Advertisement

Global Biodiversity in Cold-Water Coral Reef Ecosystems

Reference work entry

Abstract

Over half of all scleractinian coral species inhabit ocean depths greater than 50 m, some of which are capable of constructing reefs tens of kilometers long and hundreds of meters high. The biodiversity of life found on these cold-water coral reefs is astounding yet remarkable since, in contrast to the photic and mesophotic zones, so few coral species actually create a framework matrix at these depths. In light of rapid climate change and unprecedented rates of anthropogenic disturbance, it is urgent we understand how biodiversity in the depths of our oceans is coupled to the persistence of these habitats. We provide a synthetic overview of animal biodiversity associated with major reef framework-forming species, discussing this with respect to global trends in species diversity, composition, and regional species pools, large knowledge gaps, and also the frontiers in technology that cold-water coral science is adopting to help address these gaps.

Keywords

Cold-water coral reefs Sharks Fauna Species diversity Community assembly Biogeography Taxonomy Landers Underwater observatories Robotics Genomics 

Notes

Acknowledgments

This work builds upon several projects including the European Union Marie Curie fellowships ECCRE (Contract no. 002469) and TRACES (MOIF-CT-2006–040018). The authors acknowledge the recent UK Ocean Acidification programme (Natural Environment Research Council grant NE/H017305/1) and on-going NERC projects (grants NE/M007235/1 and NE/J021121/1). Further thanks are due to the captain and crew of the RRS James Cook for assistance at sea and to Marta Mellado-Silva, Claudia Wienberg, and Dierk Hebbeln at MARUM, and Di Tracey and Malcolm Clark at NIWA for images.

