Advertisement

The Extremes of Thermonuclear Supernovae

  • Stefan Taubenberger
Living reference work entry

Abstract

The majority of thermonuclear explosions in the Universe seem to proceed in a rather standardized way, as explosions of carbon-oxygen (CO) white dwarfs in binary systems, leading to “normal” Type Ia supernovae (SNe Ia). However, over the years, a number of objects have been found which deviate from normal SNe Ia in their observational properties and which require different and not seldom more extreme progenitor systems. While the “traditional” classes of peculiar SNe Ia – luminous “91T-like” and faint “91bg-like” objects – have been known since the early 1990s, other classes of even more unusual transients have only been established 20 years later, fostered by the advent of new wide-field SN surveys such as the Palomar Transient Factory. These include the faint but slowly declining “02es-like” SNe; “Ca-rich” transients residing in the luminosity gap between classical novae and supernovae; extremely short-lived, fast-declining transients; and the very luminous so-called “super-Chandrasekhar” SNe Ia. Not all of them are necessarily thermonuclear explosions, but there are good arguments in favor of a thermonuclear origin for most of them. The aim of this chapter is to provide an overview of the zoo of potentially thermonuclear transients, reviewing their observational characteristics and discussing possible explosion scenarios.

Keywords

Light Curve Light Curf Host Galaxy Ejecta Velocity Maximum Light 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The author acknowledges support by project TRR 33 “The Dark Universe” of the German Research Foundation (DFG) and thanks Markus Kromer and Suhail Dhawan for helpful discussions.

References

  1. Altavilla G, Fiorentino G, Marconi M, Musella I, Cappellaro E, Barbon R, Benetti S, Pastorello A, Riello M, Turatto M, Zampieri L (2004) Cepheid calibration of Type Ia supernovae and the Hubble constant. MNRAS 349:1344–1352. doi:10.1111/j.1365-2966.2004.07616.x. arXiv:astro-ph/0401273Google Scholar
  2. Arnett WD (1982) Type I supernovae. I. Analytic solutions for the early part of the light curve. ApJ 253:785–797. doi:10.1086/159681Google Scholar
  3. Axelrod TS (1980) Late time optical spectra from the Ni-56 model for type I supernovae. Ph.D. thesis, University of California, Santa CruzGoogle Scholar
  4. Benetti S, Cappellaro E, Mazzali PA, Turatto M, Altavilla G, Bufano F, Elias-Rosa N, Kotak R, Pignata G, Salvo M, Stanishev V (2005) The Diversity of Type Ia Supernovae: Evidence for Systematics? ApJ 623:1011–1016. doi:10.1086/428608. arXiv:astro-ph/0411059Google Scholar
  5. Bildsten L, Shen KJ, Weinberg NN, Nelemans G (2007) Faint Thermonuclear Supernovae from AM Canum Venaticorum Binaries. ApJ 662:L95–L98, doi:10.1086/519489. arXiv:astro-ph/0703578Google Scholar
  6. Blondin S, Matheson T, Kirshner RP, Mandel KS, Berlind P, Calkins M, Challis P, Garnavich PM, Jha SW, Modjaz M, Riess AG, Schmidt BP (2012) The Spectroscopic Diversity of Type Ia Supernovae. AJ 143:126. doi:10.1088/0004-6256/143/5/126. arXiv:1203.4832Google Scholar
  7. Blondin S, Dessart L, Hillier DJ (2015) A one-dimensional Chandrasekhar-mass delayed-detonation model for the broad-lined Type Ia supernova 2002bo. MNRAS 448:2766–2797. doi:10.1093/mnras/stv188. arXiv:1501.06583Google Scholar
  8. Branch D, Fisher A, Nugent P (1993) On the relative frequencies of spectroscopically normal and peculiar Type IA supernovae. AJ 106:2383–2391. doi:10.1086/116810ADSCrossRefGoogle Scholar
  9. Branch D, Thomas RC, Baron E, Kasen D, Hatano K, Nomoto K, Filippenko AV, Li W, Rudy RJ (2004) Direct Analysis of Spectra of the Peculiar Type Ia Supernova 2000cx. ApJ 606:413–423. doi:10.1086/382950. arXiv:astro-ph/0401324Google Scholar
  10. Branch D, Dang LC, Hall N, Ketchum W, Melakayil M, Parrent J, Troxel MA, Casebeer D, Jeffery DJ, Baron E (2006) Comparative Direct Analysis of Type Ia Supernova Spectra. II. Maximum Light. PASP 118:560–571. doi:10.1086/502778. arXiv:astro-ph/0601048Google Scholar
  11. Brown PJ, Kuin P, Scalzo R, Smitka MT, de Pasquale M, Holland S, Krisciunas K, Milne P, Wang L (2014) Ultraviolet Observations of Super-Chandrasekhar Mass Type Ia Supernova Candidates with Swift UVOT. ApJ 787:29. doi:10.1088/0004-637X/787/1/29. arXiv:1404.0650Google Scholar
  12. Burns CR, Stritzinger M, Phillips MM, Hsiao EY, Contreras C, Persson SE, Folatelli G, Boldt L, Campillay A, Castellón S, Freedman WL, Madore BF, Morrell N, Salgado F, Suntzeff NB (2014) The Carnegie Supernova Project: Intrinsic Colors of Type Ia Supernovae. ApJ 789:32. doi:10.1088/0004-637X/789/1/32. arXiv:1405.3934Google Scholar
  13. Candia P, Krisciunas K, Suntzeff NB, González D, Espinoza J, Leiton R, Rest A, Smith RC, Cuadra J, Tavenner T, Logan C, Snider K, Thomas M, West AA, González G, González S, Phillips MM, Hastings NC, McMillan R (2003) Optical and Infrared Photometry of the Unusual Type Ia Supernova 2000cx. PASP 115:277–294. arXiv:astro-ph/0212543Google Scholar
  14. Cao Y, Kulkarni SR, Howell DA, Gal-Yam A, Kasliwal MM, Valenti S, Johansson J, Amanullah R, Goobar A, Sollerman J, Taddia F, Horesh A, Sagiv I, Cenko SB, Nugent PE, Arcavi I, Surace J, Woźniak PR, Moody DI, Rebbapragada UD, Bue BD, Gehrels N (2015) A strong ultraviolet pulse from a newborn type Ia supernova. Nature 521:328–331. doi:10.1038/nature14440.arXiv:1505.05158Google Scholar
  15. Chakradhari NK, Sahu DK, Srivastav S, Anupama GC (2014) Supernova SN 2012dn: a spectroscopic clone of SN 2006gz. MNRAS 443:1663–1679. doi:10.1093/mnras/stu1258.arXiv:1406.6139Google Scholar
  16. Chamel N, Fantina AF, Davis PJ (2013) Stability of super-Chandrasekhar magnetic white dwarfs. Phys Rev D 88(8):081301. doi:10.1103/PhysRevD.88.081301.arXiv:1306.3444Google Scholar
  17. Chandrasekhar S (1931) The Maximum Mass of Ideal White Dwarfs. ApJ 74:81–82ADSCrossRefzbMATHGoogle Scholar
  18. Chevalier RA, Plait PC (1988) The nature of S Andromedae (SN 1885A). ApJ 331:L109–L112. doi:10.1086/185246ADSCrossRefGoogle Scholar
  19. Childress M, Aldering G, Aragon C, Antilogus P, Bailey S, Baltay C, Bongard S, Buton C, Canto A, Chotard N, Copin Y, Fakhouri HK, Gangler E, Kerschhaggl M, Kowalski M, Hsiao EY, Loken S, Nugent P, Paech K, Pain R, Pecontal E, Pereira R, Perlmutter S, Rabinowitz D, Runge K, Scalzo R, Thomas RC, Smadja G, Tao C, Weaver BA, Wu C (2011) Keck Observations of the Young Metal-poor Host Galaxy of the Super-Chandrasekhar-mass Type Ia Supernova SN 2007if. ApJ 733:3. doi:10.1088/0004-637X/733/1/3.arXiv:1103.2324Google Scholar
  20. Conley A, Howell DA, Howes A, Sullivan M, Astier P, Balam D, Basa S, Carlberg RG, Fouchez D, Guy J, Hook I, Neill JD, Pain R, Perrett K, Pritchet CJ, Regnault N, Rich J, Taillet R, Aubourg E, Bronder J, Ellis RS, Fabbro S, Filiol M, Le Borgne D, Palanque-Delabrouille N, Perlmutter S, Ripoche P (2006) The Rise Time of Type Ia Supernovae from the Supernova Legacy Survey. AJ 132:1707–1713. doi:10.1086/507788.arXiv:astro-ph/0607363Google Scholar
