Coexistence in Cold Waters: Animal Forests in Seaweed-Dominated Habitats in Southern High-Latitudes

Reference work entry


Coexistence between species plays an important role in structuring marine benthic communities but is often underestimated in current ecological studies. In the cold-water ecosystem, such as Chilean fjord/channels and Antarctic areas, animal forests are dominant on rocky substrates and exist among dense macroalgal forests as well as encrusting coralline algae. The distribution patterns of both animal and macroalgal forests are influenced by the topography of the rocky wall, where animal forests formed by trees- and mound-like growth forms become dominant with an increasing degree of inclination. The macroalgal forest tends to decrease from the inclined toward the overhanging profile. Along a latitudinal gradient, very abundant gregarious animal forests (e.g., mytilids ) on the subantarctic shallow rocky substrate tend to decrease in their abundance and distribution toward the rocky substrate of the Antarctic shallow areas. A contrasting pattern emerges regarding clonal animal forests (e.g., sponges), where dense assemblages of clonal growth forms are dominant in the Antarctic rocky substrate and tend to decrease toward the southern tip of South America. In both the Chilean fjord and channels and Antarctic ecosystems, the animal forests are key elements in the seascape as they have great potential as a tourist attraction and also provide important ecosystem services.


Clonal Gregarious Climate change Magellan Antarctica Rocky reef Cold-waters ecosystem Macroalgae Seascape ecology 



The authors thank our colleagues that have contributed during fieldwork activities in the Antarctic and subantarctic. We also thank Dr. Schories, Dr. Gulliksen, and M.Sc. Hüne for providing some of the underwater pictures for this chapter. We also thank, M.A. Kawalle for her time and commentaries, which have improved our chapter. Some fieldwork activities that has allowed the authors to collect data and observations of Antarctic and Subantarctic Marine Forest have been supported by CONICYT/FONDECYT/INACH/INICIACION/ #11150129 awarded to CAC.


  1. Adjeroud M, Kayal M, Penin L. Importance of recruitment processes in the dynamics and resilience of coral reef assemblages. Marine animal forests: The ecology of benthic biodiversity hotspots. 2015;1–21.Google Scholar
  2. Andrade C, Ríos C, Gerdes D, Brey T. Trophic structure of shallow-water benthic communities in the sub-Antarctic Strait Magellan. Polar Biol. 2016;1–17. Available from doi: 10.1007/s00300-016-1895-0.Google Scholar
  3. Arntz WE, Ríos C. Magellan-Antarctic: ecosystems that drifted apart. Sci Mar. 1999;63:1–518.Google Scholar
  4. Arntz WE, Thatje S, Gerdes D, Gili JM, Gutt J, Jacob U, Montiel A, Orejas C, Teixidó N. The Antarctic-Magellan connection: macrobenthos ecology on the shelf and upper slope, a progress report. Sci Mar. 2005;69:237–69.CrossRefGoogle Scholar
  5. Aronson R, Thatje S, Clarke A, Peck LS, Blake DB, Wilga CD, Seible BA. Climate change and invasibility of the Antarctic benthos. Annu Rev Ecol Evol Syst. 2007;3:129–54.CrossRefGoogle Scholar
  6. Ávila E, Blancas-Gallangos NI, Riosmena-Rodríguez R, Paul-Chávez L. Sponges associated with Sargassum spp. (Phaeophyceae: Fucales) from the south-western Gulf of California. J Mar Biol Assoc UK. 2010;90:193–202.CrossRefGoogle Scholar
