Nucleosynthesis in Hypernovae Associated with Gamma Ray Bursts

  • Ken’ichi NomotoEmail author
Living reference work entry


We present nucleosynthesis in very energetic hypernovae, whose kinetic energy (KE) is more than 10 times the KE of normal core-collapse supernovae (SNe). The light curve and spectra fitting of individual SN are used to estimate the mass of the progenitor, explosion energy, and produced56Ni mass. Comparison with the abundance patterns of extremely metal-poor (EMP) stars has made it possible to determine the model parameters of core-collapse SNe. Nucleosynthesis in hypernovae is characterized by larger abundance ratios (Zn, Co, V, Ti)/Fe and smaller (Mn, Cr)/Fe than normal SNe, which can explain the observed trends of these ratios in EMP stars. Hypernovae are also jet-induced explosions, so that their nucleosynthesis yields can well reproduce the large C/Fe ratio observed in carbon-enhanced metal-poor (CEMP) stars if a small fraction of Fe-peak elements is mixed into the C-rich ejecta in the form of a jet while the bulk of Fe undergoes fallback from equatorial direction (faint supernovae/hypernovae).


Black Hole Neutron Star Light Curve Massive Star Abundance Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been supported in part by Grants-in-Aid for Scientific Research (JP26400222, JP16H02168, JP17K05382) from the Japan Society for the Promotion of Science and by the WPI Initiative, MEXT, Japan.