  21. Contreras C, Hamuy M, Phillips MM, Folatelli G, Suntzeff NB, Persson SE, Stritzinger M, Boldt L, González S, Krzeminski W, Morrell N, Roth M, Salgado F, José Maureira M, Burns CR, Freedman WL, Madore BF, Murphy D, Wyatt P, Li W, Filippenko AV (2010) The Carnegie Supernova Project: First Photometry Data Release of Low-Redshift Type Ia Supernovae. AJ 139:519–539. doi:10.1088/0004-6256/139/2/519. arXiv:0910.3330Google Scholar
  22. Cristiani S, Cappellaro E, Turatto M, Bergeron J, Bues I, Buson L, Danziger J, di Serego-Alighieri S, Duerbeck HW, Heydari-Malayeri M, Krautter J, Schmutz W, Schulte-Ladbeck RE (1992) The SN 1986 G in Centaurus A. A&A 259:63–70ADSGoogle Scholar
  23. Darbha S, Metzger BD, Quataert E, Kasen D, Nugent P, Thomas R (2010) Nickel-rich outflows produced by the accretion-induced collapse of white dwarfs: light curves and spectra. MNRAS 409:846–854. doi:10.1111/j.1365-2966.2010.17353.x.arXiv:1005.1081Google Scholar
  24. Das U, Mukhopadhyay B, Rao AR (2013) A Possible Evolutionary Scenario of Highly Magnetized Super-Chandrasekhar White Dwarfs: Progenitors of Peculiar Type Ia Supernovae. ApJ 767:L14. doi:10.1088/2041-8205/767/1/L14.arXiv:1303.4298Google Scholar
  25. de Vaucouleurs G, Corwin HG Jr (1985) S Andromedae 1885 – A centennial review. ApJ 295:287–304. doi:10.1086/163374ADSCrossRefGoogle Scholar
  26. Diehl R, Siegert T, Hillebrandt W, Grebenev SA, Greiner J, Krause M, Kromer M, Maeda K, Röpke F, Taubenberger S (2014) Early56Ni decay gamma rays from SN2014J suggest an unusual explosion. Science 345:1162–1165. doi:10.1126/science.1254738.arXiv:1407.3061Google Scholar
  27. Drout MR, Soderberg AM, Mazzali PA, Parrent JT, Margutti R, Milisavljevic D, Sanders NE, Chornock R, Foley RJ, Kirshner RP, Filippenko AV, Li W, Brown PJ, Cenko SB, Chakraborti S, Challis P, Friedman A, Ganeshalingam M, Hicken M, Jensen C, Modjaz M, Perets HB, Silverman JM, Wong DS (2013) The Fast and Furious Decay of the Peculiar Type Ic Supernova 2005ek. ApJ 774:58. doi:10.1088/0004-637X/774/1/58. arXiv:1306.2337Google Scholar
  28. Fesen RA, Saken JM, Hamilton AJS (1989) Discovery of the remnant of S Andromedae (SN 1885) in M31. ApJ 341:L55–L57. doi:10.1086/185456ADSCrossRefGoogle Scholar
  29. Fesen RA, Gerardy CL, McLin KM, Hamilton AJS (1999) Hubble Space Telescope Images and Spectra of the Remnant of SN 1885 in M31. ApJ 514:195–201. doi:10.1086/306938. arXiv:astro-ph/9810002Google Scholar
  30. Fesen RA, Höflich PA, Hamilton AJS, Hammell MC, Gerardy CL, Khokhlov AM, Wheeler JC (2007) The Chemical Distribution in a Subluminous Type Ia Supernova: Hubble Space Telescope Images of the SN 1885 Remnant. ApJ 658:396–409. doi:10.1086/510998.arXiv:astro-ph/0611779Google Scholar
  31. Fesen RA, Höflich PA, Hamilton AJS (2015) The 2D Distribution of Iron-rich Ejecta in the Remnant of SN 1885 in M31. ApJ 804:140. doi:10.1088/0004-637X/804/2/140.arXiv:1412.3815Google Scholar
  32. Filippenko AV, Richmond MW, Branch D, Gaskell M, Herbst W, Ford CH, Treffers RR, Matheson T, Ho LC, Dey A, Sargent WLW, Small TA, van Breugel WJM (1992a) The subluminous, spectroscopically peculiar type IA supernova 1991bg in the elliptical galaxy NGC 4374. AJ 104:1543–1556. doi:10.1086/116339ADSCrossRefGoogle Scholar
  33. Filippenko AV, Richmond MW, Matheson T, Shields JC, Burbidge EM, Cohen RD, Dickinson M, Malkan MA, Nelson B, Pietz J, Schlegel D, Schmeer P, Spinrad H, Steidel CC, Tran HD, Wren W (1992b) The peculiar Type IA SN 1991T – Detonation of a white dwarf? ApJ 384:L15–L18. doi:10.1086/186252ADSCrossRefGoogle Scholar
  34. Filippenko AV, Chornock R, Swift B, Modjaz M, Simcoe R, Rauch M (2003) Supernovae 2001co, 2003H, 2003dg, and 2003dr. IAU Circ. 8159Google Scholar
  35. Fink M, Röpke FK, Hillebrandt W, Seitenzahl IR, Sim SA, Kromer M (2010) Double-detonation sub-Chandrasekhar supernovae: can minimum helium shell masses detonate the core? A&A 514:A53. doi:10.1051/0004-6361/200913892ADSCrossRefGoogle Scholar
  36. Fink M, Kromer M, Seitenzahl IR, Ciaraldi-Schoolmann F, Röpke FK, Sim SA, Pakmor R, Ruiter AJ, Hillebrandt W (2014) Three-dimensional pure deflagration models with nucleosynthesis and synthetic observables for Type Ia supernovae. MNRAS 438:1762–1783. doi:10.1093/mnras/stt2315. arXiv:1308.3257Google Scholar
  37. Fisher A, Branch D, Hatano K, Baron E (1999) On the spectrum and nature of the peculiar Type IA supernova 1991T. MNRAS 304:67–74. doi:10.1046/j.1365-8711.1999.02299.x. arXiv:astro-ph/9807032Google Scholar
  38. Fisher R, Jumper K (2015) Single-degenerate Type Ia Supernovae Are Preferentially Overluminous. ApJ 805:150. doi:10.1088/0004-637X/805/2/150. arXiv:1504.00014Google Scholar
  39. Foley RJ (2015) Kinematics and host-galaxy properties suggest a nuclear origin for calcium-rich supernova progenitors. MNRAS 452:2463–2478. doi:10.1093/mnras/stv789. arXiv:1501.07607Google Scholar
  40. Foley RJ, Matheson T, Blondin S, Chornock R, Silverman JM, Challis P, Clocchiatti A, Filippenko AV, Kirshner RP, Leibundgut B, Sollerman J, Spyromilio J, Tonry JL, Davis TM, Garnavich PM, Jha SW, Krisciunas K, Li W, Pignata G, Rest A, Riess AG, Schmidt BP, Smith RC, Stubbs CW, Tucker BE, Wood-Vasey WM (2009) Spectroscopy of High-Redshift Supernovae from the Essence Project: The First Four Years. AJ 137:3731–3742. doi:10.1088/0004-6256/137/4/3731. arXiv:0811.4424Google Scholar
  41. Foley RJ, Narayan G, Challis PJ, Filippenko AV, Kirshner RP, Silverman JM, Steele TN (2010) SN 2006bt: A Perplexing, Troublesome, and Possibly Misleading Type Ia Supernova. ApJ 708:1748–1759. doi:10.1088/0004-637X/708/2/1748. arXiv:0912.0263Google Scholar
  42. Fransson C, Jerkstrand A (2015) Reconciling the Infrared Catastrophe and Observations of SN 2011fe. ApJ 814:L2. doi:10.1088/2041-8205/814/1/L2. arXiv:1511.00245Google Scholar
  43. Friedman AS, Wood-Vasey WM, Marion GH, Challis P, Mandel KS, Bloom JS, Modjaz M, Narayan G, Hicken M, Foley RJ, Klein CR, Starr DL, Morgan A, Rest A, Blake CH, Miller AA, Falco EE, Wyatt WF, Mink J, Skrutskie MF, Kirshner RP (2015) CfAIR2: Near-infrared Light Curves of 94 Type Ia Supernovae. ApJS 220:9. doi:10.1088/0067-0049/220/1/9. arXiv:1408.0465Google Scholar
  44. Gallagher JS, Garnavich PM, Berlind P, Challis P, Jha S, Kirshner RP (2005) Chemistry and Star Formation in the Host Galaxies of Type Ia Supernovae. ApJ 634:210–226. doi:10.1086/491664. arXiv:astro-ph/0508180Google Scholar
  45. Ganeshalingam M, Li W, Filippenko AV, Anderson C, Foster G, Gates EL, Griffith CV, Grigsby BJ, Joubert N, Leja J, Lowe TB, Macomber B, Pritchard T, Thrasher P, Winslow D (2010) Results of the Lick Observatory Supernova Search Follow-up Photometry Program: BVRI Light Curves of 165 Type Ia Supernovae. ApJS 190:418–448. doi:10.1088/0067-0049/190/2/418ADSCrossRefGoogle Scholar
  46. Ganeshalingam M, Li W, Filippenko AV, Silverman JM, Chornock R, Foley RJ, Matheson T, Kirshner RP, Milne P, Calkins M, Shen KJ (2012) The Low-velocity, Rapidly Fading Type Ia Supernova 2002es. ApJ 751:142. doi:10.1088/0004-637X/751/2/142. arXiv:1202.3140Google Scholar