  7. Barnes DKA, Neutel AM. Severity of seabed spatial competition decreases towards the poles. Curr Biol. 2016;26(8):R317–8.CrossRefPubMedGoogle Scholar
  8. Barnes RSK, Calow PP, Olive PJW, Golding DW, Spicer JI. The invertebrates: a synthesis. Chichester: Wiley; 2009.Google Scholar
  9. Bell JJ, Barnes DK. The distribution and prevalence of sponges in relation to environmental gradients within a temperate sea lough: vertical cliff surfaces. Divers Distrib. 2000;6(6):283–303.CrossRefGoogle Scholar
  10. Berke SK, Jablonski D, Krug AZ, Valentine JW. Origination and immigration drive latitudinal gradients in marine functional diversity. PLoS One. 2014;9(7):e101494.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Boudouresque CF, Blanfuné A, Harmelin-Vivien M, Personnic S, Ruitton S, Thibaut T, Verlaque M. Where seaweed forests meet animal forests: the examples of macroalgae in coral reefs and the mediterranean coralligenous ecosystem. Marine animal forests: the ecology of benthic biodiversity hotspots. Switzerand: Springer; 2016.Google Scholar
  12. Brambati A, Fontolan G, Simeoni U. Recent sediments and sedimentological processes in the Strait of Magellan. Boll Oceanologia Teor Appl. 1991;9(2–3):217–59.Google Scholar
  13. Bulleri F. Facilitation research in marine systems: state of the art, emerging patterns and insights for future developments. J Ecol. 2009;97:1121–30.CrossRefGoogle Scholar
  14. Buss LW, Jackson JBC. Competitive networks: Nontransitive competitive relationships in cryptic coral reefs environments. Am Nat. 1979;113:223–34.CrossRefGoogle Scholar
  15. Cárdenas CA, Montiel A. The influence of depth and substrate inclination on sessile assemblages in subantarctic rocky reefs (Magellan region). Polar Biol. 2015;38(10):1631–44.CrossRefGoogle Scholar
  16. Cárdenas CA, Davy SK, Bell JJ. Correlations between algal abundance, environmental variables and sponge distribution patterns on southern hemisphere temperate rocky reefs. Aquat Biol. 2012;16:229–39.CrossRefGoogle Scholar
  17. Cárdenas CA, Davy SK, Bell JJ. Influence of canopy-forming algae on temperate sponge assemblages. J Mar Biol Assoc UK. 2016a;96(2):315–61.CrossRefGoogle Scholar
  18. Cárdenas CA, Newcombe EM, Hajdu E, Gonzalez-Aravena M, Geange SW, Bell JJ. Sponge richness on algae-dominated rocky reefs in the western Antarctic Peninsula and the Magellan Strait. Polar Res. 2016b;35:30532.CrossRefGoogle Scholar
  19. Carranza A, Defeo O, Beck M, Castilla JC. Linking fisheries management and conservation in bioengineering species: the case of south American mussels (Mytilidae). Rev Fish Biol Fish. 2009;19(3):349–66.CrossRefGoogle Scholar
  20. Connell JH, Keough MJ. Disturbance and patch dynamics of subtidal marine animals on hard substrata. In: Pickett STA, White PS, editors. The ecology of natural disturbance and patch dynamics. Orlando: Academic Press Harcout Brace Javanovich, Publishers; 1985.Google Scholar
  21. Duggins DO, Eckman JE. Is kelp detritus a good food for suspension feeders? Effects of kelp species, age and secondary metabolites. Mar Biol. 1997;128:489–95.CrossRefGoogle Scholar
  22. Fowler-Walker MJ, Gillanders BM, Connell SD, Irving AD. Patterns of association between canopy-morphology and understorey assemblages across temperate Australia. Estuar Coast Shelf Sci. 2005;63(1):133–41.CrossRefGoogle Scholar
