Biodiversity of Biosurfactants and Roles in Enhancing the (Bio)availability of Hydrophobic Substrates

  • Amedea PerfumoEmail author
  • Michelle Rudden
  • Roger Marchant
  • Ibrahim M. Banat
Living reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)


This chapter focusses on the biodiversity of microbial biosurfactants and the organisms that produce them. Specific attention is given to the low molecular weight glycolipids and lipopeptides produced by bacteria such as Pseudomonas, Burkholderia, Bacillus, Rhodococcus, and Alcanivorax in addition to other glycolipids synthesized by eukaryotic organisms such as Starmerella, Pseudozyma, and Candida spp. The applications of microbial surfactants utilizing their properties for accessing substrates and in microemulsion technology is covered plus reference to potential applications in environmental remediation. Finally a summary of the current state of research and identification of significant areas for further investigation are highlighted.


Critical Micelle Concentration Biosynthetic Gene Cluster Biosurfactant Production Hydrophobic Substrate Rhodococcus Ruber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abalos A, Pinazo A, Infante MR, Casals M, García F, Manresa A (2001) Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir 17:1367–1371CrossRefGoogle Scholar
  2. Abdel-Mawgoud AM, Lépine F, Déziel E (2010) Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol 86:1323–1336PubMedPubMedCentralCrossRefGoogle Scholar
  3. Aguirre-Ramirez M, Medina G, Gonzalez-Valdez A, Grosso-Becerra V, Soberon-Chavez G (2012) The Pseudomonas aeruginosa rmlBDAC operon, encoding dTDP-L-rhamnose biosynthetic enzymes, is regulated by the quorum-sensing transcriptional regulator RhlR and the alternative sigma factor S. Microbiology 158:908–916PubMedCrossRefGoogle Scholar
  4. Al-Tahhan RA, Sandrin TR, Bodour AA, Maier RM (2000) Rhamnolipid-induced removal of lipopolysaccharide from Pseudomonas aeruginosa: effect on cell surface properties and interaction with hydrophobic substrates. Appl Environ Microbiol 66:3262–3268PubMedPubMedCentralCrossRefGoogle Scholar
  5. Al-Wahaibi Y, Joshi S, Al-Bahry S, Elshafie A, Al-Bemani A, Shibulal B (2014) Biosurfactant production by Bacillus subtilis B30 and its application in enhancing oil recovery. Colloids Surf B Biointerfaces 114:324–333PubMedCrossRefGoogle Scholar
  6. Andrä J, Rademann J, Howe J, Koch MHJ, Heine H, Zähringer U, Brandenburg K (2006) Endotoxin-like properties of a rhamnolipid exotoxin from Burkholderia (Pseudomonas) plantarii: immune cell stimulation and biophysical characterization. Biol Chem 387:301–310PubMedCrossRefGoogle Scholar
  7. Antoniou E, Fodelianakis S, Korkakaki E, Kalogerakis N (2015) Biosurfactant production from marine hydrocarbon-degrading consortia and pure bacterial strains using crude oil as carbon source. Front Microbiol 6:274PubMedPubMedCentralCrossRefGoogle Scholar
  8. Arino S, Marchal R, Vandecasteele J-P (1996) Identification and production of a rhamnolipidic biosurfactant by a Pseudomonas species. Appl Microbiol Biotechnol 45:162–168CrossRefGoogle Scholar
  9. Bak F, Bonnichsen L, Jørgensen NO, Nicolaisen MH, Nybroe O (2015) The biosurfactant viscosin transiently stimulates n-hexadecane mineralization by a bacterial consortium. Appl Microbiol Biotechnol 99:1475–1483PubMedCrossRefGoogle Scholar
  10. Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87:427–444PubMedCrossRefGoogle Scholar
  11. Banat IM, Satpute SK, Cameotra SS, Patil R, Nyayanit NV (2014) Cost effective technologies and renewable substrates for biosurfactants’ production. Front Microbiol 5:697PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bodour AA, Drees KP, Maier RM (2003) Distribution of biosurfactant-producing bacteria in undisturbed and contaminated arid southwestern soils. Appl Environ Microbiol 69:3280–3287PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bouchez-Naïtali M, Vandecasteele JP (2008) Biosurfactants, an help in the biodegradation of hexadecane? The case of Rhodococcus and Pseudomonas strains. World J Microbiol Biotechnol 24:1901–1907CrossRefGoogle Scholar
  14. Cai Q, Zhang B, Chen B, Zhu Z, Lin W, Cao T (2014) Screening of biosurfactant producers from petroleum hydrocarbon contaminated sources in cold marine environments. Mar Pollut Bull 86:402–410PubMedCrossRefGoogle Scholar
  15. Campos JM, Montenegro Stamford TL, Sarubbo LA, de Luna JM, Rufino RD, Banat IM (2013) Microbial biosurfactants as additives for food industries. A review. Biotechnol Prog 29:1097–1108PubMedCrossRefGoogle Scholar
  16. Chen Q, Bao M, Fan X, Liang S, Sun P (2013) Rhamnolipids enhance marine oil spill bioremediation in laboratory system. Mar Pollut Bull 71:269–275PubMedCrossRefGoogle Scholar
  17. Ciesielska K, Roelants SLKW, Van Bogaert INA, De Waele S, Vandenberghe I, Groeneboer S, Soetaert W and Devreese B (2016) Characterization of a novel enzyme – Starmerella bombicola lactone esterase (SBLE) – responsible for sophorolipid lactonization. Appl Microbiol Biotechnol 100:9529–9541Google Scholar
  18. Cochrane SA, Vederas JC (2016) Lipopeptides from Bacillus and Paenibacillus spp.: a gold mine of antibiotic candidates. Med Res Rev 36:4–31PubMedCrossRefGoogle Scholar