  47. Garavini G, Folatelli G, Goobar A, Nobili S, Aldering G, Amadon A, Amanullah R, Astier P, Balland C, Blanc G, Burns MS, Conley A, Dahlén T, Deustua SE, Ellis R, Fabbro S, Fan X, Frye B, Gates EL, Gibbons R, Goldhaber G, Goldman B, Groom DE, Haissinski J, Hardin D, Hook IM, Howell DA, Kasen D, Kent S, Kim AG, Knop RA, Lee BC, Lidman C, Mendez J, Miller GJ, Moniez M, Mourão A, Newberg H, Nugent PE, Pain R, Perdereau O, Perlmutter S, Prasad V, Quimby R, Raux J, Regnault N, Rich J, Richards GT, Ruiz-Lapuente P, Sainton G, Schaefer BE, Schahmaneche K, Smith E, Spadafora AL, Stanishev V, Walton NA, Wang L, Wood-Vasey WM, Supernova Cosmology Project (2004) Spectroscopic Observations and Analysis of the Peculiar SN 1999aa. AJ 128:387–404. doi:10.1086/421747. arXiv:astro-ph/0404393Google Scholar
  48. Garnavich PM, Bonanos AZ, Krisciunas K, Jha S, Kirshner RP, Schlegel EM, Challis P, Macri LM, Hatano K, Branch D, Bothun GD, Freedman WL (2004) The Luminosity of SN 1999by in NGC 2841 and the Nature of “Peculiar” Type Ia Supernovae. ApJ 613:1120–1132. doi:10.1086/422986. arXiv:astro-ph/0105490Google Scholar
  49. Gómez G, López R (1998) The Canarias Type IA Supernova Archive. II. A Standard Spectral Evolution Sequence. AJ 115:1096–1102. doi:10.1086/300248Google Scholar
  50. González-Gaitán S, Perrett K, Sullivan M, Conley A, Howell DA, Carlberg RG, Astier P, Balam D, Balland C, Basa S, Fouchez D, Guy J, Hardin D, Hook IM, Pain R, Pritchet CJ, Regnault N, Rich J, Lidman C (2011) Subluminous Type Ia Supernovae at High Redshift from the Supernova Legacy Survey. ApJ 727:107. doi:10.1088/0004-637X/727/2/107.arXiv:1011.4531Google Scholar
  51. González-Gaitán S, Hsiao EY, Pignata G, Förster F, Gutiérrez CP, Bufano F, Galbany L, Folatelli G, Phillips MM, Hamuy M, Anderson JP, de Jaeger T (2014) Defining Photometric Peculiar Type Ia Supernovae. ApJ 795:142. doi:10.1088/0004-637X/795/2/142.arXiv:1409.4811Google Scholar
  52. Guillochon J, Dan M, Ramirez-Ruiz E, Rosswog S (2010) Surface Detonations in Double Degenerate Binary Systems Triggered by Accretion Stream Instabilities. ApJ 709:L64–L69. doi:10.1088/2041-8205/709/1/L64. arXiv:0911.0416Google Scholar
  53. Hachinger S, Mazzali PA, Tanaka M, Hillebrandt W, Benetti S (2008) Spectral luminosity indicators in Type Ia supernovae. Understanding the (SiII) line-strength ratio and beyond. MNRAS 389:1087–1096. doi:10.1111/j.1365-2966.2008.13645.x. arXiv:0806.4177Google Scholar
  54. Hachinger S, Mazzali PA, Taubenberger S, Pakmor R, Hillebrandt W (2009) Spectral analysis of the 91bg-like Type Ia SN 2005bl: low luminosity, low velocities, incomplete burning. MNRAS 399:1238–1254. doi:10.1111/j.1365-2966.2009.15403.x.arXiv:0907.2542Google Scholar
  55. Hachinger S, Mazzali PA, Taubenberger S, Fink M, Pakmor R, Hillebrandt W, Seitenzahl IR (2012) Spectral modelling of the ’super-Chandrasekhar’ Type Ia SN 2009dc – testing a 2 M white dwarf explosion model and alternatives. MNRAS 427:2057–2078. doi:10.1111/j.1365-2966.2012.22068.x. arXiv:1209.1339Google Scholar
  56. Hachisu I, Kato M, Saio H, Nomoto K (2012) A Single Degenerate Progenitor Model for Type Ia Supernovae Highly Exceeding the Chandrasekhar Mass Limit. ApJ 744:69. doi:10.1088/0004-637X/744/1/69. arXiv:1106.3510Google Scholar
  57. Hamilton AJS, Fesen RA (2000) An Ultraviolet Fe II Image of SN 1885 in M31. ApJ 542:779–784. doi:10.1086/317014. arXiv:astro-ph/9907102Google Scholar
  58. Hamuy M, Phillips MM, Suntzeff NB, Schommer RA, Maza J, Smith RC, Lira P, Aviles R (1996) The Morphology of Type IA Supernovae Light Curves. AJ 112:2438. doi:10.1086/118193. arXiv:astro-ph/9609063Google Scholar
  59. Hayden BT, Garnavich PM, Kessler R, Frieman JA, Jha SW, Bassett B, Cinabro D, Dilday B, Kasen D, Marriner J, Nichol RC, Riess AG, Sako M, Schneider DP, Smith M, Sollerman J (2010) The Rise and Fall of Type Ia Supernova Light Curves in the SDSS-II Supernova Survey. ApJ 712:350–366. doi:10.1088/0004-637X/712/1/350. arXiv:1001.3428Google Scholar
  60. Hicken M, Garnavich PM, Prieto JL, Blondin S, DePoy DL, Kirshner RP, Parrent J (2007) The Luminous and Carbon-rich Supernova 2006gz: A Double Degenerate Merger? ApJ 669:L17–L20. doi:10.1086/523301. arXiv:0709.1501Google Scholar
  61. Hicken M, Challis P, Jha S, Kirshner RP, Matheson T, Modjaz M, Rest A, Wood-Vasey WM, Bakos G, Barton EJ, Berlind P, Bragg A, Briceño C, Brown WR, Caldwell N, Calkins M, Cho R, Ciupik L, Contreras M, Dendy KC, Dosaj A, Durham N, Eriksen K, Esquerdo G, Everett M, Falco E, Fernandez J, Gaba A, Garnavich P, Graves G, Green P, Groner T, Hergenrother C, Holman MJ, Hradecky V, Huchra J, Hutchison B, Jerius D, Jordan A, Kilgard R, Krauss M, Luhman K, Macri L, Marrone D, McDowell J, McIntosh D, McNamara B, Megeath T, Mochejska B, Munoz D, Muzerolle J, Naranjo O, Narayan G, Pahre M, Peters W, Peterson D, Rines K, Ripman B, Roussanova A, Schild R, Sicilia-Aguilar A, Sokoloski J, Smalley K, Smith A, Spahr T, Stanek KZ, Barmby P, Blondin S, Stubbs CW, Szentgyorgyi A, Torres MAP, Vaz A, Vikhlinin A, Wang Z, Westover M, Woods D, Zhao P (2009) CfA3: 185 Type Ia Supernova Light Curves from the CfA. ApJ 700:331–357. doi:10.1088/0004-637X/700/1/331. arXiv:0901.4787Google Scholar
  62. Hillebrandt W, Sim SA, Röpke FK (2007) Off-center explosions of Chandrasekhar-mass white dwarfs: an explanation of super-bright type Ia supernovae? A&A 465:L17–L20. doi:10.1051/0004-6361:20077100. arXiv:astro-ph/0702344Google Scholar
  63. Höflich P, Gerardy CL, Fesen RA, Sakai S (2002) Infrared Spectra of the Subluminous Type Ia Supernova SN 1999by. ApJ 568:791–806. doi:10.1086/339063. arXiv:astro-ph/0112126Google Scholar
  64. Hough JH, Bailey JA, Rouse MF, Whittet DCB (1987) Interstellar polarization in the dust lane of Centaurus A (NGC 5128). MNRAS 227:1P–5P. doi:10.1093/mnras/227.1.1PADSCrossRefGoogle Scholar
  65. Howell DA (2001) The Progenitors of Subluminous Type Ia Supernovae. ApJ 554:L193–L196. doi:10.1086/321702. arXiv:astro-ph/0105246Google Scholar
  66. Howell DA, Höflich P, Wang L, Wheeler JC (2001) Evidence for Asphericity in a Subluminous Type Ia Supernova: Spectropolarimetry of SN 1999by. ApJ 556:302–321. doi:10.1086/321584. arXiv:astro-ph/0101520Google Scholar
  67. Howell DA, Sullivan M, Nugent PE, Ellis RS, Conley AJ, Le Borgne D, Carlberg RG, Guy J, Balam D, Basa S, Fouchez D, Hook IM, Hsiao EY, Neill JD, Pain R, Perrett KM, Pritchet CJ (2006) The type Ia supernova SNLS-03D3bb from a super-Chandrasekhar-mass white dwarf star. Nature 443:308–311. doi:10.1038/nature05103. arXiv:astro-ph/0609616Google Scholar
  68. Hsiao EY, Burns CR, Contreras C, Höflich P, Sand D, Marion GH, Phillips MM, Stritzinger M, González-Gaitán S, Mason RE, Folatelli G, Parent E, Gall C, Amanullah R, Anupama GC, Arcavi I, Banerjee DPK, Beletsky Y, Blanc GA, Bloom JS, Brown PJ, Campillay A, Cao Y, De Cia A, Diamond T, Freedman WL, Gonzalez C, Goobar A, Holmbo S, Howell DA, Johansson J, Kasliwal MM, Kirshner RP, Krisciunas K, Kulkarni SR, Maguire K, Milne PA, Morrell N, Nugent PE, Ofek EO, Osip D, Palunas P, Perley DA, Persson SE, Piro AL, Rabus M, Roth M, Schiefelbein JM, Srivastav S, Sullivan M, Suntzeff NB, Surace J, Woźniak PR, Yaron O (2015) Strong near-infrared carbon in the Type Ia supernova iPTF13ebh. A&A 578:A9. doi:10.1051/0004-6361/201425297. arXiv:1503.02293Google Scholar