  23. Försterra G, Häussermann V, Lüter C. Mass occurrence of the recent brachiopod Magellania venosa (Terebratellidae) in the fjords Comau and Reñihué, northern Patagonia, Chile. Mar Ecol. 2008; 29:342–47.Google Scholar
  24. Gazeau F, Parker LM, Comeau S, Gattuso JP, O’Connor WA, Martin S, Pörtner H-O, Ross PM. Impacts of ocean acidification on marine shelled molluscs. Mar Biol. 2013;160(8):2207–45.CrossRefGoogle Scholar
  25. Gerdes D, Klages M, Arntz WE, Herman RL, Galéron J, Hain S. Quantitative investigations on macrobenthos communities of the southeastern Weddell Sea shelf based on multibox corer samples. Polar Biol. 1992;12(2):291–301.CrossRefGoogle Scholar
  26. Gili JM, Coma R, Orejas C, López-González PJ, Zabala M. Are Antarctic suspension-feeding communities different from those elsewhere in the world? Berlin/Heidelberg: Springer; 2002. p. 104–16.Google Scholar
  27. Gili JM, Arntz WE, Palanques A, Orejas C, Clarke A, Dayton PK, Isla E, Teixido N, Rossi S, López-González PJ. A unique assemblage of epibenthic sessile suspension feeders with archaic features in the high-Antarctic. Deep Sea Res II: Top Stud Oceanogr. 2006;53(8):1029–52.CrossRefGoogle Scholar
  28. Gray JS. Antarctic marine benthic biodiversity in a world-wide latitudinal context. Polar Biol. 2001;24:633–41.CrossRefGoogle Scholar
  29. Greene CH, Schoener A, Corets E. Succession on marine hard substrata: the adaptive significance of solitary and colonial strategies in temperate fouling communities. Mar Ecol Prog Ser. 1983;13(2):121–9.CrossRefGoogle Scholar
  30. Gutiérrez JL, Jones CG, Strayer DL, Iribarne O. Mollusks as ecosystem engineers: the role of shell production in aquatic habitats. Oikos. 2003;101(1):79–90.CrossRefGoogle Scholar
  31. Gutt J, Hosie G, Stoddart M. Marine life in the Antarctic. Life in the world’s oceans: diversity, distribution, and abundance. 1st ed. Oxford: Blackwell Publishing; 2010. p. 203–20.CrossRefGoogle Scholar
  32. Gutt J, Cummings V, Dayton PK, Isla E, Jentsch A, Schiaparelli S. Antarctic Marine animal forests: three-dimensional communities in Southern Ocean ecosystems. Marine animal forests: the ecology of benthic biodiversity hotspots. Springer, Switzerand. 2016 doi: 10.1007/978-3-319-17001-5_8-1.Google Scholar
  33. Hastings A, Byers JE, Crooks JA, Cuddington K, Jones, CG, Lambrinos JG, … Wilson WG. Ecosystem engineering in space and time. Ecol Lett. 2007;10(2):153–64.Google Scholar
  34. Hulton NR, Purves RS, McCulloch RD, Sugden DE, Bentley MJ. The last glacial maximum and deglaciation in southern south America. Quat Sci Rev. 2002;21(1):233–41.CrossRefGoogle Scholar
  35. Jackson JBC. Competition on marine hard substrata: the adaptive significance of solitary and colonial strategies. Am Nat. 1977;118:743–67.CrossRefGoogle Scholar
  36. Jackson JBC. Morphological strategies of sessile animals biology and systematics of colonial organisms. London: Academic; 1979. p. 499–555.Google Scholar
  37. Jackson JB. Distribution and ecology of clonal and aclonal benthic invertebrates. In: Jackson JBC, Buss W, Cook RE, Ashmun JW editors. Population biology and evolution of clonal organisms. 1985;297–355.Google Scholar
  38. Jax K. Function and “functioning” in ecology: what does it mean? Oikos. 2005;111(3):641–8.CrossRefGoogle Scholar