  1. Argast D, Samland M, Gerhard OE et al (2000) Metal-poor halo stars as tracers of ISM mixing processes during halo formation. A&A 356:873ADSGoogle Scholar
  2. Arnett WD (1996) Supernovae and nucleosynthesis. Princeton University Press, PrincetonGoogle Scholar
  3. Audouse J, Silk J (1995) The first generation of stars: first steps toward chemical evolution of galaxies. ApJ 451:L49ADSGoogle Scholar
  4. Beers T, Christlieb N (2005) The discovery and analysis of very metal-poor stars in the galaxy. ARAA 43:531ADSCrossRefGoogle Scholar
  5. Campana S et al (2006) The association of GRB 060218 with a supernova and the evolution of the shock wave. Nature 442:1008ADSCrossRefGoogle Scholar
  6. Cayrel R et al (2004) First stars V – abundance patterns from C to Zn and supernova yields in the early galaxy. A&A 416:1117ADSCrossRefGoogle Scholar
  7. Christlieb N et al (2002) A stellar relic from the early milky way. Nature 419:904ADSCrossRefGoogle Scholar
  8. Della Valle M et al (2006) An enigmatic long-lasting gamma ray burst not accompanied by a bright supernova. Nature 444:1050ADSCrossRefGoogle Scholar
  9. Depagne E et al (2002) First stars. II. Elemental abundances in the extremely metal-poor star CS 22949–037. A diagnostic of early massive supernovae. A&A 390:187Google Scholar
  10. Frebel A et al (2005) Nucleosynthetic signatures of the first stars. Nature 434:871ADSCrossRefGoogle Scholar
  11. Fröhlich C, Hauser P, Liebendörfer M et al (2006) Composition of the innermost core-collapse supernova ejecta. ApJ 637:415ADSCrossRefGoogle Scholar
  12. Fynbo JPU et al (2006) No supernovae associated with two long-duration gamma-ray bursts. Nature 444:1047ADSCrossRefGoogle Scholar
  13. Galama T et al (1998) An unusual supernova in the error box of the gamma-ray burst of 25 April 1998. Nature 395:670ADSCrossRefGoogle Scholar
  14. Gal-Yam A et al (2006) A novel explosive process is required for the gamma-ray burst GRB 060614. Nature 444:1053ADSCrossRefGoogle Scholar
  15. Gal-Yam A (2012) Luminous supernovae. Science 337:927ADSCrossRefGoogle Scholar
  16. Gehrels N et al (2006) A new gamma-ray burst classification scheme from GRB060614. Nature 444:1044ADSCrossRefGoogle Scholar
  17. Hamuy M (2003) Observed and physical properties of core-collapse supernovae. ApJ 582:905ADSCrossRefGoogle Scholar
  18. Hill V, François P, Primas F (eds) (2005) IAU symposium 228, from lithium to uranium: elemental tracers of early cosmic evolution. Cambridge University Press, CambridgeGoogle Scholar
  19. Hjorth J et al (2003) A very energetic supernova associated with the gamma-ray burst of 29 March 2003. Nature 423:847ADSCrossRefGoogle Scholar
  20. Iwamoto K, Mazzali PA, Nomoto K et al (1998) A hypernova model for the supernova associated with the gamma-ray burst of 25 April 1998. Nature 395:672ADSCrossRefGoogle Scholar
  21. Iwamoto K, Nakamura T, Nomoto K et al (2000) The peculiar Type Ic supernova 1997EF: another hypernova. ApJ 534:660ADSCrossRefGoogle Scholar
  22. Iwamoto N, Umeda H, Tominaga N, Nomoto K, Maeda K (2005) The first chemical enrichment in the universe and the formation of hyper metal-poor stars. Science 309:451ADSCrossRefGoogle Scholar
  23. Kawabata K et al (2010) A massive star origin for an unusual helium-rich supernova in an elliptical galaxy. Nature 465:326ADSCrossRefGoogle Scholar
  24. Maeda K, Nakamura T, Nomoto K et al (2002) Explosive nucleosynthesis in aspherical hypernova explosions and late-time spectra of SN 1998bw. ApJ 565:405ADSCrossRefGoogle Scholar
  25. Malesani J et al (2006) SN 2003lw and GRB 031203: a bright supernova for a faint gamma-ray burst. ApJ 609:L5ADSCrossRefGoogle Scholar
  26. Mazzali PA, Deng J, Maeda K, Nomoto K et al (2002) The Type Ic hypernova SN 2002ap. ApJ 572:L61ADSCrossRefGoogle Scholar
  27. Mazzali PA, Kawabata KS, Maeda K, Nomoto K et al (2005) An asymmetric energetic Type Ic supernova viewed off-axis, and a link to gamma ray bursts. Science 308:1284ADSCrossRefGoogle Scholar
  28. Mazzali PA, Deng J, Nomoto K et al (2006) A neutron-star-driven X-ray flash associated with supernova SN 2006aj. Nature 442:1018ADSCrossRefGoogle Scholar
  29. McWilliam A, Preston GW, Sneden C, Searle L (1995) Spectroscopic analysis of 33 of the most metal poor stars. II. AJ 109:2757CrossRefGoogle Scholar
  30. Meynet G, Maeder A, (2007) Wind anisotropies and GRB progenitors. A&A 464:L11ADSCrossRefGoogle Scholar
  31. Modjaz M et al (2006) Early-time photometry and spectroscopy of the fast evolving SN 2006aj associated with GRB 060218. ApJ 645:L21ADSCrossRefGoogle Scholar
  32. Nakamura TK (1998) A model for non high energy gamma ray bursts and sources of ultra high energy cosmic rays – super strongly magnetized milli-second pulsar formed from a (C + O) star and a neutron star (black hole) close binary system. Prog Theor Phys 100:921ADSCrossRefGoogle Scholar
  33. Nakamura T, Umeda K, Nomoto K, Thielemann F-K, Burrows A (1999) Nucleosynthesis in Type II supernovae and the abundances in metal-poor stars. ApJ 517:193ADSCrossRefGoogle Scholar