  19. Darvishi P, Ayatollahi S, Mowla D, Niazi A (2011) Biosurfactant production under extreme environmental conditions by an efficient microbial consortium, ERCPPI-2. Colloids Surf B: Biointerfaces 84:292–300PubMedCrossRefGoogle Scholar
  20. de Almeida DG, Da Silva RCFS, Luna JM, Rufino RD, Santos VA, Banat IM, Sarubbo LA (2016) Biosurfactants: promising molecules for petroleum biotechnology advances. Front Microbiol. doi:10.3389/fmicb.2016.01718Google Scholar
  21. de Bruijn I, de Kock MJ, Yang M, de Waard P, van Beek TA, Raaijmakers JM (2007) Genome-based discovery, structure prediction and functional analysis of cyclic lipopeptide antibiotics in Pseudomonas species. Mol Microbiol 63:417–428PubMedCrossRefGoogle Scholar
  22. de Faria AF, Teodoro-Martinez DS, de Oliveira Barbosa GN, Vaz BG, Silva IS, Garcia JS, Tótola MR, Eberlin MN, Grossman M, Alves OL, Durrant LR (2011) Production and structural characterization of surfactin (C 14/Leu 7) produced by Bacillus subtilis isolate LSFM-05 grown on raw glycerol from the biodiesel industry. Process Biochem 46:1951–1957CrossRefGoogle Scholar
  23. Déziel E, Lépine F, Milot S, Villemur R (2000) Mass spectrometry monitoring of rhamnolipids from a growing culture of Pseudomonas aeruginosa strain 57RP. Biochim Biophys Acta Mol Cell Biol Lipids 1485:145–152CrossRefGoogle Scholar
  24. Dhasayan A, Selvin J, Kiran S (2015) Biosurfactant production from marine bacteria associated with sponge Callyspongia diffusa. Biotech 5:443–454Google Scholar
  25. Dίaz de Rienzo M, Stevenson P, Marchant R, Banat IM (2016a) Antibacterial properties of biosurfactants against selected Gram-positive and – negative bacteria. FEMS Microbiol Let. doi:10.1093/femsle/fnv224Google Scholar
  26. Dίaz de Rienzo M, Stevenson P, Marchant R, Banat IM (2016b) P. aeruginosa biofilm disruption using microbial biosurfactants. J Appl Microbiol 120:868–876. doi:10.1111/jam.13049CrossRefGoogle Scholar
  27. Dίaz de Rienzo M, Stevenson P, Marchant R, Banat IM (2016c) Effect of biosurfactants on Pseudomonas aeruginosa and Staphylococcus aureus biofilms in a BioFlux channel. Appl Microbiol Biotechnol 100:5773–5779. doi:10.1007/s00253-016-7310-5CrossRefGoogle Scholar
  28. Dobler L, Vilela LF, Almeida RV, Neves BC (2016) Rhamnolipids in perspective: gene regulatory pathways, metabolic engineering, production and technological forecasting. New Biotechnol 33:123–135CrossRefGoogle Scholar
  29. Domingos DF, Dellagnezze BM, Greenfield P, Reyes LR, Melo IS, Midgley DJ, Oliveira VM (2013) Draft genome sequence of the biosurfactant-producing bacterium Gordonia amicalis strain CCMA-559, isolated from petroleum-impacted sediment. Genome Announc 1:e00894–13. e00894–13PubMedPubMedCentralGoogle Scholar
  30. Domingos DF, de Faria AF, de Souza Galaverna R, Eberlin MN, Greenfield P, Zucchi TD, Melo IS, Tran-Dinh N, Midgley D, de Oliveira VM (2015) Genomic and chemical insights into biosurfactant production by the mangrove-derived strain Bacillus safensis CCMA-560. Appl Microbiol Biotechnol 99:3155–3167PubMedCrossRefGoogle Scholar
  31. Donio MBS, Ronica FA, Viji VT, Velmurugan S, Jenifer JSCA, Michaelbabu M, Dhar P, Citarasu T, Abalos A, Pinazo A et al (2013) Halomonas sp. BS4, a biosurfactant producing halophilic bacterium isolated from solar salt works in India and their biomedical importance. Springerplus 2:149PubMedPubMedCentralCrossRefGoogle Scholar
  32. Drzyzga O (2012) The strengths and weaknesses of Gordonia: a review of an emerging genus with increasing biotechnological potential. Crit Rev Microbiol 38:300–316PubMedCrossRefGoogle Scholar
  33. Dubeau D, Déziel E, Woods DE, Lépine F, Jarvis F, Johnson M, Edwards J, Hayashi J, Kitamoto D, Isoda H et al (2009) Burkholderia thailandensis harbors two identical rhl gene clusters responsible for the biosynthesis of rhamnolipids. BMC Microbiol 9:263PubMedPubMedCentralCrossRefGoogle Scholar
  34. Elazzazy AM, Abdelmoneim TS, Almaghrabi OA (2015) Isolation and characterization of biosurfactant production under extreme environmental conditions by alkali-halo-thermophilic bacteria from Saudi Arabia. Saudi J Biol Sci 22:466–475PubMedCrossRefGoogle Scholar
  35. Elshafie AE, Joshi SJ, Al-Wahaibi YM, Al-Bemani AS, Al-Bahry SN, Al-Maqbali D, Banat IM (2015) Sophorolipids production by Candida bombicola ATCC 22214 and its potential application in microbial enhanced oil recovery. Front Microbiol. doi:10.3389/fmicb.2015.01324PubMedPubMedCentralGoogle Scholar
  36. Elshikh M, Marchant R, Banat IM (2016) Biosurfactants: promising bioactive molecules for oral-related health applications. FEMS Microbiol Lett 363(18):fnw213. doi:10.1093/femsle/fnw213PubMedCrossRefGoogle Scholar
  37. Fracchia L, Cavallo M, Martinotti MG, Banat IM (2012) Biosurfactants and bioemulsifiers biomedical and related applications–present status and future potentials, Chapter 14. In: Ghista DN (ed) Biomedical science, engineering and technology. InTech Europe, University Campus STeP Ri, Rijeka, Croatia. pp 326–335. ISBN 978-953-307-471-9Google Scholar
