
  19. Gal-Yam A (2012) Science 337:927ADSCrossRefGoogle Scholar
  20. Gal-Yam A, Arcavi I, Ofek EO, Ben-Ami S, Cenko SB, Kasliwal MM et al (2014) Nature 509:471ADSCrossRefGoogle Scholar
  21. Ghisellini G, Ghirlanda G, Tavecchio F (2007) MNRAS 375:L36ADSCrossRefGoogle Scholar
  22. Gorosabel J, Larionov V, Castro-Tirado AJ, Guziy S, Larionova L, Del Olmo A et al (2006) A&A 459:L33ADSCrossRefGoogle Scholar
  23. Greiner J, Mazzali PA, Kann DA, Krühler T, Pian E, Prentice S et al (2015) Nature 523:189ADSCrossRefGoogle Scholar
  24. Hachinger S, Mazzali PA, Taubenberger S, Hillebrandt W, Nomoto K, Sauer DN (2012) MNRAS 422:70ADSCrossRefGoogle Scholar
  25. Heger A, Fryer CL, Woosley SE, Langer N, Hartmann DH (2003) ApJ 591:288ADSCrossRefGoogle Scholar
  26. Hoeflich P, Langer N, Duschinger M (1993) A&A 275:L29ADSGoogle Scholar
  27. Immler S, Brown PJ, Milne P, The L-S, Petre R, Gehrels N et al (2006) ApJ 648:L119ADSCrossRefGoogle Scholar
  28. Izzard RG, Ramirez-Ruiz E, Tout CA (2004) MNRAS 348:1215ADSCrossRefGoogle Scholar
  29. Jeffery DJ, Kirshner RP, Challis PM, Pun CSJ, Filippenko AV, Matheson T et al (1994) ApJ 421:L27ADSCrossRefGoogle Scholar
  30. Kasen D, Bildsten L (2010) ApJ 717:245ADSCrossRefGoogle Scholar
  31. Kasen D, Plewa T (2007) ApJ 662:459ADSCrossRefGoogle Scholar
  32. Kawabata KS, Deng J, Wang L, Mazzali PA, Nomoto K, Maeda K et al (2003) ApJ 593:L19ADSCrossRefGoogle Scholar
  33. Kelly PL, Kirshner RP (2012) ApJ 759:107ADSCrossRefGoogle Scholar
  34. Kelly PL, Kirshner RP, Pahre M (2008) ApJ 687:1201ADSCrossRefGoogle Scholar
  35. Kelly PL, Filippenko AV, Modjaz M, Kocevski D (2014) ApJ 789:23ADSCrossRefGoogle Scholar
  36. Kouveliotou C, Meegan CA, Fishman GJ, Bhat NP, Briggs MS, Koshut TM et al (1993) ApJ 413:L101ADSCrossRefGoogle Scholar
  37. Kulkarni SR, Frail DA, Wieringa MH, Ekers RD, Sadler EM, Wark RM et al (1998) Nature 395:663ADSCrossRefGoogle Scholar
  38. Leaman J, Li W, Chornock R, Filippenko AV (2011) MNRAS 412:1419ADSCrossRefGoogle Scholar
  39. Li W, Leaman J, Chornock R, Filippenko AV, Poznanski D, Ganeshalingam M et al (2011) MNRAS 412:1441ADSCrossRefGoogle Scholar
  40. MacFadyen AI, Woosley SE (1999) ApJ 524:262ADSCrossRefGoogle Scholar
  41. Maeda K, Nakamura T, Nomoto K, Mazzali PA, Patat F, Hachisu I (2002) ApJ 565:405ADSCrossRefGoogle Scholar
  42. Maeda K, Tanaka M, Nomoto K, Tominaga N, Kawabata K, Mazzali PA et al (2007) ApJ 666:1069ADSCrossRefGoogle Scholar
  43. Maeda K, Kawabata K, Mazzali PA, Tanaka M, Valenti S, Nomoto K et al (2008) Science 319:1220ADSCrossRefGoogle Scholar
  44. Matheson T, Filippenko AV, Li W, Leonard DC, Shields JC (2001) AJ 121:1648ADSCrossRefGoogle Scholar
  45. Maurer JI, Mazzali PA, Deng J, Filippenko AV, Hamuy M, Kirshner RP et al (2010) MNRAS 402:161ADSCrossRefGoogle Scholar
  46. Mazzali PA, Nomoto K, Patat F, Maeda K (2001) ApJ 559:1047ADSCrossRefGoogle Scholar
  47. Mazzali PA, Kawabata KS, Maeda K, Nomoto K, Filippenko AV, Ramirez-Ruiz E, et al (2005) Science 308:1284ADSCrossRefGoogle Scholar
  48. Mazzali PA, Deng J, Pian E, Malesani D, Tominaga N, Maeda K et al (2006) ApJ 645:1323ADSCrossRefGoogle Scholar
  49. Mazzali PA, Foley RJ, Deng J, Patat F, Pian E, Baade D et al (2007) ApJ 661:892ADSCrossRefGoogle Scholar
  50. Mazzali PA, Valenti S, Della Valle M, Chincarini G, Sauer DN, Benetti S et al (2008) Science 321:1185ADSCrossRefGoogle Scholar