  34. Nakamura T, Umeda K, Iwamoto K, Nomoto K, Hashimoto M, Hix WR, Thielemann F-K (2001) Explosive nucleosynthesis in hypernovae. ApJ 555:880ADSCrossRefGoogle Scholar
  35. Nomoto K, Suzuki T, Shigeyama T, Kumagai S, Yamaoka H, Saio H (1993) A Type IIb model for supernova 1993J. Nature 364:507ADSCrossRefGoogle Scholar
  36. Nomoto K et al (1994a) A carbon-oxygen star as progenitor of the Type Ic supernova 1994I. Nature 371:227ADSCrossRefGoogle Scholar
  37. Nomoto K, Shigeyama T, Kumagai S et al (1994b) Supernova 1987A: from progenitor to remnant. In: Bludmann S et al (ed) Supernovae. NATO ASI series C, proceedings of session LIV held in Les Houche. North-Holland, p 489Google Scholar
  38. Nomoto K, Mazzali PA, Nakamura T et al (2001) The properties of hypernovae: SNe Ic 1998bw, 1997ef, and SN IIn 1997cy. In: Livio M et al (eds) Supernovae and gamma ray bursts. Cambridge University Press, p 144. astro-ph/0003077Google Scholar
  39. Nomoto K et al (2003) Hypernovae and their nucleosynthesis. In: Hucht V et al (eds) IAU symposium 212, a massive star odyssey, from main sequence to supernova. ASP, p 395. astro-ph/0209064Google Scholar
  40. Nomoto K et al (2004) Hypernovae and other black-hole-forming supernovae. In: Fryer CL (ed) Stellar collapse. Astrophysics and Space Science, Kluwer, p 277. astro-ph/0308136Google Scholar
  41. Nomoto K, Tominaga N, Umeda H, Kobayashi C, Maeda K (2006) Nucleosynthesis yields of core-collapse supernovae and hypernovae, and galactic chemical evolution. Nucl Phys A 777:424. astro-ph/0605725Google Scholar
  42. Nomoto K et al (2007) Diversity of the supernova – gamma-ray burst connection. Nuovo Cinento B121:1207. astro-ph/0702472Google Scholar
  43. Nomoto K, Kobayashi C, Tominaga N (2013) Nucleosynthesis in stars and the chemical enrichment of galaxies. ARAA 51:457ADSCrossRefGoogle Scholar
  44. Pian E et al (2006) An optical supernova associated with the X-ray flash XRF 060218. Nature 442:1011ADSCrossRefGoogle Scholar
  45. Quimby RM (2012) Superluminous supernovae. In: Roming P et al (ed) IAU symposium 279, death of massive stars: supernovae and gamma-ray bursts, p 22Google Scholar
  46. Ryan SG, Norris JE, Beers TC (1996) Extremely metal-poor stars. II. Elemental abundances and the early chemical enrichment of the galaxy. ApJ 471:254Google Scholar
  47. Soderberg AM et al (2006) Relativistic ejecta from X-ray flash XRF 060218 and the rate of cosmic explosions. Nature 442:1014ADSCrossRefGoogle Scholar
  48. Stanek KZ et al (2003) Spectroscopic discovery of the supernova 2003dh associated with GRB 030329. ApJ 591:L17ADSCrossRefGoogle Scholar
  49. Thielemann F-K, Nomoto K, Hashimoto M (1996) Core-collapse supernovae and their ejecta. ApJ 460:408ADSCrossRefGoogle Scholar
  50. Thielemann F-K, Rauscher T, Freiburghaus C, Nomoto K et al (1998) Nucleosynthesis basics and applications to supernovae. In: Hirsch J, Page D (eds) Nuclear and particle astrophysics. Cambridge University Press, Cambridge, p 27CrossRefGoogle Scholar
  51. Thornton K, Gaudlitz M, Janka H-Th et al (1998) Energy input and mass redistribution by supernovae in the interstellar medium. ApJ 500:95ADSCrossRefGoogle Scholar
  52. Tominaga N, Tanaka M, Nomoto K et al (2005) The unique Type Ib supernova 2005bf: a WN star explosion model for peculiar light curves and spectra. ApJ 633:L97ADSCrossRefGoogle Scholar
  53. Tominaga N, Maeda K, Umeda H, Nomoto K, Tanaka M et al (2007a) The connection between gamma-ray bursts and extremely metal-poor stars: black hole-forming supernovae with relativistic jets. ApJ 657:L77ADSCrossRefGoogle Scholar
  54. Tominaga N, Umeda H, Nomoto K (2007b) Supernova nucleosynthesis in population III 13-50 M stars and abundance patterns of extremely metal-poor stars. ApJ 660:516ADSCrossRefGoogle Scholar
  55. Tumlinson J (2006) Chemical evolution in hierarchical models of cosmic structure. I. Constraints on the early stellar initial mass function. ApJ 641:1Google Scholar
  56. Umeda H, Nomoto K (2002) Nucleosynthesis of zinc and iron peak elements in population III Type II supernovae: comparison with abundances of very metal poor halo stars. ApJ 565:385ADSCrossRefGoogle Scholar
  57. Umeda H, Nomoto K (2005) Variations in the abundance pattern of extremely metal-poor stars and nucleosynthesis in population III supernovae. ApJ 619:427ADSCrossRefGoogle Scholar
  58. Umeda H, Nomoto K (2008) How much56Ni can be produced in core-collapse supernovae? Evolution and explosions of 30–100 M stars. ApJ 673:1014ADSCrossRefGoogle Scholar
  59. Woosley SE, Heger A (2006) The progenitor stars of gamma-ray bursts. ApJ 637:914ADSCrossRefGoogle Scholar
  60. Yoon S-C, Langer N (2006) Evolution of rapidly rotating metal-poor massive stars towards gamma-ray bursts. A&A 443:643ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Kavli Institute for the Physics and Mathematics of the Universe (WPI)The University of TokyoKashiwaJapan

Personalised recommendations