  38. Fracchia L, Ceresa C, Franzetti A, Cavallo M, Gandolfi I, Van Hamme ., Gkorezis P, Marchant R., Banat IM (2014) Industrial applications of biosurfactants. Biosurfactants: production and utilization – processes, technologies, and economics, Chapter 12. In: Kosaric N, Sukan FV (eds) Surfactant science series, vol 159. CRC press, United States. pp 245–260. ISBN 978-14665-9669-6Google Scholar
  39. Fracchia L, Banat JJ, Cavallo M, Ceresa C, Banat IM (2015) Potential therapeutic applications of microbial surface-active compounds. AIMS Bioeng 2(3):144–162. doi:10.3934/bioeng.2015.3.144CrossRefGoogle Scholar
  40. Franzetti A, Bestetti G, Caredda P, La Colla P, Tamburini E (2008) Surface-active compounds and their role in the access to hydrocarbons in Gordonia strains. FEMS Microbiol Ecol 63:238–248PubMedCrossRefGoogle Scholar
  41. Funston SJ, Tsaousi K, Rudden M, Smyth TJ, Stevenson PS, Marchant R, Banat IM (2016) Characterising rhamnolipid production in Burkholderia thailandensis E264, a non-pathogenic producer. Appl Microbiol Biotechnol 100:7945–7956Google Scholar
  42. Ganguly S, Jimenez-Galisteo G, Pletzer D, Winterhalter M, Benz R, Viñas M (2016) Draft genome sequence of Dietzia maris DSM 43672, a gram-positive bacterium of the Mycolata Group. Genome Announc 4:e00542–16PubMedPubMedCentralCrossRefGoogle Scholar
  43. Graupner K, Lackner G, Hertweck C (2015) Genome sequence of mushroom soft-rot pathogen Janthinobacterium agaricidamnosum. Genome Announc 3, pii: e00277–15. doi:10.1128/genomeA.00277-15Google Scholar
  44. Gudiña EJ, Rangarajan V, Sen R, Rodrigues LR (2013) Potential therapeutic applications of biosurfactants. Appl Mar Drugs 14:38CrossRefGoogle Scholar
  45. Gunther NW, Nunez A, Fett W, Solaiman DKY (2005) Production of rhamnolipids by Pseudomonas chlororaphis, a nonpathogenic bacterium. Appl Environ Microbiol 71:2288–2293PubMedPubMedCentralCrossRefGoogle Scholar
  46. Gutierrez T, Banat IM (2014) Isolation of glycoprotein bioemulsifiers produced by marine bacteria. In: McGenity et al (eds) Hydrocarbon and lipid microbiology protocols, Springer protocols handbooks. Springer, Berlin. doi:10.1007/8623_2014_1Google Scholar
  47. Haba E, Abalos A, Jáuregui O, Espuny MJ, Manresa A (2003a) Use of liquid chromatography-mass spectroscopy for studying the composition and properties of rhamnolipids produced by different strains of Pseudomonas aeruginosa. J Surfactant Deterg 6:155–161CrossRefGoogle Scholar
  48. Haba E, Pinazo A, Jauregui O, Espuny MJ, Infante MR, Manresa A (2003b) Physicochemical characterization and antimicrobial properties of rhamnolipids produced by Pseudomonas aeruginosa 47 T2 NCBIM 40044. Biotechnol Bioeng 81:316–322PubMedCrossRefGoogle Scholar
  49. Hamley IW (2015) Lipopeptides: from self-assembly to bioactivity. Chem Commun 51:8574–8583CrossRefGoogle Scholar
  50. Häussler S, Nimtz M, Domke T, Wray V, Steinmetz I (1998) Purification and characterization of a cytotoxic exolipid of Burkholderia pseudomallei. Infect Immun 66:1588–1593PubMedPubMedCentralGoogle Scholar
  51. Henkel M, Müller MM, Kügler JH, Lovaglio RB, Contiero J, Syldatk C, Hausmann R (2012) Rhamnolipids as biosurfactants from renewable resources: concepts for next-generation rhamnolipid production. Process Biochem 47:1207–1219CrossRefGoogle Scholar
  52. Hewald S, Linne U, Scherer M, Marahiel MA, Kamper J, Bolker M (2006) Identification of a gene cluster for biosynthesis of mannosylerythritol lipids in the basidiomycetous fungus Ustilago maydis. Appl Environ Microbiol 72:5469–5477PubMedPubMedCentralCrossRefGoogle Scholar
  53. Heyd M, Kohnert A, Tan T-H, Nusser M, Kirschhöfe F, Brenner-Weiss G, Franzreb M, Berensmeier S (2008) Development and trends of biosurfactant analysis and purification using rhamnolipids as an example. Anal Bioanal Chem 391:1579–1590PubMedCrossRefGoogle Scholar
  54. Hörmann B, Müller MM, Syldatk C, Hausmann R (2010) Rhamnolipid production by Burkholderia plantarii DSM 9509 T. Eur J Lipid Sci Technol 112:674–680CrossRefGoogle Scholar
  55. Hošková M, Ježdík R, Schreiberová O, Chudoba J, Šír M, Čejková A, Masák J, Jirků V, Řezanka T (2015) Structural and physiochemical characterization of rhamnolipids produced by Acinetobacter calcoaceticus, Enterobacter asburiae and Pseudomonas aeruginosa in single strain and mixed cultures. J Biotechnol 193:45–51PubMedCrossRefGoogle Scholar
  56. Howe J, Bauer J, Andrä J, Schromm AB, Ernst M, Rössle M, Zähringer U, Rademann J, Brandenburg K (2006) Biophysical characterization of synthetic rhamnolipids. FEBS J 273:5101–5112PubMedCrossRefGoogle Scholar
  57. Huang F-C, Peter A, Schwab W (2014) Expression and characterization of CYP52 genes involved in the biosynthesis of sophorolipid and alkane metabolism from Starmerella bombicola. Appl Environ Microbiol 80:766–776PubMedPubMedCentralCrossRefGoogle Scholar
  58. Inaba T, Tokumoto Y, Miyazaki Y, Inoue N, Maseda H, Nakajima-Kambe T, Uchiyama H, Nomura N (2013) Analysis of genes for succinoyl trehalose lipid production and increasing production in Rhodococcus sp. strain SD-74. Appl Environ Microbiol 79:7082–7090PubMedPubMedCentralCrossRefGoogle Scholar
  59. Inoh Y, Furuno T, Hirashima N, Kitamoto D, Nakanishi M (2010) The ratio of unsaturated fatty acids in biosurfactants affects the efficiency of gene transfection. Int J Pharm 398:225–230PubMedCrossRefGoogle Scholar