  51. Mazzali PA, Deng J, Hamuy M, Nomoto K (2009) ApJ 703:1624ADSCrossRefGoogle Scholar
  52. Mazzali PA, Walker ES, Pian E, Tanaka M, Corsi A, Hattori T, Gal-Yam A (2013) MNRAS 432:2463ADSCrossRefGoogle Scholar
  53. Melandri A, Pian E, D’Elia V, D’Avanzo P, Della Valle M, Mazzali PA, et al (2014) A&A 567:A29ADSCrossRefGoogle Scholar
  54. Mészáros P (2002) ARA&A 40:137ADSCrossRefGoogle Scholar
  55. Metzger BD, Margalit B, Kasen D, Quataert E (2015) MNRAS 454:3311ADSCrossRefGoogle Scholar
  56. Milisavljevic D, Fesen RA, Chevalier RA, Kirshner RP, Challis P, Turatto M (2012) ApJ 751:25ADSCrossRefGoogle Scholar
  57. Modjaz M, Kewley L, Bloom JS, Filippenko AV, Perley D, Silverman JM (2011) ApJ 731:L4ADSCrossRefGoogle Scholar
  58. Modjaz M, Blondin S, Kirshner RP, Matheson T, Berlind P, Bianco FB et al (2014) AJ 147:99ADSCrossRefGoogle Scholar
  59. Nakamura T, Mazzali PA, Nomoto K, Iwamoto K (2001) ApJ 550:991ADSCrossRefGoogle Scholar
  60. Nomoto K, Hashimoto M (1988) Phys Rep 163:13ADSCrossRefGoogle Scholar
  61. Owocki SP, Romero GE, Townsend RHD, Araudo AT (2009) ApJ 696:690ADSCrossRefGoogle Scholar
  62. Patat F, Cappellaro E, Danziger J, Mazzali PA, Sollerman J, Augusteijn T et al (2001) ApJ 555:900ADSCrossRefGoogle Scholar
  63. Pian E, Amati L, Antonelli LA, Butler RC, Costa E, Cusumano G et al (2000) ApJ 536:778ADSCrossRefGoogle Scholar
  64. Pian E, Mazzali PA, Masetti N, Ferrero P, Klose S, Palazzi E et al (2006) Nature 442:1011ADSCrossRefGoogle Scholar
  65. Pignata G, Stritzinger M, Soderberg A, Mazzali PA, Phillips MM, Morrell N et al (2011) ApJ 728:14ADSCrossRefGoogle Scholar
  66. Prentice SJ, Mazzali PA, Pian E, Gal-Yam A, Kulkarni SR, Rubin A et al (2016) MNRAS 458:2973ADSCrossRefGoogle Scholar
  67. Pritchard TA, Roming PWA, Brown PJ, Bayless AJ, Frey LH (2014) ApJ 787:157ADSCrossRefGoogle Scholar
  68. Sakamoto T, Hullinger D, Sato G, Yamazaki R, Barbier L, Barthelmy SD et al (2008) ApJ 679:570ADSCrossRefGoogle Scholar
  69. Smartt SJ (2009) ARA&A 47:63ADSCrossRefGoogle Scholar
  70. Smith NJ (2014) ARA&A 52:487ADSCrossRefGoogle Scholar
  71. Soderberg AM, Nakar E, Berger E, Kulkarni SR (2006) ApJ 638:930ADSCrossRefGoogle Scholar
  72. Soderberg AM, Berger E, Page KL, Schady P, Parrent J, Pooley D et al (2008) Nature 453:469ADSCrossRefGoogle Scholar
  73. Starling RLC, Wiersema K, Levan AJ, Sakamoto T, Bersier D, Goldoni P et al (2011) MNRAS 411:2792ADSCrossRefGoogle Scholar
  74. Tanaka M, Kawabata KS, Maeda K, Iye M, Hattori T, Pian E, et al (2009) ApJ 699:1119ADSCrossRefGoogle Scholar
  75. Taubenberger S, Pastorello A, Mazzali PA, Valenti S, Pignata G, Sauer DN et al (2006) MNRAS 371:1459ADSCrossRefGoogle Scholar
  76. Usov VV (1992) Nature 357:472ADSCrossRefGoogle Scholar
  77. Waxman E, Mészáros P, Campana S (2007) ApJ 667:351ADSCrossRefGoogle Scholar
  78. Woosley SE (2010) ApJ 719:L204ADSCrossRefGoogle Scholar
  79. Woosley SE, Bloom JS (2006) ARA&A 44:507ADSCrossRefGoogle Scholar
  80. Yaron O, Gal-Yam A (2012) PASP 124:668ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Space Astrophysics and Cosmic PhysicsINAF-IASFBolognaItaly
  2. 2.Scuola Normale SuperiorePisaItaly
  3. 3.Astrophysics Research InstituteLiverpool John Moores UniversityLiverpoolUK

Personalised recommendations