  39. John DM, Hawkins SJ, Price JH. Plant-animal interactions in the marine benthos (no. 46). Oxford: Oxford University Press; 1992.Google Scholar
  40. Jones CG, Lawton JH, Shachak M. Organisms as ecosystem engineers. In Ecosystem management. New York: Springer; 1994. p. 130–47.Google Scholar
  41. Jumars PA, Dorgan KM, Lindsay SM. Diet of worms emended: an update of polychaete feeding guilds. Ann Rev Mar Sci. 2015;7:497–520.CrossRefPubMedGoogle Scholar
  42. Keith DA, Rodríguez JP, Rodríguez-Clark KM, Nicholson E, Aapala K, Alonso A, et al. Scientific foundations for an IUCN red list of ecosystems. PLoS One. 2013;8(5):e62111. doi:10.1371/journal.pone.0062111.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Kiel S, Tyler PA. Chemosynthetically-driven ecosystems in the deep sea. In The vent and seep biota. Dordrecht: Springer; 2010.Google Scholar
  44. McClintock JB, Angus RA, McDonald MR, Amsler CD, Catledge SA, Vohra YK. Rapid dissolution of shells of weakly calcified Antarctic benthic macroorganisms indicates high vulnerability to ocean acidification. Antarct Sci. 2009;21(5):449–56.CrossRefGoogle Scholar
  45. Miller RJ, Etter RJ. Rock walls: small-scale diversity hotspots in the subtidal Gulf of Maine. Mar Ecol Prog Ser. 2011;425:153–65.CrossRefGoogle Scholar
  46. Montiel A, Gerdes D, Arntz WE. Distributional patterns of shallow-water polychaetes in the Magellan region: a zoogeographical and ecological synopsis. Sci Mar. 2005;69(S2):123–33.CrossRefGoogle Scholar
  47. Newcombe EM, Cárdenas CA, Geange SW. Green sea urchins structure invertebrate and macroalgal communities in the Magellan Strait, southern Chile. Aquat Biol. 2012;15:135–44.CrossRefGoogle Scholar
  48. Norderhaug KM, Christie HC. Sea urchin grazing and kelp re-vegetation in the NE Atlantic. Mar Biol Res. 2009;5:515–528.CrossRefGoogle Scholar
  49. Orejas C, Gili JM, Arntz W, Ros JD, López P, Teixidó N, Filipe P. Benthic suspension feeders, key players in Antarctic marine ecosystems? Contrib Sci. 2000;1:299–311.Google Scholar
  50. Palumbi SR. Spatial variation in an algal-sponge commensalism and the evolution of ecological interactions. Am Nat. 1985;126:267–75.CrossRefGoogle Scholar
  51. Pimm SL. Complexity and stability: another look at MacArthur’s original hypothesis. Oikos. 1979;33:351–7.CrossRefGoogle Scholar
  52. Raguá-Gil JM, Gutt J, Clarke A, Arntz WE. Antarctic shallow-water mega-epibenthos: shaped by circumpolar dispersion or local conditions? Mar Biol. 2004;144(5):829–39.CrossRefGoogle Scholar
  53. Ríos C, Gerdes D. Ensamble bentónico epifaunístico de un campo intermareal de bloques y cantos en Bahía Laredo, Estrecho de Magallanes. An Inst Patagonia Cienc Nat. 1997;25:47–55.Google Scholar
  54. Ríos C, Arntz WE, Gerdes D, Mutschke E, Montiel A. Spatial and temporal variability of the benthic assemblages associated to the holdfasts of the kelp Macrocystis pyrifera in the Straits of Magellan. Chil Pol Biol. 2007;31(1):89–100.CrossRefGoogle Scholar
  55. Rossi S. The destruction of the ‘animal forests’ in the oceans: towards an over-simplification of the benthic ecosystems. Ocean Coast Manag. 2013;84:77–85.CrossRefGoogle Scholar
  56. Roy K, Jablonski D, Valentine JW. Dissecting latitudinal diversity gradients: functional groups and clades of marine bivalves. Proc R Soc Lond B: Biol Sci. 2000;267(1440):293–9.CrossRefGoogle Scholar