  60. Inoh Y, Furuno T, Hirashima N, Kitamoto D, Nakanishi M (2011) Rapid delivery of small interfering. RNA by biosurfactant MEL-A-containing liposomes. Biochem Biophys Res Commun 414(3):635–640PubMedCrossRefGoogle Scholar
  61. Ivshina IB, Kuyukina MS, Krivoruchko AV, Barbe V, Fischer C (2014) Draft genome sequence of propane- and butane-oxidizing Actinobacterium Rhodococcus ruber IEGM 231. Genome Announc 2, pii: e01297–14Google Scholar
  62. Jackson SA, Borchert E, O’Gara F, Dobson AD (2015) Metagenomics for the discovery of novel biosurfactants of environmental interest from marine ecosystems. Curr Opin Biotechnol 33:176–182PubMedCrossRefGoogle Scholar
  63. Kang HS, Charlop-Powers Z, Brady SF (2016) Multiplexed CRISPR/Cas9- and TAR-mediated promoter engineering of natural product biosynthetic gene clusters in yeast. ACS Synth Biol 5:1002PubMedCrossRefGoogle Scholar
  64. Kennedy J, O’Leary ND, Kiran GS, Morrissey JP, O’Gara F, Selvin J, Dobson ADW (2011) Functional metagenomic strategies for the discovery of novel enzymes and biosurfactants with biotechnological applications from marine ecosystems. J Appl Microbiol 111:787–799PubMedCrossRefGoogle Scholar
  65. Khan AA, Stocker BL, Timmer MS (2012) Trehaloseglycolipids – synthesis and biological activities. Carbohydr Res 356:25–36PubMedCrossRefGoogle Scholar
  66. Khemili-Talbi S, Kebbouche-Gana S, Akmoussi-Toumi S, Angar Y, Gana ML (2015) Isolation of an extremely halophilic arhaeon Natrialba sp. C21 able to degrade aromatic compounds and to produce stable biosurfactant at high salinity. Extremophiles 19:1109–1120PubMedCrossRefGoogle Scholar
  67. Kiran GS, Hema TA, Gandhimathi R, Selvin J, Thomas TA, Rajeetha Ravji T, Natarajaseenivasan K (2009) Optimization and production of a biosurfactant from the sponge-associated marine fungus Aspergillus ustus MSF3. Colloids Surf B: Biointerfaces 73:250–256PubMedCrossRefGoogle Scholar
  68. Kiran GS, Sabarathnam B, Selvin J (2010) Biofilm disruption potential of a glycolipid biosurfactant from marine Brevibacterium casei. FEMS Immunol Med Microbiol 59:432–438PubMedCrossRefGoogle Scholar
  69. Kiran GS, Sabarathnam B, Thajuddin N, Selvin J (2014) Production of glycolipid biosurfactant from sponge-associated marine Actinobacterium Brachybacterium paraconglomeratum MSA21. J Surfactant Deterg 17:531–542CrossRefGoogle Scholar
  70. Konishi M, Hatada Y, Horiuchi J-I (2013) Draft genome sequence of the basidiomycetous yeast-like fungus Pseudozyma hubeiensis SY62, which produces an abundant amount of the biosurfactant mannosylerythritol lipids. Genome Announc 1:e00409–e00413. e00409–e00413PubMedPubMedCentralCrossRefGoogle Scholar
  71. Konishi M, Nishi S, Fukuoka T, Kitamoto D, Watsuj T, Nagano Y, Yabuki A, Nakagawa S, Hatada Y, Horiuchi J (2014) Deep-sea Rhodococcus sp. BS-15, lacking the phytopathogenic fas genes, produces a novel glucotriose lipid biosurfactant. Mar Biotechnol 16:484–493PubMedCrossRefGoogle Scholar
  72. Kügler JH, Muhle-Goll C, Kühl B, Kraft A, Heinzler R, Kirschhöfer F, Henkel M, Wray V, Luy B, Brenner-Weiss G, Lang S, Syldatk C, Hausmann R (2014) Trehalose lipid biosurfactants produced by the actinomycetes Tsukamurella spumae and T. pseudospumae. Appl Microbiol Biotechnol 98:8905–8915PubMedCrossRefGoogle Scholar
  73. Kügler JH, Le Roes-Hill M, Syldatk C, Hausmann R (2015) Surfactants tailored by the class Actinobacteria. Front Microbiol 6:212PubMedPubMedCentralGoogle Scholar
  74. Kurtzman CP, Price NPJ, Ray KJ, Kuo T-M (2010) Production of sophorolipid biosurfactants by multiple species of the Starmerella (Candida) bombicola yeast clade. FEMS Microbiol Lett 311:140–146PubMedCrossRefGoogle Scholar
  75. Lang S, Philp JC (1998) Surface-active lipids in Rhodococci. Antonie Van Leeuwenhoek 74:59–70PubMedCrossRefGoogle Scholar
  76. Lau EV, Gan S, Ng HK, Poh PE (2014) Extraction agents for the removal of polycyclic aromatic hydrocarbons (PAHs) from soil in soil washing technologies. Environ Pollut 184:640–649PubMedCrossRefGoogle Scholar
  77. Ławniczak Ł, Marecik R, Chrzanowski Ł (2013) Contributions of biosurfactants to natural or induced bioremediation. Appl Microbiol Biotechnol 97:2327–2339PubMedPubMedCentralCrossRefGoogle Scholar
  78. Leng L, Yuan X, Zeng G, Chen X, Wang H, Li H, Fu L, Xiao Z, Jiang L, Lai C (2015) Rhamnolipid based glycerol-in-diesel microemulsion fuel: formation and characterization. Fuel 147:76–81CrossRefGoogle Scholar
  79. Li J, Deng M, Wang Y, Chen W (2016) Production and characteristics of biosurfactant produced by Bacillus pseudomycoides BS6 utilizing soybean oil waste. Int Biodeterior Biodegrad 112:72–79CrossRefGoogle Scholar
  80. Lo Piccolo L, De Pasquale C, Fodale R, Puglia AM, Quatrini P (2011) Involvement of an alkane hydroxylase system of Gordonia sp. strain SoCg in degradation of solid n-alkanes. Appl Environ Microbiol 77:1204–1213PubMedCrossRefGoogle Scholar
  81. Loeschcke A, Thies S (2015) Pseudomonas putida-a versatile host for the production of natural products. Appl Microbiol Biotechnol 99:6197–6214PubMedPubMedCentralCrossRefGoogle Scholar
  82. Lorenz S, Guenther M, Grumaz C, Rupp S, Zibek S, Sohn K (2014) Genome sequence of the basidiomycetous fungus Pseudozyma aphidis DSM70725, an efficient producer of biosurfactant mannosylerythritol lipids. Genome Announc 2:e00053–14. e00053–14PubMedPubMedCentralCrossRefGoogle Scholar
