Advertisement

Galactic Winds and the Role Played by Massive Stars

  • Timothy M. Heckman
  • Todd A. Thompson
Reference work entry

Abstract

Galactic winds from star-forming galaxies play at key role in the evolution of galaxies and the intergalactic medium. They transport metals out of galaxies, chemically enriching the intergalactic medium and modifying the chemical evolution of galaxies. They affect the surrounding interstellar and circumgalactic media, thereby influencing the growth of galaxies though gas accretion and star formation. In this contribution we first summarize the physical mechanisms by which the momentum and energy output from a population of massive stars and associated supernovae can drive galactic winds. We use the prototypical example of M 82 to illustrate the multiphase nature of galactic winds. We then describe how the basic properties of galactic winds are derived from the data, and summarize how the properties of galactic winds vary systematically with the properties of the galaxies that launch them. We conclude with a brief discussion of the broad implications of galactic winds.

Notes

Acknowledgements

TMH acknowledges support from NASA Grant NNX 15AE52G and HST GO 12603. TMH thanks Rachel Alexandroff, Lee Armus, Pedro Beirao, Sanch Borthakur, John Grimes, Charles Hoopes, Kip Kuntz, Matt Lehnert, Amanda Marlowe, David Strickland, Anatoly Suchkov, and Christy Tremonti for their collaboration in the investigation of galactic winds as described in this review. TAT is supported by NSF Grant #1516967. TAT thanks Eliot Quataert, Norm Murray, Ondrej Pejcha, Brian Lacki, and Dong Zhang for discussions and collaboration on galactic winds and related topics. TMH and TAT thank the Simons Foundation and organizers Juna Kollmeier and Andrew Benson for hosting the symposium Galactic Winds: Beyond Phenomenology, were part of this work was completed.