  69. Jeffery DJ, Leibundgut B, Kirshner RP, Benetti S, Branch D, Sonneborn G (1992) Analysis of the photospheric epoch spectra of type Ia supernovae SN 1990N and SN 1991T. ApJ 397:304–328. doi:10.1086/171787ADSCrossRefGoogle Scholar
  70. Jha S, Kirshner RP, Challis P, Garnavich PM, Matheson T, Soderberg AM, Graves GJM, Hicken M, Alves JF, Arce HG, Balog Z, Barmby P, Barton EJ, Berlind P, Bragg AE, Briceño C, Brown WR, Buckley JH, Caldwell N, Calkins ML, Carter BJ, Concannon KD, Donnelly RH, Eriksen KA, Fabricant DG, Falco EE, Fiore F, Garcia MR, Gómez M, Grogin NA, Groner T, Groot PJ, Haisch KE Jr, Hartmann L, Hergenrother CW, Holman MJ, Huchra JP, Jayawardhana R, Jerius D, Kannappan SJ, Kim DW, Kleyna JT, Kochanek CS, Koranyi DM, Krockenberger M, Lada CJ, Luhman KL, Luu JX, Macri LM, Mader JA, Mahdavi A, Marengo M, Marsden BG, McLeod BA, McNamara BR, Megeath ST, Moraru D, Mossman AE, Muench AA, Muñoz JA, Muzerolle J, Naranjo O, Nelson-Patel K, Pahre MA, Patten BM, Peters J, Peters W, Raymond JC, Rines K, Schild RE, Sobczak GJ, Spahr TB, Stauffer JR, Stefanik RP, Szentgyorgyi AH, Tollestrup EV, Väisänen P, Vikhlinin A, Wang Z, Willner SP, Wolk SJ, Zajac JM, Zhao P, Stanek KZ (2006) UBVRI Light Curves of 44 Type Ia Supernovae. AJ 131:527–554. doi:10.1086/497989. arXiv:astro-ph/0509234Google Scholar
  71. Kasen D (2006) Secondary Maximum in the Near-Infrared Light Curves of Type Ia Supernovae. ApJ 649:939–953. doi:10.1086/506588. arXiv:astro-ph/0606449Google Scholar
  72. Kasen D (2010) Seeing the Collision of a Supernova with Its Companion Star. ApJ 708:1025–1031. doi:10.1088/0004-637X/708/2/1025. arXiv:0909.0275Google Scholar
  73. Kasliwal MM, Kulkarni SR, Gal-Yam A, Yaron O, Quimby RM, Ofek EO, Nugent P, Poznanski D, Jacobsen J, Sternberg A, Arcavi I, Howell DA, Sullivan M, Rich DJ, Burke PF, Brimacombe J, Milisavljevic D, Fesen R, Bildsten L, Shen K, Cenko SB, Bloom JS, Hsiao E, Law NM, Gehrels N, Immler S, Dekany R, Rahmer G, Hale D, Smith R, Zolkower J, Velur V, Walters R, Henning J, Bui K, McKenna D (2010) Rapidly Decaying Supernova 2010X: A Candidate ”.Ia” Explosion. ApJ 723:L98–L102. doi:10.1088/2041-8205/723/1/L98. arXiv:1009.0960Google Scholar
  74. Kasliwal MM, Kulkarni SR, Gal-Yam A, Nugent PE, Sullivan M, Bildsten L, Yaron O, Perets HB, Arcavi I, Ben-Ami S, Bhalerao VB, Bloom JS, Cenko SB, Filippenko AV, Frail DA, Ganeshalingam M, Horesh A, Howell DA, Law NM, Leonard DC, Li W, Ofek EO, Polishook D, Poznanski D, Quimby RM, Silverman JM, Sternberg A, Xu D (2012) Calcium-rich Gap Transients in the Remote Outskirts of Galaxies. ApJ 755:161. doi:10.1088/0004-637X/755/2/161. arXiv:1111.6109Google Scholar
  75. Kattner S, Leonard DC, Burns CR, Phillips MM, Folatelli G, Morrell N, Stritzinger MD, Hamuy M, Freedman WL, Persson SE, Roth M, Suntzeff NB (2012) The Standardizability of Type Ia Supernovae in the Near-Infrared: Evidence for a Peak-Luminosity Versus Decline-Rate Relation in the Near-Infrared. PASP 124:114–127. doi:10.1086/664734. arXiv:1201.2913Google Scholar
  76. Kawabata KS, Maeda K, Nomoto K, Taubenberger S, Tanaka M, Deng J, Pian E, Hattori T, Itagaki K (2010) A massive star origin for an unusual helium-rich supernova in an elliptical galaxy. Nature 465:326–328. doi:10.1038/nature09055. arXiv:0906.2811Google Scholar
  77. Kerzendorf WE, Taubenberger S, Seitenzahl IR, Ruiter AJ (2014) Very Late Photometry of SN 2011fe. ApJ 796:L26. doi:10.1088/2041-8205/796/2/L26. arXiv:1406.6050Google Scholar
  78. Khan R, Stanek KZ, Stoll R, Prieto JL (2011) Super-Chandrasekhar SNe Ia Strongly Prefer Metal-poor Environments. ApJ 737:L24. doi:10.1088/2041-8205/737/1/L24. arXiv:1106.3071Google Scholar
  79. Khokhlov A, Mueller E, Hoeflich P (1993) Light curves of Type IA supernova models with different explosion mechanisms. A&A 270:223–248ADSCrossRefGoogle Scholar
  80. Khokhlov AM (1991) Delayed detonation model for type IA supernovae. A&A 245:114–128ADSGoogle Scholar
  81. Kleiser IKW, Kasen D (2014) Rapidly fading supernovae from massive star explosions. MNRAS 438:318–328. doi:10.1093/mnras/stt2191. arXiv:1309.4088Google Scholar
  82. Krisciunas K, Hastings NC, Loomis K, McMillan R, Rest A, Riess AG, Stubbs C (2000) Uniformity of (V-Near-Infrared) Color Evolution of Type Ia Supernovae and Implications for Host Galaxy Extinction Determination. ApJ 539:658–674. doi:10.1086/309263. arXiv:astro-ph/9912219Google Scholar
  83. Krisciunas K, Marion GH, Suntzeff NB, Blanc G, Bufano F, Candia P, Cartier R, Elias-Rosa N, Espinoza J, Gonzalez D, Gonzalez L, Gonzalez S, Gooding SD, Hamuy M, Knox EA, Milne PA, Morrell N, Phillips MM, Stritzinger M, Thomas-Osip J (2009) The Fast Declining Type Ia Supernova 2003gs, and Evidence for a Significant Dispersion in Near-Infrared Absolute Magnitudes of Fast Decliners at Maximum Light. AJ 138:1584–1596. doi:10.1088/0004-6256/138/6/1584. arXiv:0908.1918Google Scholar
  84. Kromer M, Sim SA, Fink M, Röpke FK, Seitenzahl IR, Hillebrandt W (2010) Double-detonation Sub-Chandrasekhar Supernovae: Synthetic Observables for Minimum Helium Shell Mass Models. ApJ 719:1067–1082. doi:10.1088/0004-637X/719/2/1067. arXiv:1006.4489Google Scholar
  85. Kromer M, Pakmor R, Taubenberger S, Pignata G, Fink M, Röpke FK, Seitenzahl IR, Sim SA, Hillebrandt W (2013) SN 2010lp – a Type Ia Supernova from a Violent Merger of Two Carbon- Oxygen White Dwarfs. ApJ 778:L18. doi:10.1088/2041-8205/778/1/L18. arXiv:1311.0310Google Scholar
  86. Kromer M, Fremling C, Pakmor R, Taubenberger S, Amanullah R, Cenko SB, Fransson C, Goobar A, Leloudas G, Taddia F, Röpke FK, Seitenzahl IR, Sim SA, Sollerman J (2016) The peculiar Type Ia supernova iPTF14atg: Chandrasekhar-mass explosion or violent merger? MNRAS 459:4428–4439 doi:10.1093/mnras/stw962. arXiv:1604.05730Google Scholar
  87. Langer N, Deutschmann A, Wellstein S, Höflich P (2000) The evolution of main sequence star + white dwarf binary systems towards Type Ia supernovae. A&A 362:1046–1064. arXiv:astro-ph/0008444Google Scholar
  88. Leibundgut B, Tammann GA, Cadonau R, Cerrito D (1991) Supernova studies. VII – an atlas of light curves of supernovae type I. A&AS 89:537–579Google Scholar
  89. Leibundgut B, Kirshner RP, Phillips MM, Wells LA, Suntzeff NB, Hamuy M, Schommer RA, Walker AR, Gonzalez L, Ugarte P, Williams RE, Williger G, Gomez M, Marzke R, Schmidt BP, Whitney B, Coldwell N, Peters J, Chaffee FH, Foltz CB, Rehner D, Siciliano L, Barnes TG, Cheng KP, Hintzen PMN, Kim YC, Maza J, Parker JW, Porter AC, Schmidtke PC, Sonneborn G (1993) SN 1991bg – A type IA supernova with a difference. AJ 105:301–313. doi:10.1086/116427ADSCrossRefGoogle Scholar