  83. Luo C, Liu X, Zhou X, Guo J, Truong J, Wang X, Zhou H, Li X, Chen Z (2015a) Unusual biosynthesis and structure of locillomycins from Bacillus subtilis 916. Appl Environ Microbiol 81:6601–6609. doi:10.1128/AEM.01639-15PubMedPubMedCentralCrossRefGoogle Scholar
  84. Luo C, Liu X, Zhou H, Wang X, Chen Z (2015b) Nonribosomal peptide synthase gene clusters for lipopeptide biosynthesis in Bacillus subtilis 916 and their phenotypic functions. Appl Environ Microbiol 81:422–431PubMedCrossRefGoogle Scholar
  85. Makkar RS, Cameotra SS, Banat IM (2011) Advances in utilization of renewable substrates for biosurfactant production. Appl Micorbiol Biotechnol Exp 1:1–5Google Scholar
  86. Malavenda R, Rizzo C, Michaud L, Gerçe B, Bruni V, Syldatk C, Hausmann R, Lo Giudice A (2015) Biosurfactant production by Arctic and Antarctic bacteria growing on hydrocarbons. Polar Biol 38:1565–1574CrossRefGoogle Scholar
  87. Marchant R, Banat IM (2012b) Biosurfactants: a sustainable replacement for chemical surfactants? Biotechnol Lett 34:1597–1605PubMedCrossRefGoogle Scholar
  88. Marchant R, Banat IM (2012a) Microbial biosurfactants: challenges and opportunities for future exploitation. Trends Biotechnol, Trends Biotechnol 30:558–565PubMedCrossRefGoogle Scholar
  89. Marchant R, Banat IM (2014) Protocols for measuring biosurfactants production in microbial cultures. In: McGenity TJ et al (eds) Hydrocarbon and lipid microbiology protocols, Springer Protocols Handbooks. Humana press, United States. pp 1–10Google Scholar
  90. Marchant R, Funston S, Uzoigwe C, Rahman PKSM, Banat IM (2014) Production of biosurfactants from nonpathogenic bacteria, Chapter 5. In: Kosaric N, Sukan FV (eds) Biosurfactants: production and utilization – processes, technologies, and economics. Surfactant Science series 159. CRC press, United States. pp 73–82. Print ISBN 978-14665-9669-6Google Scholar
  91. Marti ME, Colonna WJ, Patra P, Zhang H, Green C, Reznik G, Pynn M, Jarrell K, Nyman JA, Somasundaran P, Glatz CE, Lamsal BP (2014) Production and characterization of microbial biosurfactants for potential use in oil-spill remediation. Enzym Microb Technol 55:31–39CrossRefGoogle Scholar
  92. Martínez-Toledo A, Ríos-Leal E, Vázquez-Duhalt R, González-Chávez M d C, Esparza-García JF, Rodríguez-Vázquez R (2006) Role of phenanthrene in rhamnolipid production by P. putida in different media. Environ Technol 27:137–142PubMedCrossRefGoogle Scholar
  93. Mata-Sandoval JC, Karns J, Torrents A (1999) High-performance liquid chromatography method for the characterization of rhamnolipid mixtures produced by Pseudomonas aeruginosa UG2 on corn oil. J Chromatogr A 864:211–220PubMedCrossRefGoogle Scholar
  94. Matsuzawa T, Koike H, Saika A, Fukuoka T, Sato S, Habe H, Kitamoto D, Morita T (2015) Draft genome sequence of the yeast Starmerella bombicola NBRC10243, a producer of sophorolipids, glycolipid biosurfactants. Genome Announc 3:e00176–15PubMedPubMedCentralCrossRefGoogle Scholar
  95. Menezes Bento F, de Oliveira Camargo FA, Okeke BC, Frankenberger WT (2005) Diversity of biosurfactant producing microorganisms isolated from soils contaminated with diesel oil. Microbiol Res 160:249–255PubMedCrossRefGoogle Scholar
  96. Mnif I, Ghribi D (2015) Review lipopeptides biosurfactants: mean classes and new insights for industrial, biomedical, and environmental applications. Biopolymers 104:129–147PubMedCrossRefGoogle Scholar
  97. Morita T, Koike H, Koyama Y, Hagiwara H, Ito E, Fukuoka T, Imura T, Machida M, Kitamoto D (2013) Genome sequence of the basidiomycetous yeast Pseudozyma antarctica T-34, a producer of the glycolipid biosurfactants mannosylerythritol lipids. Genome Announc 1:e00064–13PubMedCentralCrossRefGoogle Scholar
  98. Morita T, Koike H, Hagiwara H, Ito E, Machida M, Sato S, Habe H, Kitamoto D, Boekhout T, Wang Q et al (2014) Genome and transcriptome analysis of the basidiomycetous yeast Pseudozyma antarctica producing extracellular glycolipids, mannosylerythritol lipids. PLoS One 9:359–366Google Scholar
  99. Morita T, Fukuoka T, Imura T, Kitamoto D (2015) Mannosylerythritol lipids: production and applications. J Oleo Sci 64:133–141PubMedCrossRefGoogle Scholar
  100. Moya-Ramírez I, Tsaousi K, Rudden M, Marchant R, Alameda EJ, García-Román M, Banat IM (2015) Rhamnolipid and surfactin production from olive oil mill waste as sole carbon source. Bioresour Technol 198:231–236PubMedCrossRefGoogle Scholar
  101. Moya-Ramírez I, Vaz DA, Banat IM, Marchant R, Alameda EJ, García-Román M (2016) Hydrolysis of olive mill waste to enhance rhamnolipids and surfactin production. Bioresour Technol 205:1–6PubMedCrossRefGoogle Scholar
  102. Müller MM, Hausmann R (2011) Regulatory and metabolic network of rhamnolipid biosynthesis: traditional and advanced engineering towards biotechnological production. Appl Microbiol Biotechnol 91:251–264PubMedCrossRefGoogle Scholar
  103. Narendra Kumar P, Swapna TH, Sathi Reddy K, Archana K, Nageshwar L, Nalini S, Khan MY, Hameeda B (2016) Draft genome sequence of Bacillus amyloliquefaciens strain RHNK22, isolated from rhizosphere with biosurfactant (Surfactin, Iturin, and Fengycin) and antifungal activity. Genome Announc 4:e01682–15PubMedPubMedCentralCrossRefGoogle Scholar