References

  1. Beuck L, Vertino A, Stepina E, Karolczak M, Pfannkuche O. Skeletal response of Lophelia pertusa (Scleractinia) to bioeroding sponge infestation visualized with micro-computed tomography. Facies. 2007;53:157–76.CrossRefGoogle Scholar
  2. Biber MF, Duineveld GCA, Lavaleye MSS, Davies AJ, Bergman MJN, van den Beld IMJ. Investigating the association of fish abundance and biomass with cold-water corals in the deep Northeast Atlantic Ocean using a generalised linear modelling approach. Deep-Sea Res II. 2013;99:134–45.CrossRefGoogle Scholar
  3. Bongiorni L, Mea M, Gambi C, Pusceddu A, Taviani M, Danovaro R. Deep-water scleractinian corals promote higher biodiversity in deep-sea meiofaunal assemblages along continental margins. Biol Conserv. 2010;143:1687–700.CrossRefGoogle Scholar
  4. Cathalot C, Van Oevelen D, Cox TJS, Kutti T, Lavaleye M, Duineveld G, Meysman FJR. Cold-water coral reefs and adjacent sponge grounds: hotspots of benthic respiration and organic carbon cycling in the deep sea. Front Mar Sci. 2015;2:37.CrossRefGoogle Scholar
  5. Cordes EE, McGinley MP, Podowski EL, Becker EL, Lessard-Pilon S, Viada ST, Fisher CR. Coral communities of the deep Gulf of Mexico. Deep-Sea Res I. 2008;55:777–87.CrossRefGoogle Scholar
  6. D’Onghia G, Maiorano P, Sion L, Giove A, Capezzuto F, Carlucci R, Tursi A. Effects of deep-water coral banks on the abundance and size structure of the megafauna in the Mediterranean Sea. Deep-Sea Res II. 2010;57:397–411.CrossRefGoogle Scholar
  7. D’Onghia G, Maiorano P, Carlucci R, Capezzuto F, Carluccio A, Tursi A, Sion L. Comparing deep-sea fish fauna between coral and non-coral “megahabitats” in the Santa Maria di Leuca cold-water coral province (Mediterranean Sea). PLoS One. 2012;7:e44509.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Doonan IJ, Fu D, Dunn MR. Harvest control rules for a sustainable orange roughy fishery. Deep-Sea Res I. 2015;98:53–61.CrossRefGoogle Scholar
  9. Eiler JH, Grothue TM, Dobarro JA, Masuda MM. Comparing autonomous underwater vehicle (AUV) and vessel-based tracking performance for locating acoustically tagged fish. Mar Fish Rev. 2013;75:27–42.CrossRefGoogle Scholar
  10. Flögel S, Dullo W-C, Pfannkuche O, Kiriakoulakis K, Rüggeberg A. Geochemical and physical constraints for the occurrence of living cold-water corals. Deep-Sea Res II. 2014;99:19–26.CrossRefGoogle Scholar
  11. Gheerardyn H, De Troch M, Vincx M, Vanreusel A. Diversity and community structure of harpacticoid copepods associated with cold-water coral substrates in the Porcupine Seabight (North-East Atlantic). Helgol Mar Res. 2010;64:53–62.CrossRefGoogle Scholar
  12. Guardiola M, Uriz MJ, Taberlet P, Coissac E, Wangensteen OS, Turon X. Deep-sea, deep-sequencing: metabarcoding extracellular DNA from sediments of marine canyons. PLoS ONE. 2015;10:e0139633.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Henry L-A, Roberts JM. Biodiversity and ecological composition of macrobenthos on cold-water coral mounds and adjacent off-mound habitat in the bathyal Porcupine Seabight, NE Atlantic. Deep-Sea Res I. 2007;54:654–72.CrossRefGoogle Scholar
  14. Henry L-A, Nizinski MS, Ross SW. Occurrence and biogeography of hydroids (Cnidaria: Hydrozoa) from deep-water coral habitats off the southeastern United States. Deep-Sea Res I. 2008;55:788–800.CrossRefGoogle Scholar
  15. Henry L-A, Moreno Navas J, Roberts JM. Multi-scale interactions between local hydrography, seabed topography, and community assembly on cold-water coral reefs. Biogeosciences. 2013a;10:2737–46.CrossRefGoogle Scholar
  16. Henry L-A, Moreno Navas J, Hennige S, Wicks LC, Vad J, Roberts JM. Cold-water coral reef habitats benefit recreationally valuable sharks. Biol Conserv. 2013b;161:67–70.CrossRefGoogle Scholar
  17. Henry L-A, Frank N, Hebbeln D, Wienberg C, Robinson L, van de Flierdt T, Dahl M, Douarin M, Morrison CL, López Correa M, Rogers AD, Ruckelshausen M, Roberts JM. Global ocean conveyor lowers extinction risk in the deep sea. Deep-Sea Res I. 2014a;88:8–16.CrossRefGoogle Scholar