References

  1. Andrews B, Martini P (2013) The mass-metallicity relation with the direct method on stacked spectra of SDSS Galaxies. ApJ 765:140ADSCrossRefGoogle Scholar
  2. Andrews BH, Thompson TA (2011) Assessing radiation pressure as a feedback mechanism in star-forming galaxies. ApJ 727:97ADSCrossRefGoogle Scholar
  3. Banda-Barragán WE, Parkin ER, Federrath C, Crocker RM, Bicknell GV (2016) Filament formation in wind-cloud interactions – I. Spherical clouds in uniform magnetic fields. MNRAS 455:1309Google Scholar
  4. Beirão P, Armus L, Lehnert M, Guillard P, Heckman, T, Draine B et al (2015) Spatially resolved Spitzer-IRS spectral maps of the superwind in M 82. MNRAS 451:2640ADSCrossRefGoogle Scholar
  5. Boulares A, Cox DP (1990) Galactic hydrostatic equilibrium with magnetic tension and cosmic-ray diffusion. ApJ 365:544ADSCrossRefGoogle Scholar
  6. Breitschwerdt D, McKenzie JF, Voelk HJ (1991) Galactic winds. I – cosmic ray and wave-driven winds from the Galaxy. A&A 245:79Google Scholar
  7. Brüggen M, Scannapieco E (2016) The Launching of Cold Clouds by Galaxy Outflows. II. The Role of Thermal Conduction. ApJ 882:31Google Scholar
  8. Chevalier R, Clegg A (1985) Wind from a starburst galaxy nucleus. Nature 317:44ADSCrossRefGoogle Scholar
  9. Chisholm J, Tremonti C, Leitherer C, Chen Y, Wofford A, Lundgren B (2015) Scaling relations between warm galactic outflows and their host galaxies. ApJ 811:149ADSCrossRefGoogle Scholar
  10. Contursi A, Poglitsch A, Gracia Carpio J, Veilleux S, Sturm E, Fischer J et al (2013) Spectroscopic FIR mapping of the disk and galactic wind of M 82 with Herschel-PACS. A&A 549:118CrossRefGoogle Scholar
  11. Cooper JL, Bicknell GV, Sutherland RS, Bland-Hawthorn J (2008) Three-dimensional simulations of a starburst-driven galactic wind. ApJ 674:157–171ADSCrossRefGoogle Scholar
  12. Cooper JL, Bicknell GV, Sutherland RS, Bland-Hawthorn J (2009) Starburst-driven galactic winds: filament formation and emission processes. ApJ 703:330ADSCrossRefGoogle Scholar
  13. Creasy P, Theuns T, Bower R (2013) How supernova explosions power galactic winds. MNRAS 429:1922ADSCrossRefGoogle Scholar
  14. Davis S, Jiang Y-F, Stone J, Murray N (2014) Radiation Feedback in ULIRGs: Are Photons Movers and Shakers? ApJ 796:107ADSCrossRefGoogle Scholar
  15. Everett JE, Zweibel EG, Benjamin RA, McCammon D, Rocks L, Gallagher J (2008) The Milky Way’s Kiloparsec-Scale Wind: A Hybrid Cosmic-Ray and Thermally Driven Outflow. ApJ 674:258ADSCrossRefGoogle Scholar
  16. Girichidis P, Naab T, Walch S, Hanasz M, Mac Low M-M, Ostriker J et al (2016) Launching cosmic-ray-driven outflows from the magnetized interstellar medium. ApJ 816:L19ADSCrossRefGoogle Scholar
  17. Grimes J, Heckman T, Aloisi A, Calzetti D, Leitherer C, Martin CL et al (2009) Observations of starburst galaxies with Far-Ultraviolet Spectrographic Explorer: Galactic feedback in the local universe. ApJS 181:272ADSCrossRefGoogle Scholar
  18. Heckman T, Borthakur S (2016) The implications of extreme outflows from extreme Starbursts. ApJ 822:9ADSCrossRefGoogle Scholar
  19. Heckman T, Armus L, Miley G (1990) On the nature and implications of starburst-driven galactic superwinds. ApJS 74:833ADSCrossRefGoogle Scholar
  20. Heckman T, Lehnert M, Strickland D, Armus L (2000) Absorption-line probes of gas and dust in galactic superwinds. ApJS 129:493ADSCrossRefGoogle Scholar
  21. Heckman T, Alexandrof R, Borthakur S, Overzier R, Leitherer C (2015) The systematic properties of the warm phase of starburst-driven galactic winds. ApJ 809:147 (H15)ADSCrossRefGoogle Scholar
  22. Hoopes C, Heckman T, Strickland D, Seibert M, Madore B, Rich RM et al (2005) GALEX Observations of the Ultraviolet Halos of NGC 253 and M 82. ApJ 619:L99ADSCrossRefGoogle Scholar
  23. Hopkins PF, Quataert E, Murray N (2012) Stellar feedback in galaxies and the origin of galaxy-scale winds. MNRAS 421:3522ADSCrossRefGoogle Scholar
  24. Ipavich FM (1975) Galactic winds driven by cosmic rays. ApJ 196:107ADSCrossRefGoogle Scholar