  104. Nguyen TT, Edelen A, Neighbors B, Sabatini DA (2010) Biocompatible lecithin-based microemulsions with rhamnolipid and sophorolipid biosurfactants: formulation and potential applications. J Colloid Interface Sci 348:498–504PubMedCrossRefGoogle Scholar
  105. Nicol RW, Marchand K, Lubitz WD (2012) Bioconversion of crude glycerol by fungi. Appl Microbiol Biotechnol 93:1865–1875PubMedCrossRefGoogle Scholar
  106. Nikolopoulou M, Eickenbusch P, Pasadakis N, Venieri D, Kalogerakis N (2013) Microcosm evaluation of autochthonous bioaugmentation to combat marine oil spills. New Biotechnol 30:734–742CrossRefGoogle Scholar
  107. Ochsner UA, Fiechter A, Reiser J (1994) Isolation, characterisation, and expression in Escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyltransferase involved in rhamnolipid biosurfactant synthesis. J Biol Chem 269:19787–19795Google Scholar
  108. Ochsner UA, Reiser J, Fiechter A, Witholt B (1995) Production of Pseudomonas aeruginosa rhamnolipid biosurfactants in heterologous hosts. Appl Environ Microbiol 61:3503–3506PubMedPubMedCentralGoogle Scholar
  109. Ogasawara Y, Torrez-Martinez N, Aragon AD, Yackley BJ, Weber JA, Sundararajan A, Ramaraj T, Edwards JS, Melançon CE (2015) High-quality draft genome sequence of Actinobacterium Kibdelosporangium sp. MJ126-NF4, producer of type ii polyketide azicemicins, using Illumina and PacBio technologies. Genome Announc 3, pii: e00114–15Google Scholar
  110. Oliveira JS, Araújo W, Lopes Sales AI, de Brito Guerra A, da Silva Araújo SC, de Vasconcelos ATR, Agnez-Lima LF, Freitas AT (2015) BioSurfDB: knowledge and algorithms to support biosurfactants and biodegradation studies. Database J Biol Databases Curation 2015:bav033Google Scholar
  111. Perfumo A, Rudden M, Smyth TJ, Marchant R, Stevenson PS, Parry NJ, Banat IM (2013) Rhamnolipids are conserved biosurfactants molecules: implications for their biotechnological potential. Appl Microbiol Biotechnol 97:7297–7306PubMedCrossRefGoogle Scholar
  112. Pradhan AK, Pradhan N, Mall G, Panda HT, Sukla LB, Panda PK, Mishra BK (2013) Application of lipopeptide biosurfactant isolated from a Halophile: Bacillus tequilensis CH for inhibition of biofilm. Appl Biochem Biotechnol 171:1362–1375PubMedCrossRefGoogle Scholar
  113. Price NPJ, Ray KJ, Vermillion KE, Dunlap CA, Kurtzman CP (2012) Structural characterization of novel sophorolipid biosurfactants from a newly identified species of Candida yeast. Carbohydr Res 348:33–41PubMedCrossRefGoogle Scholar
  114. Raaijmakers JM, De Bruijn I, Nybroe O, Ongena M (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34:1037–1062PubMedCrossRefGoogle Scholar
  115. Radzuan MZ, Banat IM, Winterburn J (2017) Production and characterization of rhamnolipid using palm oil agricultural refinery waste. Bioresour Technol 225:99–105PubMedCrossRefGoogle Scholar
  116. Rahim R, Burrows LL, Monteiro MA, Perry MB, Lam JS (2000) Involvement of the rml locus in core oligosaccharide and O polysaccharide assembly in Pseudomonas aeruginosa. Microbiology 146:2803–2814PubMedCrossRefGoogle Scholar
  117. Rahim R, Ochsner UA, Olvera C, Graninger M, Messner P, Lam JS, Soberón-Chávez G (2001) Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyltransferase 2, an enzyme responsible for di-rhamnolipid biosynthesis. Mol Microbiol 40:708–718PubMedCrossRefGoogle Scholar
  118. Rahman KSM, Rahman TJ, McClean S, Marchant R, Banat IM (2002) Rhamnolipid biosurfactant production by strains of Pseudomonas aeruginosa using low-cost raw materials. Biotechnol Prog 18:1277–1281PubMedCrossRefGoogle Scholar
  119. Rahman KSM, Rahman TJ, Kourkoutas Y, Petsas I, Marchant R, Banat IM (2003) Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients. Bioresour Technol 90:159–168PubMedCrossRefGoogle Scholar
  120. Reis RS, Pereira AG, Neves BC, Freire DMG (2011) Gene regulation of rhamnolipid production in Pseudomonas aeruginosa – a review. Bioresour Technol 102:6377–6384PubMedCrossRefGoogle Scholar
  121. Reznik GO, Vishwanath P, Pynn MA, Sitnik JM, Todd JJ, Wu J, Jiang Y, Keenan BG, Castle AB, Haskell RF, Smith TF, Somasundaran P, Jarrell KA (2010) Use of sustainable chemistry to produce an acyl amino acid surfactant. Appl Microbiol Biotechnol 86:1387–1397PubMedCrossRefGoogle Scholar
  122. Rodrigues LR (2015) Microbial surfactants: fundamentals and applicability in the formulation of nano-sized drug delivery vectors. J Colloid Interface Sci 449:304–316PubMedCrossRefGoogle Scholar
  123. Roelants SLKW, De Maeseneire SL, Ciesielska K, Van Bogaert INA, Soetaert W (2014) Biosurfactant gene clusters in eukaryotes: regulation and biotechnological potential. Appl Microbiol Biotechnol 98:3449–3461PubMedCrossRefGoogle Scholar
  124. Rokni-Zadeh H, Mangas-Losada A, De Mot R (2011) PCR detection of novel non-ribosomal peptide synthetase genes in lipopeptide-producing Pseudomonas. Microb Ecol 62:941–947PubMedCrossRefGoogle Scholar
  125. Rudden M, Tsauosi K, Marchant R, Banat IM, Smyth TJ (2015) Development and validation of an ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method for the quantitative determination of rhamnolipid congeners. Appl Microbiol Biotechnol 99:9177–9187PubMedCrossRefGoogle Scholar