  90. Li W, Filippenko AV, Gates E, Chornock R, Gal-Yam A, Ofek EO, Leonard DC, Modjaz M, Rich RM, Riess AG, Treffers RR (2001a) The Unique Type Ia Supernova 2000cx in NGC 524. PASP 113:1178–1204. arXiv:astro-ph/0107318Google Scholar
  91. Li W, Filippenko AV, Treffers RR, Riess AG, Hu J, Qiu Y (2001b) A High Intrinsic Peculiarity Rate among Type IA Supernovae. ApJ 546:734–743. doi:10.1086/318299. arXiv:astro-ph/0006292Google Scholar
  92. Li W, Leaman J, Chornock R, Filippenko AV, Poznanski D, Ganeshalingam M, Wang X, Modjaz M, Jha S, Foley RJ, Smith N (2011) Nearby supernova rates from the Lick Observatory Supernova Search – II. The observed luminosity functions and fractions of supernovae in a complete sample. MNRAS 412:1441–1472. doi:10.1111/j.1365-2966.2011.18160.x. arXiv:1006.4612Google Scholar
  93. Li WD, Qiu YL, Qiao QY, Zhu XH, Hu JY, Richmond MW, Filippenko AV, Treffers RR, Peng CY, Leonard DC (1999) The Type IA Supernova 1997BR in ESO 576-G40. AJ 117:2709–2724. doi:10.1086/300895. arXiv:astro-ph/9903466Google Scholar
  94. Li Z, Wang QD, Wakker BP (2009) M31* and its circumnuclear environment. MNRAS 397:148–163. doi:10.1111/j.1365-2966.2009.14918.x. arXiv:0902.3847Google Scholar
  95. Lira P (1996) Light curves of the supernovae 1990N and 1990T. Master’s thesis, MS thesis, University of Chile (1996)Google Scholar
  96. Lira P, Suntzeff NB, Phillips MM, Hamuy M, Maza J, Schommer RA, Smith RC, Wells LA, Avilés R, Baldwin JA, Elias JH, González L, Layden A, Navarrete M, Ugarte P, Walker AR, Williger GM, Baganoff FK, Crotts APS, Rich RM, Tyson ND, Dey A, Guhathakurta P, Hibbard J, Kim YC, Rehner DM, Siciliano E, Roth J, Seitzer P, Williams TB (1998) Optical light curves of the Type IA supernovae SN 1990N and 1991T. AJ 115:234. doi:10.1086/300175. arXiv:astro-ph/9709262Google Scholar
  97. Lyman JD, Levan AJ, Church RP, Davies MB, Tanvir NR (2014) The progenitors of calcium-rich transients are not formed in situ*. MNRAS 444:2157–2166. doi:10.1093/mnras/stu1574. arXiv:1408.1424Google Scholar
  98. Maeda K, Kawabata K, Li W, Tanaka M, Mazzali PA, Hattori T, Nomoto K, Filippenko AV (2009) Subaru and Keck Observations of the Peculiar Type Ia Supernova 2006GZ at Late Phases. ApJ 690:1745–1752. doi:10.1088/0004-637X/690/2/1745. arXiv:0808.0138Google Scholar
  99. Maguire K, Sullivan M, Thomas RC, Nugent P, Howell DA, Gal-Yam A, Arcavi I, Ben-Ami S, Blake S, Botyanszki J, Buton C, Cooke J, Ellis RS, Hook IM, Kasliwal MM, Pan YC, Pereira R, Podsiadlowski P, Sternberg A, Suzuki N, Xu D, Yaron O, Bloom JS, Cenko SB, Kulkarni SR, Law N, Ofek EO, Poznanski D, Quimby RM (2011) PTF10ops – a subluminous, normal-width light curve Type Ia supernova in the middle of nowhere. MNRAS 418:747–758. doi:10.1111/j.1365-2966.2011.19526.x. arXiv:1108.0416Google Scholar
  100. Matheson T, Kirshner RP, Challis P, Jha S, Garnavich PM, Berlind P, Calkins ML, Blondin S, Balog Z, Bragg AE, Caldwell N, Dendy Concannon K, Falco EE, Graves GJM, Huchra JP, Kuraszkiewicz J, Mader JA, Mahdavi A, Phelps M, Rines K, Song I, Wilkes BJ (2008) Optical Spectroscopy of Type Ia Supernovae. AJ 135:1598–1615. doi:10.1088/0004-6256/135/4/1598. arXiv:0803.1705Google Scholar
  101. Mazzali PA, Hachinger S (2012) The nebular spectra of the Type Ia supernova 1991bg: further evidence of a non-standard explosion. MNRAS 424:2926–2935. doi:10.1111/j.1365-2966.2012.21433.xADSCrossRefGoogle Scholar
  102. Mazzali PA, Danziger IJ, Turatto M (1995) A study of the properties of the peculiar SN IA 1991T through models of its evolving early-time spectrum. A&A 297:509–534ADSGoogle Scholar
  103. Mazzali PA, Chugai N, Turatto M, Lucy LB, Danziger IJ, Cappellaro E, della Valle M, Benetti S (1997) The properties of the peculiar type IA supernova 1991bg – II. The amount of56Ni and the total ejecta mass determined from spectrum synthesis and energetics considerations. MNRAS 284:151–171Google Scholar
  104. Mazzali PA, Benetti S, Altavilla G, Blanc G, Cappellaro E, Elias-Rosa N, Garavini G, Goobar A, Harutyunyan A, Kotak R, Leibundgut B, Lundqvist P, Mattila S, Mendez J, Nobili S, Pain R, Pastorello A, Patat F, Pignata G, Podsiadlowski P, Ruiz-Lapuente P, Salvo M, Schmidt BP, Sollerman J, Stanishev V, Stehle M, Tout C, Turatto M, Hillebrandt W (2005) High-Velocity Features: A Ubiquitous Property of Type Ia Supernovae. ApJ 623:L37–L40. doi:10.1086/429874. arXiv:astro-ph/0502531Google Scholar
  105. Metzger BD (2012) Nuclear-dominated accretion and subluminous supernovae from the merger of a white dwarf with a neutron star or black hole. MNRAS 419:827–840. doi:10.1111/j.1365-2966.2011.19747.x. arXiv:1105.6096Google Scholar
  106. Metzger BD, Martínez-Pinedo G, Darbha S, Quataert E, Arcones A, Kasen D, Thomas R, Nugent P, Panov IV, Zinner NT (2010) Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r-process nuclei. MNRAS 406:2650–2662. doi:10.1111/j.1365-2966.2010.16864.x. arXiv:1001.5029Google Scholar
  107. Modjaz M, Li W, Filippenko AV, King JY, Leonard DC, Matheson T, Treffers RR, Riess AG (2001) The Subluminous Type Ia Supernova 1998de in NGC 252. PASP 113:308–325. doi:10.1086/319338. arXiv:astro-ph/0008012Google Scholar
  108. Munari U, Henden A, Belligoli R, Castellani F, Cherini G, Righetti GL, Vagnozzi A (2013) BVRI lightcurves of supernovae SN 2011fe in M101, SN 2012aw in M95, and SN 2012cg in NGC 4424. New Astron 20:30–37. doi:10.1016/j.newast.2012.09.003. arXiv:1209.4692Google Scholar
  109. Nakar E, Sari R (2012) Relativistic Shock Breakouts – A Variety of Gamma-Ray Flares: From Low-luminosity Gamma-Ray Bursts to Type Ia Supernovae. ApJ 747:88. doi://10.1088/0004-637X/747/2/88. arXiv:1106.2556Google Scholar
  110. Neill JD, Sullivan M, Howell DA, Conley A, Seibert M, Martin DC, Barlow TA, Foster K, Friedman PG, Morrissey P, Neff SG, Schiminovich D, Wyder TK, Bianchi L, Donas J, Heckman TM, Lee YW, Madore BF, Milliard B, Rich RM, Szalay AS (2009) The Local Hosts of Type Ia Supernovae. ApJ 707:1449–1465. doi://10.1088/0004-637X/707/2/1449. arXiv:0911.0690Google Scholar
  111. Nugent P, Phillips M, Baron E, Branch D, Hauschildt P (1995) Evidence for a Spectroscopic Sequence among Type 1a Supernovae. ApJ 455:L147. doi:10.1086/309846. arXiv:astro-ph/9510004Google Scholar
  112. Osterbrock DE (2001) Walter Baade: a life in astrophysics. Princeton University Press, PrincetonGoogle Scholar
  113. Östman L, Nordin J, Goobar A, Amanullah R, Smith M, Sollerman J, Stanishev V, Stritzinger MD, Bassett BA, Davis TM, Edmondson E, Frieman JA, Garnavich PM, Lampeitl H, Leloudas G, Marriner J, Nichol RC, Romer K, Sako M, Schneider DP, Zheng C (2011) NTT and NOT spectroscopy of SDSS-II supernovae. A&A 526:A28. doi:10.1051/0004-6361/201015704. arXiv:1011.5869Google Scholar
  114. Pakmor R, Kromer M, Röpke FK, Sim SA, Ruiter AJ, Hillebrandt W (2010) Sub-luminous type Ia supernovae from the mergers of equal-mass white dwarfs with mass ∼ 0.9 M. Nature 463:61–64. doi:10.1038/nature08642. arXiv:0911.0926Google Scholar
  115. Pakmor R, Kromer M, Taubenberger S, Springel V (2013) Helium-ignited Violent Mergers as a Unified Model for Normal and Rapidly Declining Type Ia Supernovae. ApJ 770:L8. doi:10.1088/2041-8205/770/1/L8. arXiv:1302.2913Google Scholar