  18. Henry L-A, Vad J, Findlay HS, Murillo J, Milligan R, Roberts JM. Environmental variability and biodiversity of megabenthos on the Hebrides Terrace Seamount (Northeast Atlantic). Nat Sci Rep. 2014b;4:5589.CrossRefGoogle Scholar
  19. Herrera Monroy S. Evolutionary and ecological genomics in deep-sea organisms. Ph.D thesis, Massachusetts Institute of Technology and Woods Hole Oceanographic Institute February. 2015.Google Scholar
  20. Husebø A, Nottestad L, Fosså JH, Furevik DM, Jorgensen SB. Distribution and abundance of fish in deep-sea coral habitats. Hydrobiologia. 2002;471:91–9.CrossRefGoogle Scholar
  21. Kutti T, Bergstad OA, Fosså JH, Helle K. Cold-water coral mounds and sponge-beds as habitats for demersal fish on the Norwegian shelf. Deep-Sea Res II. 2014;99:122–33.CrossRefGoogle Scholar
  22. Lavaleye M, Duineveld G, Bergman M, Ven den Beld I. Long-term baited lander experiments at a cold-water coral community on Galway Mound (Belgica Mound Province, NE Atlantic). Deep-Sea Res II. 2015. doi:10.1016/j.dsr2.2015.12.014.Google Scholar
  23. Lessard-Pilon SA, Podowski EL, Cordes EE, Fisher CR. Megafauna community composition associated with Lophelia pertusa colonies in the Gulf of Mexico. Deep-Sea Res II Top Stud Oceanogr. 2010;57:1882–90.CrossRefGoogle Scholar
  24. Linley TD, Lavaleye M, Maiorano P, Bergman M, Capezzuto F, Cousins NJ, D’Onghia G, Duineveld G, Shields MA, Sion L, Tursi A, Priede IG. Effects of cold-water corals on fish diversity and density (European continental margin: Arctic, NE Atlantic and Mediterranean Sea): data from three baited lander systems. Deep-Sea Res II. 2015. doi:10.1016/j.dsr2.2015.12.003.Google Scholar
  25. Lopes DA, Hajdu E. Carnivorous sponges from deep-sea coral mounds in the Campos Basin (SW Atlantic), with the description of six new species (Cladorhizidae, Poecilosclerida, Demospongiae). Mar Biol Res. 2014;10:329–56.CrossRefGoogle Scholar
  26. Mortensen PB, Fosså JH. Species diversity and spatial distribution of invertebrates on deep-water Lophelia reefs in Norway. In: Proceedings of 10th international coral reef symposium, Okinawa, Japan. 2006. p. 1849–68.Google Scholar
  27. Purser A, Bergmann M, Lundälv T, Ontrup J, Nattkemper TW. Use of machine-learning algorithms for the automated detection of cold-water coral habitats: a pilot study. Mar Ecol Prog Ser. 2009;397:241–51.CrossRefGoogle Scholar
  28. Purser A, Thomsen L, Barnes C, Best M, Chapman R, Hofbauer M, Menzel M, Wagner H. Temporal and spatial benthic data collection via an internet operated Deep Sea Crawler. Methods Oceanogr. 2013a;5:1–18.CrossRefGoogle Scholar
  29. Purser A, Orejas C, Gori A, Tong R, Unnithan V, Thomsen L. Local variation in the distribution of benthic megafauna species associated with cold-water coral reefs on the Norwegian margin. Cont Shelf Res. 2013b;54:37–51.CrossRefGoogle Scholar
  30. Quattrini AM, Partyka ML, Ross SW. Aspects of the reproductive biology of the skate Fenestraja plutonia (Garman) off North Carolina. Southeast Nat. 2009;8:55–70.CrossRefGoogle Scholar
  31. Raddatz J, Rüggeberg A, Margreth S, Dullo W-C, Expedition, IODP. Paleoenvironmental reconstruction of Challenger Mound initiation in the Porcupine Seabight, NE Atlantic. Mar Geol. 2011;282:79–90.CrossRefGoogle Scholar
  32. Raes M, Vanreusel A. Microhabitat type determines the composition of nematode communities associated with sediment-clogged cold-water coral framework in the Porcupine Seabight (NE Atlantic). Deep-Sea Res I. 2006;53:1880–94.CrossRefGoogle Scholar
  33. Reveillaud J, Remerie T, van Soest R, Erpenbeck D, Cárdenas P, Derycke S, Xavier JR, Rigaux A, Vanreusel A. Species boundaries and phylogenetic relationships between Atlanto-Mediterranean shallow-water and deep-sea coral associated Hexadella species (Porifera, Ianthellidae). Mol Phylogenet Evol. 2010;56:104–14.CrossRefPubMedGoogle Scholar