  126. Ruggeri C, Franzetti A, Bestetti G, Caredda P, La Colla P, Pintus M, Sergi S, Tamburini E (2009) Isolation and characterisation of surface active compound-producing bacteria from hydrocarbon-contaminated environments. Int Biodeterior Biodegrad 63:936–942CrossRefGoogle Scholar
  127. Saerens KMJ, Roelants SLKW, Van Bogaert INA, Soetaert W, Altschul S, Madden T, Schaffer A, Zhang J, Zhang Z, Miller W et al (2011a) Identification of the UDP-glucosyltransferase gene UGTA1, responsible for the first glucosylation step in the sophorolipid biosynthetic pathway of Candida bombicola ATCC 22214. FEMS Yeast Res 11:123–132PubMedCrossRefGoogle Scholar
  128. Saerens KMJ, Saey L, Soetaert W (2011b) One-step production of unacetylated sophorolipids by an acetyltransferase negative Candida bombicola. Biotechnol Bioeng 108:2923–2931PubMedCrossRefGoogle Scholar
  129. Saerens KMJ, Zhang J, Saey L, Van Bogaer INA, Soetaert W (2011c) Cloning and functional characterization of the UDP-glucosyltransferase UgtB1 involved in sophorolipid production by Candida bombicola and creation of a glucolipid-producing yeast strain. Yeast 28:279–292PubMedCrossRefGoogle Scholar
  130. Saerens KMJ, Van Bogaert INA, Soetaert W, Ashby R, Solaiman D, Foglia T, Asmer HJ, Lang S, Wagner F, Baccile N et al (2015) Characterization of sophorolipid biosynthetic enzymes from Starmerella bombicola. FEMS Yeast Res 15:253–260CrossRefGoogle Scholar
  131. Saika A, Koike H, Hori T, Fukuoka T, Sato S, Habe H, Kitamoto D, Morita T (2014) Draft genome sequence of the yeast Pseudozyma antarctica type strain JCM10317, a producer of the glycolipid biosurfactants, mannosylerythritol lipids. Genome Announc 2:e00878–14PubMedPubMedCentralCrossRefGoogle Scholar
  132. Saika A, Koike H, Fukuoka T, Yamamoto S, Kishimoto T, Morita T, Kitamoto D, Isoda H, Nakahara T, Kitamoto D et al (2016) A gene cluster for biosynthesis of mannosylerythritol lipids consisted of 4-O-β-d-mannopyranosyl-(2R,3S)-erythritol as the sugar moiety in a basidiomycetous yeast Pseudozyma tsukubaensis. PLoS One 11:e0157858PubMedPubMedCentralCrossRefGoogle Scholar
  133. Sambles CM, White DA (2015) Genome sequence of Rhodococcus sp. strain PML026, a trehalolipid biosurfactant producer and biodegrader of oil and alkanes. Genome Announc 3:e00433–15PubMedPubMedCentralCrossRefGoogle Scholar
  134. Sarubbo LA, Rocha RB Jr, Luna JM, Rufino RD, Santos VA, Banat IM (2015) Some aspects of heavy metals contamination remediation and role of biosurfactants. Chem Ecol 31:707–723. doi:10.1080/02757540.2015.1095293CrossRefGoogle Scholar
  135. Satpute SK, Banpurkar AG, Banat IM, Sangshetti JN, Patil RR, Gade WN (2016a) Multiple roles of biosurfactants in biofilms. Curr Pharm Des 22:1429–1448CrossRefGoogle Scholar
  136. Satpute SK, Kulkarni GR, Banpurkar AG, Banat IM, Mone NS, Patil RH, Cameotra SS (2016b) Biosurfactant/s from Lactobacilli species: properties, challenges and potential biomedical applications. J Basic Microbiol 56:1–19CrossRefGoogle Scholar
  137. Schmidberger A, Henkel M, Hausmann R, Schwartz T (2013) Expression of genes involved in rhamnolipid synthesis in Pseudomonas aeruginosa PAO1 in a bioreactor cultivation. Appl Microbiol Biotechnol 97:5779–5791PubMedCrossRefGoogle Scholar
  138. Schneiker S, dos Santos VAM, Bartels D, Bekel T, Brecht M, Buhrmester J, Chernikova TN, Denaro R, Ferrer M, Gertler C et al (2006) Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis. Nat Biotechnol 24:997–1004PubMedCrossRefGoogle Scholar
  139. Seydlová G, Svobodová J (2008) Review of surfactin chemical properties and the potential biomedical applications. Cent Eur J Med 3:123–133Google Scholar
  140. Singh AK, Cameotra SS (2013) Efficiency of lipopeptide biosurfactants in removal of petroleum hydrocarbons and heavy metals from contaminated soil. Environ Sci Pollut Res Int 20:7367–7376PubMedCrossRefGoogle Scholar
  141. Solaiman DKY, Liu Y, Moreau RA, Zerkowski JA (2014) Cloning, characterization, and heterologous expression of a novel glucosyltransferase gene from sophorolipid-producing Candida bombicola. Gene 540:46–53PubMedCrossRefGoogle Scholar
  142. Solaiman DKY, Ashby RD, Gunther NW, Zerkowski JA (2015) Dirhamnose-lipid production by recombinant nonpathogenic bacterium Pseudomonas chlororaphis. Appl Microbiol Biotechnol 99:4333–4342PubMedCrossRefGoogle Scholar
  143. Sotirova A, Spasova D, Vasileva-Tonkova E, Galabova D (2009) Effects of rhamnolipid-biosurfactant on cell surface of Pseudomonas aeruginosa. Microbiol Res 164:297–303PubMedCrossRefGoogle Scholar
  144. Sousa M, Melo VM, Rodrigues S, Sant’ana HB, Gonçalves LR (2012) Screening of biosurfactant-producing Bacillus strains using glycerol from the biodiesel synthesis as main carbon source. Bioprocess Biosyst Eng 35:897–906PubMedCrossRefGoogle Scholar
  145. Steegborn C, Clausen T, Sondermann P, Jacob U, Worbs M, Marinkovic S, Huber R, Wahl MC (1999) Kinetics and inhibition of recombinant human cystathionine -lyase: toward the rational control of transsulfuration. J Biol Chem 274:12675–12684PubMedCrossRefGoogle Scholar