  116. Parrent JT, Howell DA, Fesen RA, Parker S, Bianco FB, Dilday B, Sand D, Valenti S, Vinkó J, Berlind P, Challis P, Milisavljevic D, Sanders N, Marion GH, Wheeler JC, Brown P, Calkins ML, Friesen B, Kirshner R, Pritchard T, Quimby R, Roming P (2016) Comparative analysis of SN 2012dn optical spectra: days -14 to +114. MNRAS 457:3702–3723. doi:10.1093/mnras/stw239. arXiv:1603.03868Google Scholar
  117. Patat F, Chandra P, Chevalier R, Justham S, Podsiadlowski P, Wolf C, Gal-Yam A, Pasquini L, Crawford IA, Mazzali PA, Pauldrach AWA, Nomoto K, Benetti S, Cappellaro E, Elias-Rosa N, Hillebrandt W, Leonard DC, Pastorello A, Renzini A, Sabbadin F, Simon JD, Turatto M (2007) Detection of Circumstellar Material in a Normal Type Ia Supernova. Science 317:924–926. doi:10.1126/science.1143005. arXiv:0707.2793Google Scholar
  118. Patat F, Höflich P, Baade D, Maund JR, Wang L, Wheeler JC (2012) VLT Spectropolarimetry of the Type Ia SN 2005ke. A step towards understanding subluminous events. A&A 545:A7. doi:10.1051/0004-6361/201219146. arXiv:1206.1858Google Scholar
  119. Pereira R, Thomas RC, Aldering G, Antilogus P, Baltay C, Benitez-Herrera S, Bongard S, Buton C, Canto A, Cellier-Holzem F, Chen J, Childress M, Chotard N, Copin Y, Fakhouri HK, Fink M, Fouchez D, Gangler E, Guy J, Hillebrandt W, Hsiao EY, Kerschhaggl M, Kowalski M, Kromer M, Nordin J, Nugent P, Paech K, Pain R, Pécontal E, Perlmutter S, Rabinowitz D, Rigault M, Runge K, Saunders C, Smadja G, Tao C, Taubenberger S, Tilquin A, Wu C (2013) Spectrophotometric time series of SN 2011fe from the Nearby Supernova Factory. A&A 554:A27. doi:10.1051/0004-6361/201221008. arXiv:1302.1292Google Scholar
  120. Perets HB, Gal-Yam A, Mazzali PA, Arnett D, Kagan D, Filippenko AV, Li W, Arcavi I, Cenko SB, Fox DB, Leonard DC, Moon D, Sand DJ, Soderberg AM, Anderson JP, James PA, Foley RJ, Ganeshalingam M, Ofek EO, Bildsten L, Nelemans G, Shen KJ, Weinberg NN, Metzger BD, Piro AL, Quataert E, Kiewe M, Poznanski D (2010) A faint type of supernova from a white dwarf with a helium-rich companion. Nature 465:322–325. doi:10.1038/nature09056. arXiv:0906.2003Google Scholar
  121. Perets HB, Badenes C, Arcavi I, Simon JD, Gal-yam A (2011a) An Emerging Class of Bright, Fast-evolving Supernovae with Low-mass Ejecta. ApJ 730:89. doi:10.1088/0004-637X/730/2/89. arXiv:1008.2754Google Scholar
  122. Perets HB, Gal-yam A, Crockett RM, Anderson JP, James PA, Sullivan M, Neill JD, Leonard DC (2011b) The Old Environment of the Faint Calcium-rich Supernova SN 2005cz. ApJ 728:L36. doi:10.1088/2041-8205/728/2/L36. arXiv:1012.0570Google Scholar
  123. Pfannes JMM, Niemeyer JC, Schmidt W (2010a) Thermonuclear explosions of rapidly rotating white dwarfs. II. Detonations. A&A 509:A75+. doi:10.1051/0004-6361/200912033. arXiv:0911.3545Google Scholar
  124. Pfannes JMM, Niemeyer JC, Schmidt W, Klingenberg C (2010b) Thermonuclear explosions of rapidly rotating white dwarfs. I. Deflagrations. A&A 509:A74+. doi:10.1051/0004-6361/200912032. arXiv:0911.3540Google Scholar
  125. Phillips MM (1993) The absolute magnitudes of Type IA supernovae. ApJ 413:L105–L108. doi:10.1086/186970ADSCrossRefGoogle Scholar
  126. Phillips MM, Phillips AC, Heathcote SR, Blanco VM, Geisler D, Hamilton D, Suntzeff NB, Jablonski FJ, Steiner JE, Cowley AP, Schmidtke P, Wyckoff S, Hutchings JB, Tonry J, Strauss MA, Thorstensen JR, Honey W, Maza J, Ruiz MT, Landolt AU, Uomoto A, Rich RM, Grindlay JE, Cohn H, Smith HA, Lutz JH, Lavery RJ, Saha A (1987) The type 1a supernova 1986G in NGC 5128 – Optical photometry and spectra. PASP 99:592–605. doi:10.1086/132020ADSCrossRefGoogle Scholar
  127. Phillips MM, Wells LA, Suntzeff NB, Hamuy M, Leibundgut B, Kirshner RP, Foltz CB (1992) SN 1991T – Further evidence of the heterogeneous nature of type IA supernovae. AJ 103:1632–1637. doi:10.1086/116177ADSCrossRefGoogle Scholar
  128. Phillips MM, Lira P, Suntzeff NB, Schommer RA, Hamuy M, Maza J (1999) The Reddening-Free Decline Rate Versus Luminosity Relationship for Type Ia Supernovae. AJ 118:1766–1776. doi:10.1086/301032. arXiv:astro-ph/9907052Google Scholar
  129. Phillips MM, Li W, Frieman JA, Blinnikov SI, DePoy D, Prieto JL, Milne P, Contreras C, Folatelli G, Morrell N, Hamuy M, Suntzeff NB, Roth M, González S, Krzeminski W, Filippenko AV, Freedman WL, Chornock R, Jha S, Madore BF, Persson SE, Burns CR, Wyatt P, Murphy D, Foley RJ, Ganeshalingam M, Serduke FJD, Krisciunas K, Bassett B, Becker A, Dilday B, Eastman J, Garnavich PM, Holtzman J, Kessler R, Lampeitl H, Marriner J, Frank S, Marshall JL, Miknaitis G, Sako M, Schneider DP, van der Heyden K, Yasuda N (2007) The Peculiar SN 2005hk: Do Some Type Ia Supernovae Explode as Deflagrations? PASP 119:360–387. doi:10.1086/518372. arXiv:astro-ph/0611295Google Scholar
  130. Piro AL, Chang P, Weinberg NN (2010) Shock Breakout from Type Ia Supernova. ApJ 708:598–604. doi:10.1088/0004-637X/708/1/598. arXiv:0909.2643Google Scholar
  131. Plewa T, Calder AC, Lamb DQ (2004) Type Ia Supernova Explosion: Gravitationally Confined Detonation. ApJ 612:L37–L40. doi:10.1086/424036. arXiv:astro-ph/0405163Google Scholar
  132. Poznanski D, Chornock R, Nugent PE, Bloom JS, Filippenko AV, Ganeshalingam M, Leonard DC, Li W, Thomas RC (2010) An Unusually Fast-Evolving Supernova. Science 327:58. doi:10.1126/science.1181709. arXiv:0911.2699Google Scholar
  133. Rabinak I, Livne E, Waxman E (2012) Early Emission from Type Ia Supernovae. ApJ 757:35. doi:10.1088/0004-637X/757/1/35. arXiv:1108.5548Google Scholar
  134. Raskin C, Kasen D (2013) Tidal Tail Ejection as a Signature of Type Ia Supernovae from White Dwarf Mergers. ApJ 772:1. doi:10.1088/0004-637X/772/1/1. arXiv:1304.4957Google Scholar
  135. Röpke FK, Woosley SE, Hillebrandt W (2007) Off-center Ignition in Type Ia Supernovae. I. Initial Evolution and Implications for Delayed Detonation. ApJ 660:1344–1356. doi:10.1086/512769. arXiv:astro-ph/0609088Google Scholar
  136. Ruiz-Lapuente P, Spruit HC (1998) Bolometric Light Curves of Supernovae and Postexplosion Magnetic Fields. ApJ 500:360–373. doi:10.1086/305697. arXiv:astro-ph/9711248Google Scholar
  137. Ruiz-Lapuente P, Cappellaro E, Turatto M, Gouiffes C, Danziger IJ, della Valle M, Lucy LB (1992) Modeling the iron-dominated spectra of the type IA supernova SN 1991T at premaximum. ApJ 387:L33–L36. doi:10.1086/186299Google Scholar
  138. Saha A, Sandage A, Thim F, Labhardt L, Tammann GA, Christensen J, Panagia N, Macchetto FD (2001) Cepheid Calibration of the Peak Brightness of Type Ia Supernovae. X. SN 1991T in NGC 4527. ApJ 551:973–1015. doi:10.1086/320223. arXiv:astro-ph/0012015Google Scholar
  139. Sasdelli M, Mazzali PA, Pian E, Nomoto K, Hachinger S, Cappellaro E, Benetti S (2014) Abundance stratification in Type Ia supernovae – IV. The luminous, peculiar SN 1991T. MNRAS 445:711–725. doi:10.1093/mnras/stu1777. arXiv:1409.0116Google Scholar