  25. Johnson H, Axford W (1971) Galactic Winds. ApJ 165:381ADSCrossRefGoogle Scholar
  26. Jubelgas M, Springel V, Enßlin T, Pfrommer C (2008) Cosmic ray feedback in hydrodynamical simulations of galaxy formation. A&A 481:33ADSCrossRefGoogle Scholar
  27. Krumholz MR, Thompson TA (2013) Numerical simulations of radiatively driven dusty winds. MNRAS 434:2329ADSCrossRefGoogle Scholar
  28. Lehnert M, Heckman T (1996) Ionized gas in the kalos of edge-on starburst galaxies: evidence for supernova-driven superwinds. ApJ 462:651ADSCrossRefGoogle Scholar
  29. Lehnert M, Heckman T, Weaver K (1999) Very extended X-ray and Hα emission in M 82: implications for the superwind phenomenon. ApJ 523:575ADSCrossRefGoogle Scholar
  30. Leroy A, Walter F, Martini P, Roussel H, Sandstrom K, Ott J et al (2015) The multi-phase cold fountain in M 82 revealed by a wide, sensitive map of the molecular interstellar medium. ApJ 814:83ADSCrossRefGoogle Scholar
  31. Lopez LA, Krumholz MR, Bolatto AD, Prochaska JX, Ramirez-Ruiz E (2011) What drives the expansion of giant H II Regions? A study of stellar feedback in 30 Doradus. ApJ 731:91ADSCrossRefGoogle Scholar
  32. Lynds CR, Sandage A (1963) Evidence for an explosion in the center of the galaxy M 82. ApJ 137:1005ADSCrossRefGoogle Scholar
  33. Marlowe A, Heckman T, Wyse R, Schommer R (1995) Observations of the impact of starbursts on the interstellar medium in dwarf galaxies. ApJ 438:563ADSCrossRefGoogle Scholar
  34. Martin CL (1998) The Impact of Star Formation on the Interstellar Medium of Dwarf Galaxies II: The Formation of Galactic Winds. ApJ 506:222ADSCrossRefGoogle Scholar
  35. Martin CL (2005) Mapping large-scale gaseous outflows in ultraluminous galaxies with Keck II ESI spectra: variations in outflow velocity with galactic mass. ApJ 621:227ADSCrossRefGoogle Scholar
  36. Martin CL, Shapley A, Coil A, Kornei K, Bundy K, Weiner B et al (2012) Demographics and physical properties of gas outflows/inflows at 0.4 ¡ z ¡ 1.4. ApJ 760:127Google Scholar
  37. Mathews W, Baker J (1971) Galctic Winds. ApJ 170:241ADSCrossRefGoogle Scholar
  38. McCourt M, O’Leary RM, Madigan A-M, Quataert E (2015) Magnetized Gas Clouds Can Survive Acceleration by a Hot Wind. MNRAS 449:2ADSCrossRefGoogle Scholar
  39. McGaugh S, Schombert J, de Blok W, Zagursky MJ (2010) The Baryon Content of Cosmic Structures. ApJ 708:L14ADSCrossRefGoogle Scholar
  40. M\(\acute{e}\) nard B, Scranton R, Fukagita M, Richards G (2010) Measuring the galaxy-mass and galaxy-dust correlations through magnification and reddening. MNRAS 405:1025Google Scholar
  41. Murray N, Quataert E, Thompson TA (2005) On the Maximum Luminosity of Galaxies and Their Central Black Holes: Feedback from Momentum-driven Winds. ApJ 618:569ADSCrossRefGoogle Scholar
  42. Murray N, Martin CL, Quataert E, Thompson TA (2007) The Ionization State of Sodium in Galactic Winds. ApJ 660:211ADSCrossRefGoogle Scholar
  43. Murray N, Quataert E, Thompson TA (2010) The Disruption of Giant Molecular Clouds by Radiation Pressure & the Efficiency of Star Formation in Galaxies. ApJ 709:191ADSCrossRefGoogle Scholar
  44. Murray N, Ménard B, Thompson TA (2011) Radiation pressure from massive star clusters as a launching mechanism for super-galactic winds. ApJ 735:66ADSCrossRefGoogle Scholar
  45. Pellegrini EW, Baldwin JA, Ferland GJ (2011) Structure and feedback in 30 Doradus. II. Structure and chemical abundances. ApJ 738:34Google Scholar
  46. Prochaska JX, Kasen D, Rubin K (2011) Simple models of metal-line absorption and emission from cool gas outflows. ApJ 734:24ADSCrossRefGoogle Scholar
  47. Rupke D, Veilleux S, Sanders D (2005) Outflows in Infrared-Luminous Starbursts at z < 0.5. II. Analysis and Discussion. ApJS 160:115Google Scholar
  48. Scannapieco E, Brüggen M (2015) The launching of cold clouds by galaxy outflows. I. Hydrodynamic interactions with radiative cooling. ApJ 805:158Google Scholar
  49. Scarlata C, Panagia N (2015) A semi-analytical line transfer model to interpret the spectra of galaxy outflows. ApJ 801:43ADSCrossRefGoogle Scholar