  34. Reveillaud J, van Soest R, Derycke S, Picton B, Rigaux A, Vanreusel A. Phylogenetic relationships among NE Atlantic Plocamionida Topsent (1927) (Porifera, Poecilosclerida): under-estimated diversity in reef ecosystems. PLoS One. 2011;6:e16533.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Rice J, Gjerde KM, Ardron J, Arico S, Cresswell I, Escobar E, Grant S, Vierros M. Policy relevance of biogeographic classification for conservation and management of marine biodiversity beyond national jurisdiction, and the GOODS biogeographic classification. Ocean Coast Manag. 2011;54:110–22.CrossRefGoogle Scholar
  36. Roberts JM, Cairns SD. Cold-water corals in a changing ocean. Curr Opin Environ Sustain. 2014;7:118–26.CrossRefGoogle Scholar
  37. Roberts JM, Peppe OC, Dodds LA, Mercer DJ, Thomson WT, Gage JD, Meldrum DT. Monitoring environmental variability around cold-water coral reefs: the use of a benthic photolander and the potential of seafloor observatories. In: Freiwald A, Roberts JM, editors. Cold-water corals and ecosystems. Berlin/Heidelberg: Springer; 2005. p. 483–502.CrossRefGoogle Scholar
  38. Roberts JM, Wheeler A, Freiwald A, Cairns S. Cold-water corals. Cambridge: Cambridge University Press; 2009.CrossRefGoogle Scholar
  39. Ross SW, Rhode M, Quattrini AM. Demersal fish distribution and habitat use within and near Baltimore and Norfolk Canyons, U.S. middle Atlantic slope. Deep-Sea Res I. 2015;103:137–54.CrossRefGoogle Scholar
  40. Rovelli L, Attard KM, Bryant LD, Flögel S, Stahl H, Roberts JM, Linke P, Glud RN. Benthic O2 uptake of two cold-water coral communities estimated with the non-invasive eddy correlation technique. Mar Ecol Prog Ser. 2015;525:97–104.CrossRefGoogle Scholar
  41. Stevenson A, Mitchell FJG, Davies JS. Predation has no competition: factors influencing space and resource use by echinoids in deep-sea coral habitats, as evidenced by continuous video transects. Mar Ecol. 2014. doi:10.1111/maec.12245.Google Scholar
  42. Stramma L, Prince ED, Schmidtko S, Luo J, Hoolihan JP, Visbeck M, Wallace DWR, Brandt P, Körtzinger A. Expansion of oxygen minimum zones may reduce available habitat for tropical pelagic fishes. Nat Clim Chang. 2012;2:33–7.CrossRefGoogle Scholar
  43. Thresher R, Althaus F, Adkins J, Gowlett-Holmes K, Alderslade P, Dowdney J, Cho W, Gagnon A, Staples D, McEnnulty F, Williams A. Strong depth-related zonation of megabenthos on a rocky continental margin (~700–4000 m) off southern Tasmania, Australia. PLoS One. 2014;9:e85872.CrossRefPubMedPubMedCentralGoogle Scholar
  44. van Oevelen D, Duineveld G, Lavaleye M, Mienis F, Soetaert K, Heip CHR. The cold-water coral community as a hot spot for carbon cycling on continental margins: a food-web analysis from Rockall Bank (northeast Atlantic). Limnol Oceanogr. 2009;54:1829–44.CrossRefGoogle Scholar
  45. van Soest RWM, Beglinger EJ. New bioeroding sponges from Mingulay coldwater reefs, north-west Scotland. J Mar Biol Assoc UK. 2009;89:329–35.CrossRefGoogle Scholar
  46. van Soest RWM, de Voogd N. Sponge species composition of north-east Atlantic cold-water coral reefs compared in a bathyal to inshore gradient. J Mar Biol Assoc UK. 2013. doi:10.1017/S0025315413001410.Google Scholar
  47. Wisshak M, Schönberg CHL, Form A, Freiwald A. Sponge bioerosion accelerated by ocean acidification across species and latitudes? Helgol Mar Res. 2014;68:253–62.CrossRefGoogle Scholar
  48. Wynn RB, Huvenne VAI, Le Bas TP, Murton BJ, Connelly DP, Bett BJ, Ruhl HA, Morris KJ, Peakall J, Parsons DR, Sumner EJ, Darby SE, Dorrell RM, Hunt JE. Autonomous underwater vehicles (AUVs): their past, present and future contributions to the advancement of marine geoscience. Mar Geol. 2014;352:451–68.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Centre for Marine Biodiversity and Biotechnology, School of Life Sciences, Heriot-Watt UniversityEdinburghUK
  2. 2.School of GeoSciencesUniversity of EdinburghEdinburghUK
  3. 3.Center for Marine ScienceUniversity of North Carolina WilmingtonWilmingtonUSA

Personalised recommendations