  140. Scalzo RA, Aldering G, Antilogus P, Aragon C, Bailey S, Baltay C, Bongard S, Buton C, Childress M, Chotard N, Copin Y, Fakhouri HK, Gal-Yam A, Gangler E, Hoyer S, Kasliwal M, Loken S, Nugent P, Pain R, Pécontal E, Pereira R, Perlmutter S, Rabinowitz D, Rau A, Rigaudier G, Runge K, Smadja G, Tao C, Thomas RC, Weaver B, Wu C (2010) Nearby Supernova Factory Observations of SN 2007if: First Total Mass Measurement of a Super-Chandrasekhar-Mass Progenitor. ApJ 713:1073–1094. doi:10.1088/0004-637X/713/2/1073. arXiv:1003.2217Google Scholar
  141. Scalzo RA, Aldering G, Antilogus P, Aragon C, Bailey S, Baltay C, Bongard S, Buton C, Canto A, Cellier-Holzem F, Childress M, Chotard N, Copin Y, Fakhouri HK, Gangler E, Guy J, Hsiao EY, Kerschhaggl M, Kowalski M, Nugent P, Paech K, Pain R, Pecontal E, Pereira R, Perlmutter S, Rabinowitz D, Rigault M, Runge K, Smadja G, Tao C, Thomas RC, Weaver BA, Wu C, The Nearby Supernova Factory (2012) A Search for New Candidate Super-Chandrasekhar-mass Type Ia Supernovae in the Nearby Supernova Factory Data Set. ApJ 757:12. doi:10.1088/0004-637X/757/1/12ADSCrossRefGoogle Scholar
  142. Scalzo RA, Aldering G, Antilogus P, Aragon C, Bailey S, Baltay C, Bongard S, Buton C, Cellier-Holzem F, Childress M, Chotard N, Copin Y, Fakhouri HK, Gangler E, Guy J, Kim AG, Kowalski M, Kromer M, Nordin J, Nugent P, Paech K, Pain R, Pecontal E, Pereira R, Perlmutter S, Rabinowitz D, Rigault M, Runge K, Saunders C, Sim SA, Smadja G, Tao C, Taubenberger S, Thomas RC, Weaver BA, Nearby Supernova Factory (2014a) Type Ia supernova bolometric light curves and ejected mass estimates from the Nearby Supernova Factory. MNRAS 440:1498–1518. doi:10.1093/mnras/stu350. arXiv:1402.6842Google Scholar
  143. Scalzo RA, Childress M, Tucker B, Yuan F, Schmidt B, Brown PJ, Contreras C, Morrell N, Hsiao E, Burns C, Phillips MM, Campillay A, Gonzalez C, Krisciunas K, Stritzinger M, Graham ML, Parrent J, Valenti S, Lidman C, Schaefer B, Scott N, Fraser M, Gal-Yam A, Inserra C, Maguire K, Smartt SJ, Sollerman J, Sullivan M, Taddia F, Yaron O, Young DR, Taubenberger S, Baltay C, Ellman N, Feindt U, Hadjiyska E, McKinnon R, Nugent PE, Rabinowitz D, Walker ES (2014b) Early ultraviolet emission in the Type Ia supernova LSQ12gdj: No evidence for ongoing shock interaction. MNRAS 445:30–48. doi:10.1093/mnras/stu1723. arXiv:1404.1002Google Scholar
  144. Schmidt BP, Kirshner RP, Leibundgut B, Wells LA, Porter AC, Ruiz-Lapuente P, Challis P, Filippenko AV (1994) SN 1991T: Reflections of past glory. ApJ 434:L19–L23. doi:10.1086/187562. arXiv:astro-ph/9407097Google Scholar
  145. Seitenzahl IR, Ciaraldi-Schoolmann F, Röpke FK, Fink M, Hillebrandt W, Kromer M, Pakmor R, Ruiter AJ, Sim SA, Taubenberger S (2013) Three-dimensional delayed-detonation models with nucleosynthesis for Type Ia supernovae. MNRAS 429:1156–1172. doi:10.1093/mnras/sts402. arXiv:1211.3015Google Scholar
  146. Shen KJ, Kasen D, Weinberg NN, Bildsten L, Scannapieco E (2010) Thermonuclear.Ia Supernovae from Helium Shell Detonations: Explosion Models and Observables. ApJ 715:767–774. doi:10.1088/0004-637X/715/2/767. arXiv:1002.2258Google Scholar
  147. Silverman JM, Ganeshalingam M, Li W, Filippenko AV, Miller AA, Poznanski D (2011) Fourteen months of observations of the possible super-Chandrasekhar mass Type Ia Supernova 2009dc. MNRAS 410:585–611. doi:10.1111/j.1365-2966.2010.17474.x. arXiv:1003.2417Google Scholar
  148. Silverman JM, Foley RJ, Filippenko AV, Ganeshalingam M, Barth AJ, Chornock R, Griffith CV, Kong JJ, Lee N, Leonard DC, Matheson T, Miller EG, Steele TN, Barris BJ, Bloom JS, Cobb BE, Coil AL, Desroches LB, Gates EL, Ho LC, Jha SW, Kandrashoff MT, Li W, Mandel KS, Modjaz M, Moore MR, Mostardi RE, Papenkova MS, Park S, Perley DA, Poznanski D, Reuter CA, Scala J, Serduke FJD, Shields JC, Swift BJ, Tonry JL, Van Dyk SD, Wang X, Wong DS (2012) Berkeley Supernova Ia Program – I. Observations, data reduction and spectroscopic sample of 582 low-redshift Type Ia supernovae. MNRAS 425:1789–1818. doi:10.1111/j.1365-2966.2012.21270.x. arXiv:1202.2128Google Scholar
  149. Silverman JM, Vinko J, Kasliwal MM, Fox OD, Cao Y, Johansson J, Perley DA, Tal D, Wheeler JC, Amanullah R, Arcavi I, Bloom JS, Gal-Yam A, Goobar A, Kulkarni SR, Laher R, Lee WH, Marion GH, Nugent PE, Shivvers I (2013) SN 2000cx and SN 2013bh: extremely rare, nearly twin Type Ia supernovae. MNRAS 436:1225–1237. doi:10.1093/mnras/stt1647. arXiv:1307.3555Google Scholar
  150. Sim SA, Fink M, Kromer M, Roepke FK, Ruiter AJ, Hillebrandt W (2012) 2D simulations of the double-detonation model for thermonuclear transients from low-mass carbon-oxygen white dwarfs. MNRAS 420:3003–3016. doi:10.1111/j.1365-2966.2011.20162.x. arXiv:1111.2117Google Scholar
  151. Spyromilio J, Meikle WPS, Allen DA, Graham JR (1992) A large mass of iron in supernova 1991T. MNRAS 258:53P–56P. doi:10.1093/mnras/258.1.53PADSCrossRefGoogle Scholar
  152. Stanishev V, Goobar A, Benetti S, Kotak R, Pignata G, Navasardyan H, Mazzali P, Amanullah R, Garavini G, Nobili S, Qiu Y, Elias-Rosa N, Ruiz-Lapuente P, Mendez J, Meikle P, Patat F, Pastorello A, Altavilla G, Gustafsson M, Harutyunyan A, Iijima T, Jakobsson P, Kichizhieva MV, Lundqvist P, Mattila S, Melinder J, Pavlenko EP, Pavlyuk NN, Sollerman J, Tsvetkov DY, Turatto M, Hillebrandt W (2007) SN 2003du: 480 days in the life of a normal Type Ia supernova. A&A 469:645–661. doi:10.1051/0004-6361:20066020. arXiv:0704.1244Google Scholar
  153. Stritzinger M, Leibundgut B, Walch S, Contardo G (2006) Constraints on the progenitor systems of type Ia supernovae. A&A 450:241–251. doi:10.1051/0004-6361:20053652. arXiv:astro-ph/0506415Google Scholar
  154. Stritzinger MD, Phillips MM, Boldt LN, Burns C, Campillay A, Contreras C, Gonzalez S, Folatelli G, Morrell N, Krzeminski W, Roth M, Salgado F, DePoy DL, Hamuy M, Freedman WL, Madore BF, Marshall JL, Persson SE, Rheault JP, Suntzeff NB, Villanueva S, Li W, Filippenko AV (2011) The Carnegie Supernova Project: Second Photometry Data Release of Low-redshift Type Ia Supernovae. AJ 142:156. doi:10.1088/0004-6256/142/5/156. arXiv:1108.3108Google Scholar
  155. Sullivan M, Kasliwal MM, Nugent PE, Howell DA, Thomas RC, Ofek EO, Arcavi I, Blake S, Cooke J, Gal-Yam A, Hook IM, Mazzali P, Podsiadlowski P, Quimby R, Bildsten L, Bloom JS, Cenko SB, Kulkarni SR, Law N, Poznanski D (2011) The Subluminous and Peculiar Type Ia Supernova PTF 09dav. ApJ 732:118. doi:10.1088/0004-637X/732/2/118. arXiv:1103.1797Google Scholar
  156. Tanaka M, Kawabata KS, Yamanaka M, Maeda K, Hattori T, Aoki K, Nomoto K, Iye M, Sasaki T, Mazzali PA, Pian E (2010) Spectropolarimetry of Extremely Luminous Type Ia Supernova 2009dc: Nearly Spherical Explosion of Super-Chandrasekhar Mass White Dwarf. ApJ 714:1209–1216. doi:10.1088/0004-637X/714/2/1209. arXiv:0908.2057Google Scholar
  157. Taubenberger S, Pastorello A, Mazzali PA, Valenti S, Pignata G, Sauer DN, Arbey A, Bärnbantner O, Benetti S, Della Valle A, Deng J, Elias-Rosa N, Filippenko AV, Foley RJ, Goobar A, Kotak R, Li W, Meikle P, Mendez J, Patat F, Pian E, Ries C, Ruiz-Lapuente P, Salvo M, Stanishev V, Turatto M, Hillebrandt W (2006) SN 2004aw: confirming diversity of Type Ic supernovae. MNRAS 371:1459–1477. doi:10.1111/j.1365-2966.2006.10776.x. arXiv:astro-ph/0607078Google Scholar