  50. Scarrott S, Eaton A, Axon D (1991) The scattered H-alpha emission-line filaments in M 82. MNRAS 252:12ADSCrossRefGoogle Scholar
  51. Seaquist E, Odegard N (1991) A nonthermal radio halo surrounding M 82. ApJ 369:320ADSCrossRefGoogle Scholar
  52. Shopbell P, Bland-Hawthorn J (1998) The Asymmetric Wind in M 82. ApJ 493:129ADSCrossRefGoogle Scholar
  53. Silich S, Tenorio-Tagle G, Muñoz-Tuñón C (2003) On the Rapidly Cooling Interior of Supergalactic Winds. ApJ 590:791ADSCrossRefGoogle Scholar
  54. Silich S, Tenorio-Tagle G, Rodríguez-González A (2004) Winds Driven by Super Star Clusters: The Self-Consistent Radiative Solution. ApJ 610:226ADSCrossRefGoogle Scholar
  55. Socrates A, Davis SW, Ramirez-Ruiz E (2008) The Eddington Limit in Cosmic Rays: An Explanation for the Observed Faintness of Starbursting Galaxies. ApJ 687:202ADSCrossRefGoogle Scholar
  56. Somerville R, Davé R (2015) Physical models of galaxy formation in a cosmological framework. ARA&A 53:51ADSCrossRefGoogle Scholar
  57. Steidel C, Erb D, Shapley A, Pettini M, Reddy N, Bogosavljevic M, Rudie GC, Rakic O (2010) The Structure and Kinematics of the Circumgalactic Medium from Far-ultraviolet Spectra of z ≃ 2 – 3 Galaxies. ApJ 717:289ADSCrossRefGoogle Scholar
  58. Strickland D, Heckman T (2009) Supernova feedback efficiency and mass loading in the starburst and galactic superwind exemplar M 82. ApJ 697:2030ADSCrossRefGoogle Scholar
  59. Strickland D, Stevens I (2000) Starburst-driven galactic winds – I. Energetics and intrinsic X-ray emission. MNRAS 314:511Google Scholar
  60. Strickland D, Heckman T, Colbert E, Hoopes CG, Weaver KA (2004) A high spatial resolution X-ray and Hα study of hot gas in the halos of star-forming disk galaxies. II. Quantifying supernova feedback. ApJ 606:829Google Scholar
  61. Thompson TA, Krumholz MR (2016) Sub-Eddington star-forming regions are super-Eddington: momentum-driven outflows from supersonic turbulence. MNRAS 455:334ADSCrossRefGoogle Scholar
  62. Thompson TA, Quataert E, Murray N (2005) Radiation Pressure-supported Starburst Disks and Active Galactic Nucleus Fueling. ApJ 630:167ADSCrossRefGoogle Scholar
  63. Thompson TA, Fabian AC, Quataert E, Murray N (2015) Dynamics of dusty radiation-pressure-driven shells and clouds: fast outflows from galaxies, star clusters, massive stars, and AGN. MNRAS 449:147ADSCrossRefGoogle Scholar
  64. Thompson TA, Quataert E, Zhang D, Weinberg DH (2016) An origin for multiphase gas in galactic winds and haloes. MNRAS 455:1830ADSCrossRefGoogle Scholar
  65. Tremonti C, Heckman T, Kauffmann G, Brinchmann J, Charlot S, White SDM et al (2004) The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey. ApJ 613:898ADSCrossRefGoogle Scholar
  66. Veilleux S, Cecil G, Bland-Hathorn J (2005) Galactic winds. ARA&A 43:769ADSCrossRefGoogle Scholar
  67. Veilleux S, Rupke D, Swaters R (2009) Warm molecular hydrogen in the galactic wind of M 82. ApJL 700:L149ADSCrossRefGoogle Scholar
  68. Wang (1995) Cooling Gas Outflows from Galaxies. ApJ 444:590Google Scholar
  69. Yoshida M, Kawabata K, Ohyama Y (2011) Spectropolarimetry of the superwind filaments of the starburst galaxy M 82: kinematics of dust outflow. PASJ 63:493ADSCrossRefGoogle Scholar
  70. Zhang D, Thompson TA (2012) Radiation pressure-driven galactic winds from self-gravitating discs. MNRAS 424:1170ADSCrossRefGoogle Scholar
  71. Zhang D, Thompson TA, Murray N, Quataert E (2014) Hot galactic winds constrained by the X-ray luminosities of galaxies. ApJ 784:93ADSCrossRefGoogle Scholar
  72. Zhang D, Thompson TA, Murray N, Quataert E (2015) Entrainment in Trouble: Cool Cloud Acceleration and Destruction in Hot Supernova-Driven Galactic Winds. arXiv:1507.01951Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Physics and Astronomy, and Center for Astrophysical SciencesThe Johns Hopkins UniversityBaltimoreUSA
  2. 2.Department of Astronomy and Center for Cosmology and Astro-Particle PhysicsThe Ohio State UniversityColumbusUSA

Personalised recommendations