  57. Salcedo-Castro J, Montiel A, Jara B, Vásquez O. Influence of a glacier melting cycle on the seasonal hydrographic conditions and sediment flux in a subantarctic glacial fjord. Estuaries Coast. 2015;38(1):24–34.CrossRefGoogle Scholar
  58. Setti M, Veniale F. Bottom sediments in the Strait of Magellan mineralogy of fine fraction (<62 m). Boll Oceanologia Teor Appl. 1991;9:193–201.Google Scholar
  59. Siegfried WR, Hockey PAR, Branch GM. The exploitation of intertidal and subtidal biotic resources of rocky shores in Chile and South Africa: an overview. In: Siegfried WR, editor. Rocky shores: exploitation in Chile and south Africa. 103 Berlin: Springer Science; 1994. p. 1–15.CrossRefGoogle Scholar
  60. Silva N, Vargas CA, Prego R. Land–ocean distribution of allochthonous organic matter in surface sediments of the Chiloé and Aysén interior seas (Chilean Northern Patagonia). Cont Shelf Res. 2011;31(3):330–9.CrossRefGoogle Scholar
  61. Smale DA, Burrows MT, Moore P, O’Connor N, Hawkins SJ. Threats and knowledge gaps for ecosystem services provided by kelp forests: a northeast Atlantic perspective. Ecol Evol. 2013;3:4016–38.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Sokolova IM, Frederich M, Bagwe R, Lannig G, Sukhotin AA. Energy homeostasis as an integrative tool for assessing limits of environmental stress tolerance in aquatic invertebrates. Mar Environ Res. 2012;79:1–15.CrossRefPubMedGoogle Scholar
  63. Steneck RS, Dethier MN. A functional group approach to the structure of algal-dominated communities. Oikos. 1994;69:476–98.CrossRefGoogle Scholar
  64. Teixidó N, Garrabou J, Gutt J, Arntz WE. Recovery in Antarctic benthos after iceberg disturbance: trends in benthic composition, abundance and growth forms. Mar Ecol Prog Ser. 2004;278:1–16.CrossRefGoogle Scholar
  65. Teixidó N, Garrabou J, Gutt J, Arntz WE. Iceberg disturbance and successional spatial patterns: the case of the shelf Antarctic benthic communities. Ecosystems. 2007;10(1):143–58.CrossRefGoogle Scholar
  66. Thomson SN, Brandon MT, Tomkin JH, Reiners PW, Vásquez C, Wilson NJ. Glaciation as a destructive and constructive control on mountain building. Nature. 2010;467(7313):313–7.CrossRefPubMedGoogle Scholar
  67. Vrijenhoek RC. Genetics and evolution of deep-sea chemosynthetic bacteria and their invertebrate 551 hosts. In The vent and seep biota. Dordrecht: Springer; 2010. p. 15–49.Google Scholar
  68. Willenz Ph, Hajdu E, Desqueyroux-Fáundez R, Lôbo-Hajdu G, Carvalho MS, Azevedo F, Klautau M. Sponges (Phylum Porifera). In Häusserman V, Försterra G, editors. Field identification guide for the macrobenthic invertebrates of the Chilean fjord region. Natur in Focus and Santiago; 2009.Google Scholar
  69. Wood R. Reef evolution. Oxford University Press on Demand; Oxford: Oxford Univ. Press ot New York; 1999. 414 pp.Google Scholar
  70. Worm B, Karez R. Competition, coexistence and diversity on rocky shores. In Competition and coexistence. Berlin/Heidelberg: Springer; 2002. p. 133–63.Google Scholar
  71. Wright JT, Benkendorff K, Davis AR. Habitat associated differences in temperate sponge assemblages: the importance of chemical defense. J Exp Mar Biol Ecol. 1997;213:199–213.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Departamento CientíficoInstituto Antártico ChilenoPunta ArenasChile
  2. 2.Laboratorio de HidrobiologíaInstituto de la Patagonia, Universidad de MagallanesPunta ArenasChile

Personalised recommendations