  158. Taubenberger S, Hachinger S, Pignata G, Mazzali PA, Contreras C, Valenti S, Pastorello A, Elias-Rosa N, Bärnbantner O, Barwig H, Benetti S, Dolci M, Fliri J, Folatelli G, Freedman WL, Gonzalez S, Hamuy M, Krzeminski W, Morrell N, Navasardyan H, Persson SE, Phillips MM, Ries C, Roth M, Suntzeff NB, Turatto M, Hillebrandt W (2008) The underluminous Type Ia supernova 2005bl and the class of objects similar to SN 1991bg. MNRAS 385:75–96. doi:10.1111/j.1365-2966.2008.12843.x. arXiv:0711.4548Google Scholar
  159. Taubenberger S, Benetti S, Childress M, Pakmor R, Hachinger S, Mazzali PA, Stanishev V, Elias-Rosa N, Agnoletto I, Bufano F, Ergon M, Harutyunyan A, Inserra C, Kankare E, Kromer M, Navasardyan H, Nicolas J, Pastorello A, Prosperi E, Salgado F, Sollerman J, Stritzinger M, Turatto M, Valenti S, Hillebrandt W (2011) High luminosity, slow ejecta and persistent carbon lines: SN 2009dc challenges thermonuclear explosion scenarios. MNRAS 412:2735–2762. doi:10.1111/j.1365-2966.2010.18107.x. arXiv:1011.5665Google Scholar
  160. Taubenberger S, Kromer M, Hachinger S, Mazzali PA, Benetti S, Nugent PE, Scalzo RA, Pakmor R, Stanishev V, Spyromilio J, Bufano F, Sim SA, Leibundgut B, Hillebrandt W (2013a) ‘Super-Chandrasekhar’ Type Ia Supernovae at nebular epochs. MNRAS 432:3117–3130. doi:10.1093/mnras/stt668. arXiv:1304.4952Google Scholar
  161. Taubenberger S, Kromer M, Pakmor R, Pignata G, Maeda K, Hachinger S, Leibundgut B, Hillebrandt W (2013b) [O I] λ λ6300, 6364 in the Nebular Spectrum of a Subluminous Type Ia Supernova. ApJ 775:L43. doi:10.1088/2041-8205/775/2/L43. arXiv:1308.3145Google Scholar
  162. Taubenberger S, Elias-Rosa N, Kerzendorf WE, Hachinger S, Spyromilio J, Fransson C, Kromer M, Ruiter AJ, Seitenzahl IR, Benetti S, Cappellaro E, Pastorello A, Turatto M, Marchetti A (2015) Spectroscopy of the Type Ia supernova 2011fe past 1000 d. MNRAS 448:L48–L52. doi:10.1093/mnrasl/slu201. arXiv:1411.7599Google Scholar
  163. Tauris TM, Langer N, Podsiadlowski P (2015) Ultra-stripped supernovae: progenitors and fate. MNRAS 451:2123–2144. doi:10.1093/mnras/stv990. arXiv:1505.00270Google Scholar
  164. Thomas RC, Branch D, Baron E, Nomoto K, Li W, Filippenko AV (2004) On the Geometry of the High-Velocity Ejecta of the Peculiar Type Ia Supernova 2000cx. ApJ 601:1019–1030. doi:10.1086/380632. arXiv:astro-ph/0302260Google Scholar
  165. Turatto M, Benetti S, Cappellaro E, Danziger IJ, Della Valle M, Gouiffes C, Mazzali PA, Patat F (1996) The properties of the peculiar type Ia supernova 1991bg. I. Analysis and discussion of two years of observations. MNRAS 283:1–17. arXiv:astro-ph/9605178Google Scholar
  166. Turatto M, Piemonte A, Benetti S, Cappellaro E, Mazzali PA, Danziger IJ, Patat F (1998) A New Faint Type IA Supernova: SN 1997CN in NGC 5490. AJ 116:2431–2437. doi:10.1086/300622. arXiv:astro-ph/9808013Google Scholar
  167. Valenti S, Yuan F, Taubenberger S, Maguire K, Pastorello A, Benetti S, Smartt SJ, Cappellaro E, Howell DA, Bildsten L, Moore K, Stritzinger M, Anderson JP, Benitez-Herrera S, Bufano F, Gonzalez-Gaitan S, McCrum MG, Pignata G, Fraser M, Gal-Yam A, Le Guillou L, Inserra C, Reichart DE, Scalzo R, Sullivan M, Yaron O, Young DR (2014) PESSTO monitoring of SN 2012hn: further heterogeneity among faint Type I supernovae. MNRAS 437:1519–1533. doi:10.1093/mnras/stt1983. arXiv:1302.2983Google Scholar
  168. van den Bergh S (2002) The Light Curve of S Andromedae. AJ 123:2045–2046. doi:10.1086/339314. arXiv:astro-ph/0201016Google Scholar
  169. Van Dyk SD, Li W, Filippenko AV (2003) A Search for Core-Collapse Supernova Progenitors in Hubble Space Telescope Images. PASP 115:1–20. doi:10.1086/345748. arXiv:astro-ph/0210347Google Scholar
  170. Vinkó J, Kiss LL, Csák B, Fűrész G, Szabó R, Thomson JR, Mochnacki SW (2001) The Peculiar Type Ia Supernova 1999by: Spectroscopy at Early Epochs. AJ 121:3127–3132. doi:10.1086/321079. arXiv:astro-ph/0103034Google Scholar
  171. Waldman R, Sauer D, Livne E, Perets H, Glasner A, Mazzali P, Truran JW, Gal-Yam A (2011) Helium Shell Detonations on Low-mass White Dwarfs as a Possible Explanation for SN 2005E. ApJ 738:21. doi:10.1088/0004-637X/738/1/21. arXiv:1009.3829Google Scholar
  172. Wang L, Baade D, Patat F (2007) Spectropolarimetric Diagnostics of Thermonuclear Supernova Explosions. Science 315:212–214. doi:10.1126/science.1121656. arXiv:astro-ph/0611902Google Scholar
  173. White CJ, Kasliwal MM, Nugent PE, Gal-Yam A, Howell DA, Sullivan M, Goobar A, Piro AL, Bloom JS, Kulkarni SR, Laher RR, Masci F, Ofek EO, Surace J, Ben-Ami S, Cao Y, Cenko SB, Hook IM, Jönsson J, Matheson T, Sternberg A, Quimby RM, Yaron O (2015) Slow-speed Supernovae from the Palomar Transient Factory: Two Channels. ApJ 799:52. doi:10.1088/0004-637X/799/1/52. arXiv:1405.7409Google Scholar
  174. Wood-Vasey WM, Friedman AS, Bloom JS, Hicken M, Modjaz M, Kirshner RP, Starr DL, Blake CH, Falco EE, Szentgyorgyi AH, Challis P, Blondin S, Mandel KS, Rest A (2008) Type Ia Supernovae Are Good Standard Candles in the Near Infrared: Evidence from PAIRITEL. ApJ 689:377–390. doi:10.1086/592374. arXiv:0711.2068Google Scholar
  175. Woosley SE, Kasen D (2011) Sub-Chandrasekhar Mass Models for Supernovae. ApJ 734:38. doi:10.1088/0004-637X/734/1/38. arXiv:1010.5292Google Scholar
  176. Woosley SE, Taam RE, Weaver TA (1986) Models for Type I supernova. I – Detonations in white dwarfs. ApJ 301:601–623. doi:10.1086/163926Google Scholar
  177. Yamanaka M, Kawabata KS, Kinugasa K, Tanaka M, Imada A, Maeda K, Nomoto K, Arai A, Chiyonobu S, Fukazawa Y, Hashimoto O, Honda S, Ikejiri Y, Itoh R, Kamata Y, Kawai N, Komatsu T, Konishi K, Kuroda D, Miyamoto H, Miyazaki S, Nagae O, Nakaya H, Ohsugi T, Omodaka T, Sakai N, Sasada M, Suzuki M, Taguchi H, Takahashi H, Tanaka H, Uemura M, Yamashita T, Yanagisawa K, Yoshida M (2009) Early Phase Observations of Extremely Luminous Type Ia Supernova 2009dc. ApJ 707:L118–L122. doi:10.1088/0004-637X/707/2/L118. arXiv:0908.2059Google Scholar
  178. Yoon S, Langer N (2005) On the evolution of rapidly rotating massive white dwarfs towards supernovae or collapses. A&A 435:967–985. doi:10.1051/0004-6361:20042542. arXiv:astro-ph/0502133Google Scholar
  179. Yuan F, Quimby RM, Wheeler JC, Vinkó J, Chatzopoulos E, Akerlof CW, Kulkarni S, Miller JM, McKay TA, Aharonian F (2010) The Exceptionally Luminous Type Ia Supernova 2007if. ApJ 715:1338–1343. doi:10.1088/0004-637X/715/2/1338. arXiv:1004.3329Google Scholar
  180. Yuan F, Kobayashi C, Schmidt BP, Podsiadlowski P, Sim SA, Scalzo RA (2013) Locations of peculiar supernovae as a diagnostic of their origins. MNRAS 432:1680–1686. doi:10.1093/mnras/stt591. arXiv:1304.2400Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.European Southern ObservatoryGarchingGermany
  2. 2.Max-Planck-Institut für AstrophysikGarchingGermany

Personalised recommendations