  146. Tahseen R, Afzal M, Iqbal S, Shabir S, Khan QM, Khalid ZM, Banat IM (2016) Rhamnolipids and nutrients boost remediation of crude oil contaminated soil by enhancing bacterial colonization and metabolic activities. Int Biodeterior Biodegrad 115:192–198CrossRefGoogle Scholar
  147. Teichmann B, Linne U, Hewald S, Marahiel MA, Bölker M (2007) A biosynthetic gene cluster for a secreted cellobiose lipid with antifungal activity from Ustilago maydis. Mol Microbiol 66:525–533PubMedCrossRefGoogle Scholar
  148. Thies S, Rausch SC, Kovacic F, Schmidt-Thaler A, Wilhelm S, Rosenau F, Daniel R, Streit W, Pietruszka J, Jaeger K-E et al (2016) Metagenomic discovery of novel enzymes and biosurfactants in a slaughterhouse biofilm microbial community. Sci Report 6:27035CrossRefGoogle Scholar
  149. Tuleva BK, Ivanov GR, Christova NE (2002) Biosurfactant production by a new Pseudomonas putida strain. Z Naturforsch C J Biosci 57:356–360Google Scholar
  150. Van Bogaert INA, Saerens K, De Muynck C, Develter D, Soetaert W, Vandamme EJ (2007) Microbial production and application of sophorolipids. Appl Microbiol Biotechnol 76:23–34PubMedCrossRefGoogle Scholar
  151. Van Bogaert INA, Holvoet K, Roelants SLKW, Li B, Lin Y-C, Van de Peer Y, Soetaert W (2013) The biosynthetic gene cluster for sophorolipids: a biotechnological interesting biosurfactant produced by Starmerella bombicola. Mol Microbiol 88:501–509PubMedCrossRefGoogle Scholar
  152. Van Bogaert INA, Buyst D., Martins JC, Roelants SLKW, Soetaert WK (2016) Synthesis of bolaform biosurfactants by an engineered Starmerella bombicola yeast. Biotechnol Bioeng 113:2644–2651Google Scholar
  153. Vasileva-Tonkova E, Sotirova A, Galabova D (2011) The efect of rhamnolipid biosurfactant produced by Pseudomonas fluorescens on model bacterial strains and isolates from industrial wastewater. Curr Microbiol 62:427–433PubMedCrossRefGoogle Scholar
  154. Walter V, Syldatk C, Hausmann R (2013) Screening concepts for the isolation of biosurfactant producing microorganisms. Adv Exp Med Biol 672:1–13CrossRefGoogle Scholar
  155. White DA, Hird LC, Ali ST (2013) Production and characterisation of a trehalolipid biosurfactant produced by the novel marine bacterium Rhodococcus sp., strain PML026. J Appl Microbiol 115:744–755PubMedCrossRefGoogle Scholar
  156. Winsor GL, Khaira B, Van Rossum T, Lo R, Whiteside MD, Brinkman FSL (2008) The Burkholderia genome database: facilitating flexible queries and comparative analyses. Bioinformatics 24:2803–2804PubMedPubMedCentralCrossRefGoogle Scholar
  157. Winsor GL, Griffiths EJ, Lo R, Dhillon BK, Shay JA, Brinkman FSL (2016) Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database. Nucleic Acids Res 44:D646–D653PubMedCrossRefGoogle Scholar
  158. Wittgens A, Tiso T, Arndt TT, Wenk P, Hemmerich J, Müller C, Wichmann R, Küpper B, Zwick M, Wilhelm S et al (2011) Growth independent rhamnolipid production from glucose using the non-pathogenic Pseudomonas putida KT2440. Microb Cell Factories 10:80CrossRefGoogle Scholar
  159. Xia W, Du Z, Cui Q, Dong H, Wang F, He P, Tang Y (2014) Biosurfactant produced by novel Pseudomonas sp. WJ6 with biodegradation of n-alkanes and polycyclic aromatic hydrocarbons. J Hazard Mater 276:489–498PubMedCrossRefGoogle Scholar
  160. Yan P, Lu M, Guan Y, Zhang W, Zhang Z (2011) Remediation of oil-based drill cuttings through a biosurfactant-based washing followed by a biodegradation treatment. Bioresour Technol 102:10252–10259PubMedCrossRefGoogle Scholar
  161. Youssef NH, Nguyen T, Sabatini DA, McInerney MJ (2007) Basis for formulating biosurfactant mixtures to achieve ultra low interfacial tension values against hydrocarbons. J Ind Microbiol Biotechnol 34:497–507PubMedCrossRefGoogle Scholar
  162. Youssef N, Randall Simpson D, McInerney MJ, Duncan KE (2013) In-situ lipopeptide biosurfactant production by Bacillus strains correlates with improved oil recovery in two oil wells approaching their economic limit of production. Int Biodeterior Biodegrad 81:127–132CrossRefGoogle Scholar
  163. Yu M, Liu Z, Zeng G, Zhong H, Liu Y, Jiang Y, Li M, He X, He Y (2015) Characteristics of mannosylerythritol lipids and their environmental potential. Carbohydr Res 407:63–72PubMedCrossRefGoogle Scholar
  164. Zhang Y, Miller RM (1992) Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Appl Environ Microbiol 58:3276–3282PubMedPubMedCentralGoogle Scholar
  165. Zhang L, Pemberton JE, Maier RM (2014) Effect of fatty acid substrate chain length on Pseudomonas aeruginosa ATCC 9027 monorhamnolipid yield and congener distribution. Process Biochem 49:989–995CrossRefGoogle Scholar
  166. Zhu K, Rock CO (2008) RhlA converts beta-hydroxyacyl-acyl carrier protein intermediates in fatty acid synthesis to the beta-hydroxydecanoyl-beta-hydroxydecanoate component of rhamnolipids in Pseudomonas aeruginosa. J Bacteriol 190:3147–3154PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Amedea Perfumo
    • 1
    Email author
  • Michelle Rudden
    • 2
  • Roger Marchant
    • 3
  • Ibrahim M. Banat
    • 3
  1. 1.Helmholtz Centre PotsdamGFZ German Research Centre for GeosciencesPotsdamGermany
  2. 2.Department of BiologyUniversity of YorkYorkUK
  3. 3.School of Biomedical SciencesUlster UniversityColeraineUK

Personalised recommendations